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ABSTRACT This paper presents a low-altitude unmanned aerial vehicle (UAV) attitude detection and
tracking algorithm, named UAV-Pose. In the context of low-altitude UAV countermeasure tasks, precise
attitude detection and tracking are crucial for achieving laser-guided precision strikes. To meet the varying
requirements during the tracking stages, this study designs two capture networks with different resolutions.
Firstly, a lightweight bottleneck structure, GhostNeck, is introduced to accelerate detection speed. Secondly,
a significant improvement in detection accuracy is achieved by integrating an attention mechanism and
SimCC loss. Additionally, a data augmentation method is proposed to adapt to attitude detection under
atmospheric turbulence. A self-collected dataset, named UAV-ADT (UAVAttitude Detection and Tracking),
is constructed for training and evaluating the target detection algorithm. The algorithm is deployed using
the TensorRT tool and tested on the UAV-ADT dataset, demonstrating a detection speed of 300 frames per
second (FPS) with a map75 reaching 97.8% and a PCK (Percentage of Correct Keypoints) metric reaching
99.3%. Real-world field experiments further validate the accurate detection and continuous tracking of UAV
attitudes, providing essential support for counter-UAV operations.

INDEX TERMS UAV pose detection, real-time tracking, maneuvering target, UAV countermeasures.

I. INTRODUCTION
In recent years, the rapid development of Unmanned Aerial
Vehicle (UAV) technology has attracted widespread attention
[1], making it a significant tool and asset in various fields
such as military [2], civilian [3], and scientific research [4].
Particularly, low-altitude UAVs have been extensively used
for tasks like reconnaissance [5], surveillance, and surveying
due to their flexibility, stealthiness, and maneuverability.
However, along with the proliferation of UAV technology,
a series of new challenges have emerged, especially in the
realm of military security.

Low-altitude UAVs, as a novel military threat, possess
high speeds and stable flight characteristics, often making
them difficult to be effectively identified and tracked by
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conventional defense mechanisms. Traditional radar systems
have limitations in detecting low-altitude targets, and they are
susceptible to interference in high-intensity electromagnetic
environments [6]. Thus, an effective low-altitude UAV
countermeasure system is urgently needed, and within such
a countermeasure system, efficient and accurate methods for
low-altitude UAV pose detection and tracking serve as the
foundation for counteractions.

The rapid advancement of computer vision and image
processing technology provides new avenues for addressing
this challenge [7], [8], [9], [10], [11], [12], [13], [14].
By utilizing advanced visual sensors, image processing
algorithms, and target tracking techniques, real-time and
accurate detection and tracking of low-altitude UAV poses
can be achieved. This not only enhances the precision of
laser UAV countermeasure systems but also provides crucial
intelligence support for military operations.
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In summary, this paper aims to propose an innovative
method for low-altitude UAV pose detection and tracking,
named UAV-Pose, and applies it to a laser UAV countermea-
sure system. By harnessing the power of computer vision
and image processing technology, real-time and accurate
detection and tracking of low-altitude UAV poses can be
achieved, providing robust support for military security and
offering extensive application prospects. Furthermore, this
algorithm can also be applied to the realm of public safety,
preventing potential risks posed by UAVs in scenarios such
as urban patrols and monitoring of critical locations.

This paper designs a dual-capture network for anti-UAV
target detection and tracking. Using capture networks with
different fields of view in an anti-UAV system addresses
various task requirements and scene changes, thus enhancing
the performance and effectiveness of pose detection and
tracking. The following are several advantages of employing
capture networks with different fields of view:
1) Multi-scale processing: In low-altitude UAV counter-

measure tasks, UAVs may exhibit significant variations
in speed and distance, leading to scale variation issues.
Using capture networks with different fields of view
enables detection and tracking of targets at various
scales, accommodating the diverse scale changes of
targets.

2) Tracking stage requirements: Pose detection and track-
ing generally encompass two stages: detecting the UAV
and determining its pose, followed by continuousmotion
tracking. The detection stage necessitates a larger field
of view to capture the entire target, while a smaller field
of view can be used in the tracking stage to improve
computational efficiency and accuracy. Thus, employing
capture networks with different fields of view better
caters to the distinct requirements of these two stages.

3) Computational efficiency and speed: Networks with
smaller fields of view typically possess fewer parameters
and computations, allowing faster prediction generation
during the tracking stage, thereby achieving real-
time performance. In the detection stage, larger-field
networks enhance detection accuracy by locating the
target within a broader field of view.

To meet the high-speed requirements for anti-low-altitude
UAV pose detection, this paper proposes the GhostNeck
lightweight bottleneck structure. To counter the impact
of atmospheric turbulence on detection accuracy, a data
augmentation method simulating low-altitude UAV capture
images under atmospheric turbulence is introduced. Fur-
thermore, a combination of multi-scale spatial attention
mechanisms and a decoupled multi-branch detection head is
employed, integrating the SimCC-based approach [15] for
predicting keypoints, treating keypoint localization as a clas-
sification task. In comparison to heatmap-based algorithms
[16], [17], [18], [19], the SimCC-based approach achieves
competitive accuracy with lower computational effort.

In conclusion, this paper deploys UAV-Pose on different
inference frameworks (PyTorch, ONNXRuntime, TensorRT)

and hardware (NVIDIA Jetson NX, as illustrated in the
physical image in Fig.2(b)) to assess its efficiency. Experi-
mental results demonstrate that, utilizing TensorRT with fp16
quantization, UAV-Pose achieves an impressive 300 frames
per second (fps) on the NVIDIA Jetson NX, with a PCK
(Percentage of Correct Keypoints) metric reaching 99.3%.
This accomplishment satisfies the demanding requirements
of both speed and accuracy. In real-world field experiments,
UAV-Pose successfully achieves accurate detection and
continuous tracking of key features on UAVs. It is noteworthy
that this paper introduces, for the first time, a method for
tracking specific features onUAVs, overcoming the limitation
of previous approaches that solely focused on tracking the
entire rectangular frame of the UAV. This innovation not only
enhances the precision of UAV attitude detection but also
provides robust support for the execution of counter-UAV
operations.

II. RELATED WORK
Relevant research work can be classified into three main
categories: those based on vision, radar, andmulti-sensor data
fusion:

A. VISION-BASED APPROACHES
The application of computer vision techniques in UAV track-
ing has been extensively studied. Isaac-Medina et al. [20]
collect and integrate the aforementioned three UAV datasets
[21], [22], [23], and present a benchmark performance study
using state of the art four object detection [24] and tracking
methods (SORT [25], DeepSORT [18]). Zhao et al. [26]
recently proposed a new dataset DUT Anti-UAV containing
detection and tracking subsets. Based on this dataset, the
authors evaluated various detection and tracking algorithms
[27], [28], and proposed a strategy to fuse detection and
tracking to further improve tracking performance.

B. RADAR-BASED APPROACHES
Radar provides stable distance and velocity information,
making it suitable for UAV tracking tasks. Dogru and
Marques [29] proposed an active UAV detection system
using millimeter wave radar, which can detect, track and
pursue target UAVs. Junior and Guo [30] designed a UAV
localization and interception system based on MIMO radar,
which can accurately track UAVs invading the safety zone.
Dogru and Marques [29] developed a dual-axis rotary
tracking platform, which combines visual image processing
to automatically lock and track UAVs, and can measure the
flight altitude of UAVs and calculate their coordinates.

C. MULTI-SENSOR DATA FUSION APPROACHES
Integrating different types of sensor data, such as vision
and radar, can leverage the strengths of each sensor to
enhance the stability and robustness of UAV tracking.
Shi et al. [31] proposed an ADS-ZJU system integrating
multiple surveillance technologies. This system incorporates
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FIGURE 1. The Anti-UAV system workflow diagram.

three types of sensors: audio, video, and radio frequency.
It detects UAVs by extracting audio, image, and radio
frequency features and using support vector machines. The
system can also conduct radio frequency interference on
the detected UAVs. This solution effectively improves the
detection accuracy but it has a large coverage and high cost
due to the use of multiple scattered units.

III. PROPOSED METHOD
Firstly, we provided a description of the tasks within the
UAV countermeasure system, outlining the components
and strategies of the tracking algorithm. Subsequently,
we elaborated on the model architecture and loss function
design in this paper.

A. TASK DESCRIPTION
For the tracking algorithm of the UAV countermeasure
system, it needs to include the capture, tracking, and strike
point extraction stages. The overall framework of the tracking
strategy is illustrated in Fig.1. When a UAV target enters the
field of view, the following steps are executed:

1) COARSE TRACKING PHASE
The capture algorithm initially identifies the target and
provides an accurate target bounding box, which is used to
initialize the trackingmodule with the current frame;Once the
trackingmodule is initialized, it continuously tracks the target
in each frame, yielding the output target bounding box.

2) PRECISE TRACKING PHASE
To achieve target interception, strike point extraction is
required. This involves the precise tracking stage: Utilizing
the target bounding box from the tracking module, the
corresponding Region of Interest (ROI) area in the precise
camera is employed to extract the UAV’s pose, facilitating
strike point calculation;To establish a closed-loop control

in the tracking system, the calculated strike point from the
current frame, along with the designated tracking point,
is used to compute the current tracking deviation. This
deviation is then sent to the servo control system to enact
closed-loop tracking.

3) REACQUISITION PHASE
In case of target loss during the tracking process, the detection
module is reactivated to re-identify the target; To expedite
the detection process, an initial detection attempt is made
using the fine-capture network within a 512 × 512 area
centered around the last known target position. If the target
is not detected, the coarse-capture network is subsequently
employed for comprehensive area detection.

During the coarse tracking phase, this paper utilizes
UAV-Pose to exclusively obtain the UAV target’s detection
bounding box. In the precise tracking phase, along with
obtaining the detection bounding box, this paper also extracts
the UAV’s keypoints. For quadcopter UAVs, this paper selects
the two outermost rotors and the onboard camera to establish
three keypoints.

B. MODEL ARCHITECTURE
The UAV pose detection and tracking algorithm has a
stringent requirement for high speed performance, and a
bulky model is inadequate for effectively accomplishing
UAV target pose detection and tracking tasks. The overall
network architecture is depicted in Fig.2(a). In this study,
a novel lightweight convolutional technique called GSConv
is introduced to reduce the model’s parameter count and com-
putational load while maintaining accuracy. Furthermore,
a configurable Feature Pyramid Network (FPN) structure is
devised by incorporating GSConv, GSBottleNeck, and the
Multi-Scale Spatial Attention (MSSA) mechanism.

The model structure of UAV-Pose comprises three main
components: the backbone feature extraction network, the
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FIGURE 2. Overview of the system components. (a) Network architecture, (b) Physical image of NVIDIA Jetson NX, and (c) Thumbnail structure of the
multi-branch decoupled detection head.

multi-scale feature pyramid, and the multi-branch decoupled
detection heads. During the coarse tracking phase of UAV
targets, a 4-layer FPN structure and Multi-Scale Spatial
Attention (MSSA) mechanism are devised to enhance feature
saliency and detection accuracy for targets of various scales.
In the fine tracking phase of UAV targets, a 2-layer FPN
structure is designed to accelerate the model’s detection
speed.

1) MULTI-SCALE FEATURE PYRAMIDS
The main network is primarily responsible for feature
extraction from images, as illustrated in the diagram below.
It mainly consists of CBS convolutional layers, C2f convolu-
tional modules, and an SPPFmodule. The CBS convolutional
layer includes convolutional layers, Batch Normalization
(BN) layers, and SiLU activation functions, aimed at
extracting features of different scales from the image. TheC2f
convolutional module is an efficient aggregation network that
alters computational blocks based on Conv while maintaining
the original transition layer structure. It enhances the
network’s learning capabilities using arithmetic techniques
without disrupting the existing gradient pathways, and guides
different feature groups to learn more diversified features.
The SPPF module comprises spatial pyramid pooling layers
with four different scale sizes of maximum pooling, adapting
to different target resolutions to differentiate between various
target sizes. In this paper, the existing backbone feature
network is enhanced by utilizing larger scales, specifically
P2 ∈ R160×160×64, for detecting small UAV targets in a wider
field of view.

The MobileNets [32], [33], [34], series of lightweight
convolutional neural networks are designed for embedded
and mobile devices. Experiments have indicated that the
feature maps generated by these networks exhibit a certain
degree of redundancy. Additionally, the depthwise separable
convolutions they use contain a significant amount of

convolution in the point convolution part, leading to com-
putational complexity that can still be optimized. GhostNet
[35] introduces GSConv to replace the point convolution in
depthwise separable convolutions, reducing computational
complexity while maintaining recognition performance.

Given an input feature map G ∈ RC×H×W , after
convolution with multiple kernels K ∈ RC×K×K , an inter-
mediate feature layer G′

∈ RC/s ×H ′
×W ′

is obtained.
Here, ‘‘s’’ is a hyperparameter that determines the extent of
channel compression for this convolution. Subsequently, deep
depthwise separable convolutions are applied to G′, and the
result is concatenated withG′ itself to yield the output feature
map G′′

∈ RC ′
×H ′

×W ′

. The FLOPs calculation formula for
GSConv can be expressed as:

FLOPsGSConv = FLOPscv1 + FLOPscv2
FLOPscv1 = 2 ∗ Hout ∗Wout ∗ Cin ∗ (Cout/2) ∗ K 2/S

FLOPscv2 = 2 ∗ Hout ∗Wout ∗ (Cout/2)∗(Cout/2) ∗ K 2/S

(1)

Here, FLOPscv1 and FLOPscv2 represent the FLOPs for the
first and second convolutional layers, respectively. Hout and
Wout are the height and width of the output feature map, Cin
and Cout are the input and output channel numbers, K is the
kernel size, and S is the stride. For the cv1 and cv2 layers
in GSConv, we can substitute their parameters into the above
formula to obtain:

Then, substituting FLOPscv1 and FLOPscv2 into the
formula for FLOPsGSConv, we can derive the FLOPs for
GSConv. For a general Conv block, its FLOPs calculation
formula is:

FLOPsConv = 2 ∗ Hout ∗Wout ∗ Cin ∗ Cout ∗ K 2/S (2)

Comparing GSConv with a standard Conv block, it can
be observed that the FLOPs calculation formula for GSConv
is structurally similar to that of a standard Conv block.
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FIGURE 3. Diagrams illustrating various network structures in the current paper: (a) GSConv Structure, (b) C2f network architecture, (c) GSBottleNeck
network structure, and (d) GSNeck network structure.

However, since GSConv contains two convolutional layers,
and the input and output channel numbers for the second
convolutional layer are both half of the original channel
number, the FLOPs for GSConv will be smaller than that of
a standard Conv block.

Subsequently, the combination of GSConv and deep
depthwise separable convolutions forms the residual network
GSBottleNeck, which mitigates the issue of gradient vanish-
ing in deep networks.

The original C2f structure is depicted in the left diagram,
where C2f employs the Split method to introduce more
residual connections, thus leading to a richer gradient flow.
However, this also results in an increase in the number
of parameters and computational complexity. This paper
introduces GSConv and designs the GSBottleNeck structure,
which serves as the basis for GSNeck, replacing the
original C2f structure. This change retains the adaptability of
GSBottleNeck. To accelerate the calculation of predictions,
the input images in the CNNmust undergo a similar transfor-
mation process within the Backbone: gradually transmitting
spatial information to the channels. Moreover, each spatial
compression (width and height) and channel expansion
of the feature map can lead to partial loss of semantic
information. Dense convolutional computation maximally
preserves hidden connections between each channel, while
sparse convolution completely severs these connections.
GSNeck aims to retain these connections as much as possible.

For GSBottleneck, its FLOPs can be calculated using the
following formula:

FLOPsGSB
= 2 ∗ (2 ∗ Hout ∗Wout ∗ Cin ∗ (Cout/2) ∗ K 2/S

+ 2 ∗ Hout ∗Wout ∗ (Cout/2) ∗ (Cout/2) ∗ K 2/S) (3)

Finally, substituting FLOPscv1, FLOPscv2, and FLOPsGSB
into the formula for FLOPsGSNeck , we obtain:

FLOPsGSNeck
= 2 ∗ Hout ∗Wout ∗ Cin ∗ (Cout/2) ∗ K 2/S

+ 2 ∗ Hout ∗Wout ∗ (Cout/2) ∗ (Cout/2) ∗ K 2/S

+ n ∗ (2 ∗ (2 ∗ Hout ∗Wout ∗ Cin ∗ (Cout/2) ∗ K 2/S

+ 2 ∗ Hout ∗Wout ∗ (Cout/2) ∗ (Cout/2) ∗ K 2/S)) (4)

On the other hand, the FLOPs calculation formula for the
C2f module is:

FLOPsC2f
= 2 ∗ Hout ∗Wout ∗ Cin ∗ (2 ∗ Cout ∗ e) ∗ K 2/S

+ 2 ∗ Hout ∗Wout ∗ ((2 + n) ∗ Cout ∗ e) ∗ Cout ∗ K 2/S

+ n ∗ (2 ∗ Hout ∗Wout ∗ Cin ∗ (Cout ∗ e) ∗ K 2/S

+ 2 ∗ Hout ∗Wout ∗ (Cout ∗ e) ∗ Cout ∗ K 2/S) (5)

From this analysis, it is evident that using GSNeck
in the network’s FPN structure can significantly reduce
computational complexity.

2) MULTI-SCALE SPATIAL ATTENTION MECHANISM
FPN (Feature PyramidNetwork) is a feature pyramid network
used for multi-scale object detection. It constructs multi-
scale feature maps by adding extra lateral connections in the
Backbone network. These lateral connections extract features
from different levels of the Backbone feature maps andmerge
them into the feature maps of the previous layer. This way,
FPN can obtain rich semantic information at different scales
and provide feature maps with different resolutions.
Attention mechanisms are widely used to improve the

performance of deep learning models by selectively focus-
ing on relevant information and suppressing irrelevant or
noisy information [36], [37], [38]. However, these attention
mechanisms overlook the scale information of feature
maps. In the original FPN structure, when fusing features
from different scales, the features are often adjusted to
the same scale through upsampling or downsampling and
directly concatenated along the channel dimension. This
paper proposes a Multi-Scale Spatial Attention mechanism
(MSSA), which adaptively adjusts the weights of features
from P2 to P5. It increases the weights of scale features that
are more beneficial for the recognition task while suppressing
the weights of other scale features. Spatially, the model can
focus on image textures and contextual information that are
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FIGURE 4. The MSSA network architecture.

advantageous for the recognition task. The structure ofMSSA
is shown in the Fig.4.

(1) First, concatenate the compacted features. Since the
dimensions of featuresW c

avg andH
c
avg do not match, the width

and height dimensions of feature H c
avg need to be transposed

before concatenating it with H c
avg to obtain the feature

mapM .
(2) Set a hyperparameter r such that M is passed through

a 2D convolution to obtain the feature map M1, where the
number of channels changes from c to c

r In this paper, r is
set, and the number of channels inM1 should not be less than
8. Then, insert a BN layer and a SiLU activation function to
obtain the feature map M2. At this stage, M2 incorporates
both the feature compaction of the input feature G along the
x-axis and y-axis, allowing spatial information of the input
feature G to interact.

The mixed spatial information in M2 is then divided,
transposed, and passed through another 2D convolution
to restore the channel number to c, resulting in W ′ and
H ′. These two feature maps represent the spatial weights.
Finally, element-wise multiplication is performed between
W ′, H ′, and the corresponding elements of matrix G to
obtain G′. This process combines the spatial weights in
the input feature map, where the spatial weights beneficial
for the recognition task are increased. In the diagram, ⊙

represents element-wise multiplication between matrices.
Thus, the spatial information S and channel information C
are adaptively adjusted. This process can be represented as:

G′
= σ (f ⊗ ([AvgPoolW (G);AvgPoolH (G)]))

= σ
(
f ⊗

([
W c

avg;H
c
avg

]))
(6)

where σ represents the sigmoid function, ⊗ represents the
convolution process, and f is a convolution kernel.
Next, the feature map G′ is adaptively average-pooled at

scale L to obtain a compacted feature of size 2×1×w. Then,
anMLP is used to adjust the compacted feature, and a sigmoid
function is applied to obtain the activated weights. Finally, the
weights are added to the original feature map G′ to obtain the
feature map G′′. This process adapts the weights at scale L.
It can be represented as:

G′′
= σ (f ⊗ ([AvgPoolL(G′)]))

= σ (f ⊗ ([W l
avg])) (7)

3) MULTI-BRANCH DECOUPLING DETECTION HEAD
In object detection, the conflict between classification
and regression tasks is a common issue. Therefore, the
decoupling of classification and localization heads has been
widely applied in both one-stage and two-stage detection
approaches. However, with the evolution of the YOLO series
backbone and feature pyramid, the detection head remains
coupled. In this paper, a multi-branch decoupled detection
head is introduced in the detection stage, as shown in Fig.5.
The model’s output includes regression of 2D bounding
boxes, object classification, and classification of the x and y
coordinates of keypoints.

SimCC [15] introduces an innovative approach that
represents keypoints as classifications within subpixel boxes
for both horizontal and vertical coordinates. This approach
offers several benefits. Firstly, SimCC is not reliant on high-
resolution heatmaps, eliminating the need for a bulky archi-
tecture or expensive upsampling layers. Secondly, SimCC
conducts classification on the flattened final feature map,
avoiding global pooling and preserving spatial information.
These attributes render SimCC a compelling choice for
constructing lightweight pose estimation models. In this
study, we further harness the coordinate classification scheme
to optimize model architecture and training strategies.

C. LOSS FUNCTION
For the prediction of two-dimensional bounding boxes, this
paper employs the Weighted IoU (WIoU) loss, where IoU
represents the traditional Intersection over Union. For an
anchor box B⃗ = [x, y,w, h] and the ground truth box B⃗gt =

[xgt , ygt ,wgt , hgt ], W and H denote the width and height of
the overlapping region between the boundaries. The specific
formula is as follows:

LWIou = exp

(
(x − xgt )2 + (y− ygt )2

(W 2
g + H2

g )∗

)
LIoU (8)

In the initial SimCC, keypoint localization is treated as a
classification problem. The core idea is to divide the hori-
zontal and vertical axes into equi-width bins and discretize
continuous coordinates into integral bin labels. Then, the
model is trained to predict the bin in which the keypoint
resides. By using a large number of bins, quantization errors
can be simplified to subpixel levels. Due to this novel
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FIGURE 5. The multi-branch decoupled head structure.

formulation, SimCC has a very straightforward structure,
utilizing a 1 × 1 convolution layer for transformation.

Regarding the loss function, we treat coordinate classifi-
cation as an ordinal regression task and follow the soft label
encoding proposed in SORD:

yi =
eφ(rt ,ri)∑K
k=1 e

φ(rt ,rk )
(9)

Here, φ(rt , ri) is the chosen metric loss function, used to
penalize the distance between the true metric value rt and
the ranking ri ∈ Y . In this work, we adopt the unnormalized
Gaussian distribution as the inter-class distance metric:

yi =
eφ(rt ,ri)/τ∑K
k=1 e

φ(rt ,rl )/τ
(10)

IV. EXPERIMENTS
In this section, the paper elaborates on the details of model
training, the effectiveness of data augmentations, conducts
ablation experiments, and analyzes the experimental results.
Additionally, in the final subsection, UAV-Pose is quanti-
tatively compared with some state-of-the-art pose detection
algorithms. A NVIDIA GeForce RTX 3080 Ti GPU is
employed, with a batch size of 4 and a total of 300 epochs for
model training. The SGD optimizer is used with betas set to
(0.9, 0.009), an initial learning rate of 0.01, and weight decay
of 0.0005.

Furthermore, all algorithms are deployed on the NVIDIA
Jetson Xavier NX platform for experimentation. The CPU is
NVIDIA Carmel ARM® 8.2 64-bit, memory is 8 GB, and
GPU is NVIDIA Volta™GPU. The runtime libraries include
CUDA 10.1, cuDNN 8.3.1, and TensorRT 7.0.0.

A. DATASET
This paper independently collected and constructed a dataset
named UAV-ADT (UAV Attitude Detection and Tracking)
for training and evaluating target detection algorithms. The
dataset consists of two sub-datasets: CTD (Coarse Tracking
Dataset) and PTD (Precise Tracking Dataset).

The CTD dataset, utilized for UAV target detection,
comprises various models of rotary-wing unmanned aerial

vehicles, including DJI Phantom 3, DJI Phantom 4, DJI
Mavic Air, and fixed-wing drones. It encompasses diverse
backgrounds such as open sky, forests, and urban settings,
featuring UAV poses like level flight, maneuvers, and
rapid ascent/descent. The dataset consists of 22,608 original
images. Manual annotation was performed using the labelme
image annotation tool following the VOC dataset format.
To enhance the detection accuracy of the research method-
ology, data augmentation techniques such as horizontal
mirroring, slight rotation, blur, and randomly adding birds
were applied to the original UAV images.

The PTD corresponds to the dataset captured by a
corresponding telephoto lens, annotated with key points, and
used for training and evaluating attitude detection algorithms.
The algorithm simulated atmospheric turbulence to augment
the UAV images. This dataset comprises 4,743 images. The
final dataset is divided into training and validation sets with
an 80:20 ratio. Sample images and visualizations of data
augmentation effects are presented in Fig.6.

B. REAL-TIME DATA AUGMENTATION
In 2D object detection, data augmentation is a commonly
used technique to increase the diversity and richness of
training data, thereby enhancing the model’s robustness
and generalization capability. When capturing images of
low-altitude UAVs using a camera, they are susceptible to the
effects of atmospheric turbulence. Atmospheric turbulence
refers to irregular and random airflow movements in the
atmosphere, resulting in momentary changes in air velocity,
direction, and density. These turbulent phenomena can
occur at various scales, ranging from microscopic molecular
scales to macroscopic atmospheric scales. The presence of
turbulence in the air significantly impacts applications such
as UAV photography and imaging, as it can lead to image
blurring, shaking, and distortion, thereby affecting image
quality.

To mitigate the impact of atmospheric turbulence on imag-
ing, this paper devised a real-time data augmentation tech-
nique to simulate UAV imaging under atmospheric turbulence
conditions. Additionally, other augmentation techniqueswere
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FIGURE 6. The dataset samples and data augmentation effects.

FIGURE 7. The statistical analysis of the category distribution in the test
set is as follows.

applied to the original UAV images, including horizontal
mirroring, slight rotations, blurring, and the random addition
of birds. The pseudo-code implementation for simulating
atmospheric turbulence is provided below:

C. EXPERIMENTS AND ANALYSIS
PCK (Percentage of Correct Keypoints) is a commonly used
evaluation metric in pose estimation, aimed at assessing the
accuracy of keypoint (joint) localization. PCK measures the

Algorithm 1 Algorithm for Simulating Images
Require: N , M , d , λ, Ii
1: Initialize parameters
2: Create coordinate grids u, v, fu, fv, x, y
3: Generate pupil function pupil
4: Create simulation object calc
5: for i = 1 to num do
6: Load image A
7: Resize A to N × N
8: Create extended target Ii
9: Generate turbulence phase screen phz

10: Calculate aberrated PSF ima_err and phase error 8

11: Calculate aberrated image image_err
12: Save 8 and images
13: end for

distance between the estimated keypoint positions and the
ground truth keypoint positions, determining whether the
keypoints are accurately localized within a certain threshold.

The computation of PCK involves comparing the
Euclidean distance between the estimated keypoint position
and the ground truth position with a predefined threshold.
If the Euclidean distance is less than the threshold, the
keypoint is considered correctly located; otherwise, it is
considered inaccurately located. Ultimately, PCK represents
the percentage of correctly located keypoints. In this study,
PCK is primarily utilized to quantitatively compare the
performance of keypoint detection.
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TABLE 1. The comparison of the experimental and ablation study.

The specific formula for calculating PCK is as follows:

PCK =
Number of Correctly Located Keypoints

Total Number of Keypoints
× 100%

(11)

In the experiments, this study compares the performance
of object detection with YOLOX, YOLOv7, and YOLOv8
on the coarse tracking dataset. Similarly, for the fine tracking
dataset, keypoint detection performance is compared with
YOLOx-Pose, YOLOv8-Pose, and SKPS. The models are
denoted as follows: Ours +GSN: YOLOv8-based model
with GhostConv and GhostNeck bottleneck structures;
Ours +4Head: Improvement upon the previous model
with four detection heads; Ours +MSSA: Incorporation
of multi-scale spatial attention mechanism in the previous
model; Ours+2Head: Model modified back to two detection
heads; Ours+SimCC: Usage of decoupled detection heads
and introduction of SimCC loss function for UAV pose
detection.

These models are evaluated and compared based on their
respective performance metrics using PCK in the context of
keypoint detection for UAV pose estimation.

The analysis of the experimental results reveals that, in the
case of object detection on the coarse tracking dataset, the
Ours+GSN model significantly reduces both the parameter
count and computational workload by nearly half. This
reduction is accompanied by a decrease in map50 and
map75 values. However, through modifications involving
four detection heads and the introduction of the multi-scale
spatial attention (MSSA) mechanism, the model’s parameter
count remains almost unchanged, and the computational
workload increases to 54.1. A comprehensive comparison
of map50 and map75 results indicates that the proposed
Ours+MSSA model achieves a remarkable 54% reduction
in parameter count and 27% reduction in computational
workload while only experiencing a marginal 0.9% drop
in accuracy. This clearly demonstrates that the integration
of the multi-scale spatial attention mechanism (MSSA) and
the use of four detection heads significantly enhance the
accuracy of object detection. When it comes to keypoint
pose estimation on the fine tracking dataset, the introduction
of GSNeck and GSConv, along with the employment of a
dual-detection-head approach, notably reduces the model’s

parameter count and computational workload. However, with
subsequent incorporation of the multi-scale spatial attention
mechanism (MSSA) and SimCC loss function, there is
a substantial improvement in PCK values. In comparison
to YOLOXs-Pose and YOLOv8s-Pose, the final model
manages to enhance map75 by 2.7 percentage points and
PCK by 2.4 percentage points while reducing computational
workload by 24%. This underscores the positive effects of
both themulti-scale spatial attentionmechanism (MSSA) and
the SimCC loss function in enhancing keypoint localization
accuracy.

TABLE 2. The performance comparison of different detection algorithms.

D. EXPERIMENT ON LOW-ALTITUDE UAV DETECTION AND
TRACKING IN COMPLEX BACKGROUND
The entire set of object detection and tracking algorithms
proposed in this article were applied in experiments within
an UAV countermeasure system. In each test, the UAV
maintained consistent altitude, speed, attitude, and direction
of movement. The DJI Phantom 4 served as the test UAV,
with experiments conducted at a distance of 1 km from the
UAV. The camera resolution was set at 1024×1024, with a
data acquisition frequency of 85 frames per second (fps).
A continuous data stream of 1300 frames was collected, and
the overall tracking performance was evaluated using the
tracking miss distance metric, defined by the formula:

M =

√∑
c (xc − xo)2

N
(12)

where: M represents the tracking miss distance; xc is the
current frame’s estimated target position; xo is the target’s
desired closed-loop position;N is the total number of tracking
frames.

The experimental results are presented in the table2
and Fig.8. The test results demonstrate that the improved
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FIGURE 8. Comparison of miss distance: The horizontal axis represents the video frame numbers, while the vertical axis depicts the offset of the
frame’s target position and the closed-loop target position on the x-axis and y-axis, respectively.

FIGURE 9. Visualization of algorithm tracking UAV feature points effect after optimization.

object detection and tracking algorithm presented in this
paper exhibit high accuracy and stability. They also meet
the real-time requirements and are capable of tracking
low-altitude UAV targets against complex backgrounds.

In field experiments, the algorithm not only accurately
detected UAV targets at a 1 km distance but also maintained
stable and continuous tracking. Ultimately, the tracking
miss distance remained within the requirements of the
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countermeasure system, leading to the successful interception
of the target UAV.

E. RESULTS ANALYSIS
The comprehensive UAV target detection and tracking
algorithm proposed in this paper achieved a real-time tracking
speed of 75 frames per second on the testing platform.
The success rate of target capture using the proposed
algorithm reached 98.4%, exhibiting a notable improvement
of 10.6% compared to the optimized baseline. The algorithm
effectively detected small targets at a distance of 1 km,
mitigating the challenges of missed detections and false
positives in complex backgrounds.

The practical experimentation confirmed that the
algorithm’s tracking miss distance remained within 1.2 pix-
els, meeting the engagement requirements of UAV counter-
measure systems. The algorithm successfully demonstrated
real-time detection and tracking of UAV targets in complex
scenarios, and this achievement was visually verified through
the visualization of tracking results for specific frames (204,
205, 206) as well as discrete frames (310, 320, 330) from
a tracking video, as illustrated in the Fig.9. Additionally,
frame (1250, 1260) demonstrates the closed-loop tracking
performance of the algorithm presented in this paper when
the right rotor of the unmanned aerial vehicle serves as the
target point of engagement.

These results collectively demonstrate the algorithm’s
capability to accurately detect and track UAV targets in
complex environments. The algorithm’s ability to handle
real-time challenges, such as accurate detection at long
distances and precise tracking, validates its efficacy in UAV
countermeasure applications.

V. CONCLUSION
In this study, we constructed a large-scale dataset named
UAV-ADT (UAV Attitude Detection and Tracking), laying
the foundation for the proposed low-altitude unmanned
aerial vehicle (UAV) attitude detection and tracking method,
UAV-Pose. This method was successfully applied to laser
UAV countermeasure systems, achieving the groundbreaking
capability of tracking UAV feature points, overcoming the
previous limitation of tracking only the entire UAV bounding
box. The deployment on different inference frameworks and
hardware confirmed the efficiency of UAV-Pose, particularly
on the NVIDIA Jetson NX, where we achieved an impressive
detection speed of 300fps while maintaining PCK and
map75 metrics at 99.3% and 97.8%, respectively, meeting
the high demands for both speed and accuracy. This
innovation significantly enhanced the precision of laser UAV
countermeasure systems.

Our designed dual-capture network demonstrated multiple
advantages across various stages and task requirements.
Firstly, multi-scale processing allowed us to flexibly address
scale variations in low-altitude UAVs, adapting to target
detection and tracking at different distances and speeds.
Secondly, the smaller field-of-view network in the tracking

stage improved computational efficiency and provided pre-
cise attitude tracking when the target was in continuous
motion. Additionally, our approach excelled in handling chal-
lenges such as target occlusion and background variations in
complex scenarios.

In summary, the UAV-Pose method achieved remarkable
success in the field of low-altitude UAV attitude detection and
tracking, establishing a solid foundation for achieving laser
precision strikes and providing crucial military intelligence
support. However, future research directions become even
more intriguing. We plan to expand this method by incor-
porating more UAV feature points in detection and tracking,
extending its application to other types of UAVs, including
fixed-wing and cruise missiles. This extension aims to bring
broader applicability and practicality to the field of UAV
countermeasures, offering comprehensive solutions for future
military and security challenges.
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