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ABSTRACT In this paper, we propose a convex optimization-based estimation of sparse and smooth power
spectral densities (PSDs) of complex-valued random processes from mixtures of realizations. While the
PSDs are related to the magnitude of the frequency components of the realizations, it has been a major
challenge to exploit the smoothness of the PSDs, because penalizing the difference of the magnitude of the
frequency components results in a nonconvex optimization problem that is difficult to solve. To address this
challenge, we design the proposed model that jointly estimates the complex-valued frequency components
and the nonnegative PSDs, which are respectively regularized to be sparse and sparse-smooth. By penalizing
the difference of the nonnegative variable that estimates the PSDs, the proposed model can enhance the
smoothness of the PSDs via convex optimization. Numerical experiments on the phased array weather
radar, an advanced weather radar system, demonstrate that the proposed model achieves superior estimation
accuracy compared to existing sparse estimation models, regardless of whether they are combined with a
smoothing technique as a post-processing step or not.

INDEX TERMS Power spectral density estimation, random process, sparsity, smoothness, regularization,
convex optimization, weather radar.

I. INTRODUCTION
Power spectral density (PSD) of a random process describes
how power of the random process is distributed over
frequency. Estimation of the PSD from realizations of a
random process is a fundamental problem in science and
engineering [1], [2], [3]. For weather radar applications,
the PSD estimation is essential for the analysis of weather
phenomena, because the PSD contains information pertaining
to the precipitation intensity and the Doppler velocity
distribution [4], [5], [6], [7], [8]. For example, the parabolic
Doppler weather radar [4] transmits a pencil beam and
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subsequently observes backscattered signals in a narrow
range of elevation angles, which can be regarded as
realizations of a single random process whose PSD reflects
the weather condition in the narrow range.

We consider the estimation of PSDs from mixtures of
realizations of random processes, which is much more
challenging than the classical case of a single randomprocess.
Our primary interest is on the phased array weather radar
(PAWR) [9], [10], [11], [12], [13], [14], [15], [16], which
is developed to detect hazardous weather phenomena. The
Doppler weather radar is not capable of detecting hazardous
weather because of its mechanical vertical scan for observing
backscattered signals in multiple elevation angles, which
requires a long observation time. To shorten the observation
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time, the PAWR transmits a fan beam and subsequently
observes backscattered signals in a wide range of elevation
angles. The backscattered signals observed by the PAWR
can be modeled as mixtures of realizations of random
processes whose PSDs reflect the weather conditions in
finely-divided ranges. Thus, to obtain the weather condition
in a fine resolution, the PAWRneeds digital signal processing,
recovering the PSDs in the finely-divided ranges.

Since the estimation of PSDs frommixtures of realizations
is a challenging problem, the major existing methods employ
a two-step approach that first estimates the frequency
components of the realizations and then estimates the PSDs.
For the frequency component estimation, sparsity-aware
methods have achieved significant improvements on the
estimation accuracy over the classical linear methods in many
fields [16], [17], [18], [19], [20], [21], [22], [23]. Sparsity
in the spatial domain is exploited in [17], [18], and [19]
under the assumption that signals arrive from only a few
angles. Unfortunately, this assumption is far from suitable
for the PAWR because targets such as clouds and raindrops
exist at many angles [16]. In [20], [21], [22], and [23],
isolated sparse frequency components, called line spectra, are
estimated based on the ℓ1 regularization. It is demonstrated
in [16] that a block-sparse regularization model using the
mixed ℓ2/ℓ1 norm [24], [25], [26], [27], [28], [29], [30] is
more effective for weather radar applications because the
frequency components are clustered in a few blocks due
to the narrow-bandwidth of the PSDs. After the frequency
component estimation, the periodogram, i.e., the squared
magnitude of the frequency components, is usually employed
to estimate the PSD because of its asymptotic unbiasedness.
However, the periodogram has the drawbacks of large vari-
ance and erratic oscillation [1], [2], [3], [4]. For the classical
case of a single random process, smoothing techniques,
e.g., those shown in [1] and [2], are often used to reduce
the variance and the erratic oscillation. While the existing
smoothing techniques can be used as a post-processing step,
such a two-stage approach would be sub-optimal because the
smoothness is not exploited when estimating the frequency
components. Since the PSD is estimated by the periodogram,
i.e., the squared magnitude of the frequency components, one
may add a penalty for the difference between the magnitude
of the frequency components in the frequency component
estimation. However, due to the nonconvexity of this type of
penalty (see, e.g., [31]), it is hard for this approach to obtain
an optimal solution, and the performance dependency on the
initial estimate and the optimization algorithm is difficult to
elude.

Another line of studies derive approximated observation
models between the realizations and the PSD, e.g., for
a single random process [32], [33], [34], [35] and spa-
tially independent random processes [36], [37]. Since the
approximated observation model is written in terms of the
(nonnegative) PSD, the smoothness of the PSD could be
exploited via convex optimization. However, this approach
takes the magnitude of the observation model to derive

the approximated observation models, implying that half of
the information in the original observation model is lost
as the phase information is discarded. In particular, this
approach is not applicable to the PAWR because signals from
different angles cannot be distinguished by the magnitude
information (see (6) in Example 1).
In this paper, we propose a convex optimization-based

method that simultaneously estimates block-sparse frequency
components and block-sparse and smooth PSDs from mix-
tures of realizations.1 To design the proposedmethod, we first
apply the optimally structured block-sparse model of [38]
for the frequency component estimation. Then, we newly
leverage the latent variable of the designed model, which
is originally introduced to optimize the block structure, for
the PSD estimation. More precisely, we demonstrate that the
latent variable is in fact related to the square root of the
PSDs, enabling us to exploit the smoothness of the PSDs via
convex optimization. The main contributions of this paper are
summarized as follows.

• We present, for the first time in the literature, a convex
optimization-based method that can exploit the smooth-
ness of the PSDs for their estimation from mixtures of
realizations.

• We show that many smoothness priors designed for
real-valued signals, including the high-order total
variation [39], [40] and the total generalized varia-
tion [41], can be directly incorporated into the proposed
framework to enhance the smoothness of the PSDs
of complex-valued random processes thanks to the
nonnegative latent variable.

• We conduct thorough numerical simulations on the
PAWR, which demonstrate that the proposed method
achieves superior estimation accuracy to the existing
sparse estimation models combined with or without
post-smoothing, i.e., a smoothing technique applied as
a post-processing step after the frequency component
estimation.

The rest of this paper is organized as follows. In Section II,
we formulate the estimation of PSDs from mixtures of
realizations of random processes, and clarify its relation to
weather radar applications. In Section III, we design the
proposed convex optimization model that simultaneously
estimates block-sparse frequency components and block-
sparse and smooth PSDs. Section IV presents numerical
experiments on the PAWR, followed by conclusion in
Section V.
A preliminary short version of this paper was presented at

a conference [42].
Notations: N, R, R+, R++, and C respectively denote

the sets of nonnegative integers, real numbers, nonnegative
real numbers, positive real numbers, and complex numbers.
We use ı ∈ C to denote the imaginary unit, i.e., ı =

√
−1.

For every x ∈ C, x∗ denotes the complex conjugate of x, and

1If a target is both sparse and smooth, it is also block-sparse since nonzero
components are clustered in several blocks due to the smoothness.
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|x| :=
√
x∗x denotes the absolute value of x. For matrices or

vectors, we denote the transpose and the Hermitian transpose
respectively by (·)⊤ and (·)H. The identity matrix of order N
is denoted by IN ∈ RN×N . We denote the diagonal matrix
with components of w ∈ CN on the main diagonal by
diag(w) ∈ CN×N . The cardinality of a set A is denoted
by |A|. The ℓ2 (Euclidean) norm, the ℓ1 norm, and the
ℓ0 pseudo-norm of x = (x1, . . . , xN )⊤ ∈ CN are respectively

denoted by ∥x∥ :=

√∑N
n=1 |xn|2, ∥x∥1 :=

∑N
n=1 |xn|,

and ∥x∥0 := |{n ∈ {1, . . . ,N } | xn ̸= 0}|. The expectation
operator is denoted by E[·].

II. PROBLEM FORMULATION
We consider the estimation problem of power spectral
densities (PSDs) of N random processes from noisy mixtures
of their realizations. We denote the n-th complex-valued
discrete-time random process (n = 1, . . . ,N ) by

X⋆n [ℓ] ∈ C (ℓ = 0,±1,±2, . . .). (1)

To define the PSD of X⋆n [ℓ], we assume that X⋆n [ℓ] is
zero-mean and wide-sense stationary, which imply that
E[X⋆n [ℓ]] = 0 for any ℓ, and the auto-correlation E[X⋆n [m +

ℓ](X⋆n [m])
∗] does not depend on m for any ℓ. Under these

assumptions, define the auto-correlation function by

Rn[ℓ] := E[X⋆n [m+ ℓ](X⋆n [m])
∗],

and suppose
∑

∞

ℓ=−∞
|Rn[ℓ]| < ∞. Then, the PSD of X⋆n [ℓ]

is given by

S⋆n(f ) :=

∞∑
ℓ=−∞

Rn[ℓ]e−ı2π f ℓ
(
f ∈

[
−
1
2
,
1
2

))
. (2)

We denote L consecutive realizations of X⋆n [ℓ] by

x̄j,n[ℓ] ∈ C (ℓ = 1, . . . ,L), (3)

where j ∈ {1, . . . , J} is the index of trials. Note that x̄j,n[ℓ] for
j = 1, . . . , J are assumed to be realizations of the common
random process X⋆n [ℓ] (see Remark 1 for validity of this
assumption). We define the observation model by

yj :=

N∑
n=1

Anx̄j,n + εj ∈ Cd (j = 1, . . . , J ), (4)

where the realizations in (3) are collectively denoted by

x̄j,n := (x̄j,n[1], x̄j,n[2], . . . , x̄j,n[L])⊤ ∈ CL , (5)

An ∈ Cd×L is the known matrix that models the
observation process for the n-th source, and εj ∈ Cd is
the (unknown) observation noise. Our goal is to estimate
the PSDs S⋆n(f ) (n = 1, . . . ,N ) from yj (j = 1, . . . , J )
and An (n = 1, . . . ,N ) in (4). Note that the classical
PSD estimation problem for a single random process [1],
[2], [3], e.g., for the Doppler weather radar [4], is a special
instance of (4) for N = 1, d = L, and An = IL . The
generalized observation model (4) is introduced to cover the

PSD estimation for the PAWR [9], [10], [11], [12], [13], [14],
[15], [16], which is our primary interest.
Example 1 (PAWR): For the PAWR, X⋆n [ℓ] corresponds

to the sum of backscattered signals in the angular interval[
θn −

1θ
2 , θn +

1θ
2

]
, where θn (n = 1, . . . ,N ) are the

equally spaced angles with a spacing of 1θ . By using an
M -element uniform linear array, the PAWR observes noisy
mixtures of realizations by

yj[ℓ] :=

N∑
n=1

a(θn)x̄j,n[ℓ] + εj[ℓ] ∈ CM (ℓ = 1, . . . ,L)

(6)

for each j ∈ {1, . . . , J}, where a(θn) ∈ CM is the known
steering vector for the angle θn, and εj[ℓ] ∈ CM is the white
Gaussian noise. More precisely, a(θ) is defined by

a(θ ) :=

(
1, e−ı 2π1 sin θ

λcw , . . . , e−ı 2(M−1)π1 sin θ
λcw

)⊤

∈ CM ,

where 1 is the inter-element spacing of the uniform linear
array, and λcw is the carrier wavelength. The observation
model (6) for the PAWR can be written in the form of (4),
i.e.,

y(pawr)j =

N∑
n=1

A(pawr)
n x̄j,n + ε

(pawr)
j (j = 1, . . . , J ),

by setting

y(pawr)j := (yj[1]⊤, yj[2]⊤, . . . , yj[L]⊤)⊤ ∈ CML ,

ε
(pawr)
j := (εj[1]⊤, εj[2]⊤, . . . , εj[L]⊤)⊤ ∈ CML ,

and A(pawr)
n ∈ CML×L to the block-diagonal matrix that

contains L copies of a(θn) on the diagonal blocks, i.e.,

A(pawr)
n :=


a(θn)

a(θn)
. . .

a(θn)

 .
The estimation of the PSDs S⋆n(f ) of X

⋆
n [ℓ] (n = 1, . . . ,N )

is essential for the PAWR because S⋆n(f ) contains infor-
mation about the weather condition in the narrow angular
interval

[
θn −

1θ
2 , θn +

1θ
2

]
. More precisely, the weather

condition can be obtained from S⋆n(f ) as follows. First,
the continuous-time PSD S⋆(ct)n (f ) is recovered from S⋆n(f ).
When aliasing does not occur in S⋆n(f ), S

⋆(ct)
n (f ) can be

simply obtained by S⋆(ct)n (f ) = TS⋆n(Tf ) if |f | ≤
1
2T and

S⋆(ct)n (f ) = 0 otherwise, where T is the pulse repetition time,
i.e., the sampling interval ofX⋆n [ℓ]. Evenwhen aliasing occurs
in S⋆n(f ), S

⋆(ct)
n (f ) can be recovered from S⋆n(f ) unless the

variation of wind velocity is extremely large, and thus the
anti-aliasing filter is usually not employed in weather radar
applications (see, e.g., [4, Chapter 5] and [16, Section II-A]
for detail). Next, S⋆(ct)n (f ) is decomposed as

S⋆(ct)n (f ) = P⋆nq
⋆
n(f ),

VOLUME 11, 2023 128861
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where P⋆n :=
∫

∞

−∞
S⋆(ct)n (f )df and q⋆n(f ) := S⋆(ct)n (f )/P⋆n

respectively correspond to the precipitation intensity and the
Doppler frequency distribution [4]. The Doppler frequency
distribution can be converted to the distribution of Doppler
velocity v, i.e., wind velocity parallel to the incident beam
direction, by v =

λcwf
2 . For instance, the area of nonzero

values of q⋆n(f ) implies the existence of the corresponding
wind velocity components. The precipitation intensity and
the Doppler velocity distribution are useful for the analysis of
weather phenomena, e.g., [5], [7], [8], and [43] for tornado,
[6] for weather clutter, and [44] for raindrop size distribution.
Since the estimation accuracy of the precipitation intensity
and the Doppler velocity distribution heavily depends on
that of the PSD, it is important for the analysis of weather
phenomena based on the PAWR to realize a method that can
accurately estimate the PSDs S⋆n(f ) (n = 1, . . . ,N ) from
the mixtures of realizations.
Remark 1 (Tradeoff between L and J): To derive the

observation model in (4) where x̄j,n[ℓ] (j = 1, . . . , J ) are
realizations of the common random process X⋆n [ℓ], similarly
to the case of a single random process (N = 1) [1], [2],
[3], [4], we split all observations into J subsets. For weather
radar applications, the total number Kpls of pulses is divided
into J subsets, and thus we have L =

Kpls
J . Since 1

L =
J
Kpls

is the frequency resolution, i.e., the sampling interval in
the frequency domain (see (11)), increasing J sacrifices the
frequency resolution [4, Chapter 5]. Note that we cannot
increase Kpls unboundedly because Kpls corresponds to the
observation time, and thus is set to be small enough to ensure
that the statistics of targets such as clouds and raindrops are
(approximately) unchanged. Typically, J is set to be very
small for the sake of a fine frequency resolution, and J = 1 is
of particular interest as the original frequency resolution 1

Kpls
is preserved [4]. Note that, while J = 1 is a typical choice in
practice, our method, which will be developed in Section III,
is applicable to general J .
We rewrite (4) to an observation model in terms of

frequency components of the time-domain realizations x̄j,n
in (5) because of their more direct relation to the PSD in (2)
than x̄j,n. More precisely, we represent x̄j,n as

x̄j,n = Gūj,n (7)

for j = 1, . . . , J and n = 1, . . . ,N , where

ūj,n := (ūj,n[1], ūj,n[2], . . . , ūj,n[L])⊤ ∈ CL (8)

is used as the frequency components, and G ∈ CL×L is a
suitable synthesis matrix. Substituting the representation (7)
to the observation model (4), we have

yj =

N∑
n=1

AnGūj,n + εj ∈ Cd (j = 1, . . . , J ), (9)

which is used as the observation model for the frequency
components ūj,n. The representation (7) covers popular fre-
quency analysis methods used in weather radar applications,

e.g., the discrete Fourier transform (DFT) and the windowed
DFT.
Example 2 (DFT): Let ū(DFT)j,n be the normalized DFT

coefficients of x̄j,n. Define the normalized DFT matrix F ∈

CL×L by

F :=
1

√
L


1 e−ı2π f1 · · · e−ı2π f1(L−1)

1 e−ı2π f2 · · · e−ı2π f2(L−1)

...
...

. . .
...

1 e−ı2π fL · · · e−ı2π fL (L−1)

 , (10)

where

fk :=
k − 1 − L/2

L
(k = 1, . . . ,L) (11)

are uniform sampling points in [−1/2, 1/2) used as a
frequency grid, and L is assumed to be even for simplicity.
Then, ū(DFT)j,n is given by

ū(DFT)j,n = Fx̄j,n.

Due to the unitarity of F, we have

x̄j,n = FHū(DFT)j,n ,

which corresponds to (7) with G = FH.
Example 3 (Windowed DFT): To mitigate the frequency

sidelobes, a window function w ∈ RL
++ is applied to x̄j,n

before the DFT in some cases [3], [45]. The windowed DFT
coefficients are given by

ū(WDFT)
j,n = FWx̄j,n,

where F is the DFT matrix in (10), and W := diag(w) ∈

RL×L
++ . Since (FW)−1

= W−1FH, we have

x̄j,n = W−1FHū(WDFT)
j,n ,

which corresponds to (7) with G = W−1FH.

A. MAJOR CHALLENGE IN PSD ESTIMATION FROM
MIXTURES OF REALIZATIONS
The square of the magnitude of the frequency components
in (8), i.e.,

|ūj,n[k]|2 (k = 1, . . . ,L), (12)

is called the periodogram2 and widely used as an estimate
of the PSD S⋆n(f ) on the frequency grid defined in (11).
It should be noted that the periodogram needs to be estimated
from the mixtures of realizations in (9) for our problem.
The periodogram with the DFT shown in Example 2 is an
asymptotically unbiased estimator of the PSD under a mild
condition [1], [2]. More precisely, since ū(DFT)j,n [k] can be
regarded as a realization of the random variable

U⋆
n [k] :=

1
√
L

L∑
ℓ=1

X⋆n [ℓ]e
−ı2π fk (ℓ−1) (k = 1, . . . ,L),

2Strictly speaking, (12) is called the periodogram when G in (7) is the
inverse DFT FH in Example 2, and (12) with G = W−1FH is called, e.g.,
the windowed periodogram [1] or the modified periodogram [3].
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FIGURE 1. The PSD and the periodogram computed from the realizations
for a simulation.

the asymptotic unbiasedness means that

lim
L→∞

E
[
|U⋆

n [k]|
2
]

= S⋆n(fk ) (k = 1, . . . ,L). (13)

A simple proof of (13) is provided in [16, Section II-A]
under a mild sufficient condition

∑
∞

ℓ=−∞
|ℓRn[ℓ]| < ∞. The

periodogram with the windowed DFT in Example 3 is also
asymptotically unbiased if the window function is properly
designed [3].

The drawback of the periodogram lies in its large variance
and often-observed erratic oscillation [1], [2], [3], [4]
(see also Fig. 1 for an example from the experiments in
Section IV). Indeed, this drawback is theoretically shown
for the periodogram with the DFT when X⋆n [ℓ] is a linear
combination of i.i.d. Gaussian random variables and L →

∞ [1], [2]. Namely, for this case, the variance is equally large
to the square of the PSD, i.e.,

lim
L→∞

E
[(

|U⋆
n [k]|

2
− S⋆n(fk )

)2]
= (S⋆n(fk ))

2

for k = 1, . . . ,L, and U⋆
n [k] and U⋆

n [k
′] (k ̸= k ′)

are uncorrelated when L → ∞. These facts validate the
often-observed erratic oscillation of the periodogram.

Although several approaches have been developed to
reduce the variance of the periodogram, they are not suitable
for our problem in which the PSDs have to be estimated
from the mixtures of realizations in (9). A simple approach
is to exploit the situation that ūj,n[k] (j = 1, . . . , J ) are
realizations of the common random variable, i.e., to use the
ensemble average of the periodograms:

1
J

J∑
j=1

|ūj,n[k]|2 (k = 1, . . . ,L). (14)

Unfortunately, since J is typically very small in weather
radar applications (see Remark 1), the ensemble average
cannot sufficiently reduce the variance and the erratic
oscillation. Since the PSD is usually smooth in weather radar
applications [4], another promising approach is to exploit
the smoothness of the PSD. However, existing smoothing
techniques, e.g., those shown in [1] and [2], are not directly
applicable to our problem because these techniques suppose
that the frequency components ūj,n of the realizations are
known. Using smoothing techniques as a post-processing
step would be sub-optimal because the smoothness of the
PSD is not considered in the estimation of the frequency

components. Thus, it remains a major challenge to exploit the
smoothness of the PSDs when they need to be estimated from
mixtures of realizations.

III. PROPOSED APPROACH
To exploit the sparsity and the smoothness for the PSD
estimation from the observed mixtures of realizations in (9),
we design a convexmodel that jointly estimates the frequency
components ūj,n[k] and the PSDs S⋆n(fk ). In Section III-A,
we first apply the optimally structured block-sparse model
of [38] for the estimation of the frequency components. Then,
in Section III-B, we leverage its latent variable, which is
originally introduced for the block structure optimization, to
estimate sparse and smooth PSDs.

A. BLOCK-SPARSE ESTIMATION OF FREQUENCY
COMPONENTS
We design a block-sparse penalty for the frequency compo-
nents ūj,n by applying the optimally structured block-sparse
model [38] with the knowledge of the PAWR [16]. For
simplicity, we begin by designing a penalty for each n ∈

{1, . . . ,N }. As demonstrated in [16], the PSD S⋆n(f ) is
usually narrow-band for the PAWR, which implies that ūj,n
is block-sparse for each source n ∈ {1, . . . ,N } and trial
j ∈ {1, . . . , J} due to the relation (13).3 Moreover, since
ūj,n (j = 1, . . . , J ) are realizations of the common random
variable, suitable block partitions for ūj,n (j = 1, . . . , J )
are the same. Thus, using the mixed ℓ2/ℓ1 norm that is
suitable for the block-sparsity, we introduce a penalty for
un := (uj,n)Jj=1 as

∥un∥
(Bm,n)hnm=1
2,1 :=

hn∑
m=1

√
J |Bm,n|

∥∥∥((uj,n[k])Jj=1)k∈Bm,n
∥∥∥

=

hn∑
m=1

√
J |Bm,n|

√√√√√ J∑
j=1

∑
k∈Bm,n

|uj,n[k]|2,

where Bm,n ⊂ {1, . . . ,L} (m = 1, . . . , hn) is a block
partition in the frequency domain of the n-th source.
By suppressing the mixed ℓ2/ℓ1 norm, the block-sparsity
is promoted because the components ((uj,n[k])Jj=1)k∈Bm,n
in the same block are forced to be zeros together. The
problem in [16] is that an appropriate block partition is
unknown a priori because it depends on the unknownDoppler
velocity distribution. To solve the problem of unknown block
partition, following the approach of [38], we minimize the
mixed ℓ2/ℓ1 norm over the partition of at most Hn blocks,
i.e.,

ψHn (un) := min
hn∈{1,...,Hn}

[
min

(Bm,n)hnm=1∈Phn
∥un∥

(Bm,n)hnm=1
2,1

]
.

(15)

3Although we present (13) for G = FH in Example 2 for simplicity, ūj,n
is also block-sparse when G = W−1FH in Example 3 because the window
function in Example 3 is designed to reduce the heights of the sidelobes and
slightly increase the width of the mainlobe.
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FIGURE 2. The PSD and the squared magnitude of the frequency
components when aliasing occurs, and its suitable block partition.

The constraint set Phn consists of all hn block partitions of
{1, . . . ,L}, i.e.,(
Bm,n

)hn
m=1 ∈ Phn

⇔



hn⋃
m=1

Bm,n = {1, . . . ,L},

Bm,n ̸= ∅ (m = 1, . . . , hn),

Bm,n ∩ Bm′,n = ∅ (m ̸= m′),

Bm,n = ML
(
{ℓ ∈ N | am,n ≤ ℓ ≤ bm,n}

)
for some am,n, bm,n ∈ N (m = 1, . . . , hn),

where

ML(I) :=

{
ℓ− L

⌊
ℓ− 1
L

⌋
∈ {1, . . . ,L}

∣∣∣∣ ℓ ∈ I
}
,

and ⌊·⌋ is the floor function. For instance, when I = {L −

1,L,L + 1}, ML(I) = {L − 1,L, 1}. Differently from the
standard design proposed in [38], the present design makes
Phn includes blocks connected by the first and the last entries,
and is suitable for weather radar applications due to the
following reason. Since aliasing is not a serious issue in
weather radar applications, the anti-aliasing filter is usually
not employed (see Example 1 and references [4, Chapter 5]
and [16, Section II-A] for detail), and thus aliasing may
occur, i.e., some Doppler frequency components may exceed
the Nyquist frequency. For instance, in Fig. 2, a part of the
PSD that exceeds the Nyquist frequency is aliased, and thus
the corresponding frequency components are also aliased.
In such cases, aliased nonzero components and non-aliased
nonzero components are better to be collected into a single
block, as shown in Fig. 2, because they form a single block
before the aliasing. To realize such capability,Phn is designed
to include blocks connected by the first and the last entries.
Note that a block connected by the first and the last entries is
not always adopted since the block partition is automatically
optimized in (15).

Although it is difficult to use ψHn (un) directly due to the
combinatorial optimization in (15), we can construct a tight
convex relaxation of ψHn (un) as follows. Let φ : CJ

×R+ →

R+∪{∞} be a lower semicontinuous convex function defined

by

φ(v, σ ) :=


∥v∥2

2σ
+
J
2
σ, if σ > 0;

0, if v = 0 and σ = 0;
∞, otherwise.

(16)

Then, similarly to [38, Section II], ψHn (un) can be rewritten
as

ψHn (un) = min
σ n∈RL

+

∥Dσ n∥0≤Hn

L∑
k=1

φ
(
(uj,n[k])Jj=1, σn[k]

)
, (17)

where D ∈ RL×L is the first-order difference operator with
the periodic boundary condition, i.e., the difference operator
on the ring graph [46]. More precisely, D is defined by

D :=


−1 1 0 0 · · · 0 0
0 − 1 1 0 · · · 0 0
...

...
...
...
. . .

...
...

0 0 0 0 · · · − 1 1
1 0 0 0 · · · 0 − 1

 ∈ RL×L . (18)

Note that (17) is a slight extension of the result shown in [38]
to the case where the blocks are fixed over the trials j ∈

{1, . . . , J}. We can obtain a tight convex relaxation of (17)
by replacing the ℓ0 pseudo-norm in the constraint with its best
convex relaxation, i.e., the ℓ1 norm:

ψ̃αn (un) := min
σ n∈RL

+

∥Dσ n∥1≤αn

L∑
k=1

φ
(
(uj,n[k])Jj=1, σn[k]

)
,

where αn ∈ R+ is a tuning parameter related to the number
of blocks. Although the sum

∑N
n=1 ψ̃αn (un) can be used for

the penalty of (un)Nn=1, tuning αn for each n ∈ {1, . . . ,N }

could be troublesome. Thus, to simplify the tuning process,
we propose a convex penalty for u := (un)Nn=1 as

9α(u) := min
(σ n)Nn=1∈RNL

+∑N
n=1 ∥Dσ n∥1≤α

N∑
n=1

L∑
k=1

φ
(
(uj,n[k])Jj=1, σn[k]

)
,

(19)

where the single tuning parameter α ∈ R+ is related to the
number of total blocks for n = 1, . . . ,N .
Using the proposed convex penalty 9α(u) in (19), we

estimate the frequency components by the regularized least
squares for the observation model in (9), i.e.,

minimize
u∈CJNL

1
2

J∑
j=1

∥∥∥∥∥yj −
N∑
n=1

AnGuj,n

∥∥∥∥∥
2

+ λ9α (u) , (20)

where λ > 0 is the regularization parameter that controls the
importance of the block-sparsity. Substituting the definition
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of 9α (u) in (19) into (20), we can reduce the optimization
problem (20) to

minimize
u∈CJNL ,σ∈RNL

+

1
2

J∑
j=1

∥∥∥∥∥yj −
N∑
n=1

AnGuj,n

∥∥∥∥∥
2

+λ

N∑
n=1

L∑
k=1

φ
(
(uj,n[k])Jj=1, σn[k]

)
subject to

N∑
n=1

∥Dσ n∥1 ≤ α


, (21)

where σ denotes (σ n)Nn=1. Although the proposed regulariza-
tion model (21) is a relatively difficult convex optimization
problem due to the discontinuous function φ, we can obtain a
globally optimal solution of (21) by applying the proximal
splitting techniques [47], [48], [49], [50], [51] with the
interpretation of φ in (16) as a perspective function [52],
[53], [54]. A concrete algorithm based on the alternating
direction method of multipliers (ADMM) and its derivation
are provided in Appendix A.

B. LEVERAGING LATENT VARIABLE FOR PSD ESTIMATION
We demonstrate that the solution for the latent variable σ

of the proposed model (21) is in fact suitable for the PSD
estimation. Let û and σ̂ be the solutions of (21) respectively
for the variables u and σ . While it is possible to compute
the periodogram as in (14) for û, σ̂ is more suitable for the
estimation of smooth PSDs. To confirm this, we show that
σ̂ corresponds to the square root of smoothed and averaged
periodogram as follows.

i) We begin by considering the case of α → ∞, which
is not of our interest but easy to analyze. In this case,
since σ minimizes

λ

N∑
n=1

L∑
k=1

φ
(
(uj,n[k])Jj=1, σn[k]

)
(22)

in (21), the solutions û and σ̂ satisfy the relationship

σ̂n[k] =

√√√√√1
J

J∑
j=1

|ûj,n[k]|2 (23)

for each k = 1, . . . ,L and n = 1, . . . ,N , which can
be shown based on [38, Lemma 1]. The relation (23)
means that σ̂ is the square root of the averaged
periodogram in (14) computed with û when α → ∞.

ii) Next, we consider the case of our interest, where α is
set to a finite value. In this case, the constraint

N∑
n=1

∥Dσ n∥1 ≤ α

in (21) penalizes the smoothness of σ n (n =

1 . . . ,N ) since D is the difference operator. Mean-
while, the other part (22) of the proposed model forces
σ to be the averaged periodogram in (23). Thus,

by the combination of these terms, roughly speaking,
σ̂ is smoothed around the square root of the averaged
periodogram in (23).

In addition to being smooth, σ̂ is block-sparse because ûj,n
(j = 1, . . . , J ) are regularized to have a common block-sparse
support. Since the PSDs are smooth and block-sparse for the
PAWR, the square of components of σ̂ , i.e.,

Ŝn(fk ) = (σ̂n[k])2 (k = 1, . . . ,L), (24)

is expected to be a better estimate of the PSDs than the
periodogram computed with û.
Intuitively, the proposed model is expected to accurately

estimate smooth and block-sparse PSDs by the following
mechanism. Since φ(v, σ ) is basically ∥v∥2

2σ +
J
2σ (see (16)),

roughly speaking, we can consider that the part (22) acts as

λ

N∑
n=1

L∑
k=1

J∑
j=1

(
|uj,n[k]|2

2σn[k]
+
σn[k]
2

)
.

Since σn[k] estimates the square root of the PSDs,

|uj,n[k]|2

2σn[k]

is expected to be an effective regularization for u because the
expectation of the squared magnitude of the realizations ū is
close to the PSDs (see (13) and Fig. 1). Refining u leads to
an equally refined σ because σ is smoothed around the value
in (23). Thanks to these interactions, the proposed model is
expected to effectively estimate the frequency components
and the PSDs simultaneously.

While ∥Dσ n∥1 with the first difference operator D in (18)
is a good choice for controlling the block structure, more
advanced smoothness priors can be incorporated to further
improve the estimation accuracy of the PSDs. Thanks to
the nonnegativity of σ n, many convex smoothness penalties
designed for real-valued signals, such as the high-order total
variation [39], [40] that uses Dr (r ≥ 2) instead of D and the
total generalized variation [41], can be directly applied to σ n.
For instance, the proposed model with the high-order total
variation

minimize
u∈CJNL ,σ∈RNL

+

1
2

J∑
j=1

∥∥∥∥∥yj −
N∑
n=1

AnGuj,n

∥∥∥∥∥
2

+λ

N∑
n=1

L∑
k=1

φ
(
(uj,n[k])Jj=1, σn[k]

)
subject to

N∑
n=1

∥Drσ n∥1 ≤ α


(25)

can be solved similarly to the case of (21) by the ADMM-
based algorithm shown in Appendix A. In contrast, when
these penalties are applied to, e.g., the magnitude of u,
their convexity is lost (see, e.g., [31]), which implies that a
globally optimal solution is difficult to obtain. Note that the
application of these penalties to u, which is complex-valued,

VOLUME 11, 2023 128865



H. Kuroda et al.: Convex Estimation of Sparse-Smooth Power Spectral Densities

is not a suitable strategy because themagnitude of u is smooth
but the phase of u is not smooth in most applications.

IV. SIMULATION RESULTS
To demonstrate the effectiveness of the proposed approach,
we conduct numerical simulations on the PSD estimation
for the PAWR shown in Example 1. Essentially, we follow
the simulation setting in [12] and [16]. Uniform elevation
angles θ1, . . . , θN , ranging between −15◦ and 30◦ degrees
withN = 110, are selected.We synthesize the (discrete-time)
PSD S⋆n(f ) by

S⋆n(f ) =
1
T

∞∑
m=−∞

G⋆n

(
f − m
T

)
for each n = 1, . . . ,N , where T is the pulse repetition time,
and G⋆n(f ) is a continuous-time Gaussian-shaped PSD

G⋆n(f ) =
Pn

√
2πςn

e
−

(f−µn)2

2ς2n ,

which is an appropriate model when, e.g., the atmospheric
turbulence is dominant [4]. The power Pn is set from the
actual reflection intensity measured by the PAWR at Osaka
University on March 30, 2014. We define the mean Doppler
frequency µn by the certain sine curve used in [16]. The
Doppler frequency width ςn is converted from the Doppler
velocity width, which are chosen randomly from the uniform
distribution of [1, 3] [m/s]. Note that this setting is more
realistic than that presented in [16] where the Doppler
velocity width is merely fixed to 2 [m/s] at every elevation
angle. We set X⋆n [ℓ] in (1) to the Gaussian process that has
the specified PSD S⋆n(f ), and then generate its realizations
x̄j,n[ℓ] (ℓ = 1, . . . ,L) based on the probability distribution
of X⋆n [ℓ] (ℓ = 1, . . . ,L), which is computed in the way
presented in [4] and [16]. The observation vector yj is given
by (6), where εj is generated as the white Gaussian noise of
the standard deviation

√
2.5. The parameters of the PAWR are

set as follows:M = 128, λcw = 31.8 [mm],1 = 16.5 [mm],
and T = 0.4 [ms]. For the synthesis matrix G in the
observation model (9) in terms of the frequency components,
we test both G = FH and G = W−1FH respectively for
the standard DFT in Example 2 and the windowed DFT in
Example 3. We use the hamming window for the window
functionw in Example 3, which is normalized to ∥w∥ =

√
L,

i.e., to the norm of the rectangular window (1, 1, . . . , 1)⊤

[45].
We compare the proposed approach that jointly estimates

the frequency components and the PSDs with the existing
approach that first estimates the frequency components and
subsequently the PSDs. The proposed approach computes
the estimate Ŝn(fk ) of the PSD by (24) with the solution
σ̂ of the proposed model (25) for the variable σ . For
the frequency component estimators used in the existing
approach, we employ the mixed ℓ2/ℓ1 regularization model
using fixed small-size overlapping blocks [16], which is
state-of-the-art for the PAWR, and the ℓ1 regularization

model as a non-structured sparse model. For the mixed
ℓ2/ℓ1 regularization model, we adopt the formulation based
on latent group lasso [29], [30], which selects relevant
blocks from the pre-defined overlapping blocks in the mixed
ℓ2/ℓ1 norm, because its estimation accuracy is (slightly)
better than that of the simple overlapping blocks-based
formulation in [16]. While the above nonlinear methods
outperform the linear methods for the frequency component
estimation in [16], we also include the minimummean square
error (MMSE) beamformer [12], which performs best among
the linear methods in [16], for comparison. Since the MMSE
beamformer is a time-domain method that estimates x̄j,n
from (4), we compute the frequency components from the
estimate of x̄j,n by using the DFT or the windowed DFT
shown in Examples 2 and 3 respectively. From the estimated
frequency components û, the existing approach constructs the
estimate of the PSD as the averaged periodogram

Ŝ(AP)n (fk ) =
1
J

J∑
j=1

|ûj,n[k]|2 (k = 1, . . . ,L). (26)

We also test the post-smoothing for the existing approach.
Specifically, we employ the standard smoothing technique,
i.e., Daniell method [1], [2]:

Ŝ(SAP)n (fk ) =
1

2R+ 1

k+R∑
k ′=k−R

Ŝ(AP)n (fk ′ ) (k = 1, . . . ,L),

where 2R neighbor frequency bins4 are used for the
smoothing.

Table 1 shows the normalized mean absolute error
(NMAE) ∑N

n=1
∑L

k=1

∣∣∣S⋆n(fk ) − Ŝn(fk )
∣∣∣∑N

n=1
∑L

k=1 S
⋆
n(fk )

,

which is averaged over 100 independent simulations. The
tuning parameters of the methods are adjusted in the way
that the best NMAE is obtained for each method and setting.
Table 2 shows specific settings of the tuning parameters: λ for
the importance of the (block)-sparsity, α for the importance
of the smoothness in the proposed model, the block-size B
for the mixed ℓ2/ℓ1 regularization model, R for the post-
smoothing, and the standard deviation ςε of the noise for
the MMSE beamformer. Note that the MMSE beamformer
uses the actual standard deviation

√
2.5 in the experiments

to achieve the best accuracy. We simply set r = 2 in the
proposed model, although the tuning of r could improve the
estimation accuracy. While the case of J = 1 is of particular
interest in weather radar applications to keep the frequency
resolution of the PSDs (see Remark 1), we also show the
results when J is increased to 2, so as to elaborate on the
effect of J . In Table 1, the proposedmodel is shown to achieve
the best estimation accuracy for all the settings. The post-
smoothing is found to improve the estimation accuracies of

4When k ′ /∈ {1, . . . ,L}, we instead use k ′
− L⌊(k ′

− 1)/L⌋ because the
anti-aliasing filter is not employed (see also Example 1).
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TABLE 1. A comparison of the methods in terms of the NMAE of the PSDs, where the result is averaged over 100 independent simulations. Values shown
in parenthesis for the existing methods are the NMAEs with the post-smoothing.

TABLE 2. Specific settings of the tuning parameters, where ςε is the standard deviation of the noise, R is the parameter for the post-smoothing, λ is the
weight for the (block-)sparsity, B is the block-size for the mixed ℓ2/ℓ1 regularization model, and α is the smoothing parameter for the proposed model.

the existing models; however, their accuracies remain inferior
to those of the proposed model. While the NMSEs of the
proposedmodel and the the existing sparse estimationmodels
combined with the post-smoothing are close for several cases
when J is increased to 2, the proposed model yields moderate
improvements against them for the cases of J = 1. Since
the original frequency resolution is preserved when J =

1 (see Remark 1), the proposed model has an advantage
that it estimates PSDs accurately without sacrificing the
frequency resolution. Note that the proposed model also has
an advantage that it has fewer tuning parameters than the the
mixed ℓ2/ℓ1 regularization model with the post-smoothing
(see Table 2).

We show the ground-truth and the estimates of the PSDs
for examples of simulations: Fig. 3 for L = 32, J = 1,
G = FH, Fig. 4 for L = 32, J = 1, G = W−1FH, Fig. 5
for L = 128, J = 1, G = FH, Fig. 6 for L = 128, J = 1,
G = W−1FH, Fig. 7 for L = 32, J = 2, G = FH, Fig. 8 for
L = 32, J = 2, G = W−1FH, Fig. 9 for L = 128, J = 2,
G = FH, Fig. 10 for L = 128, J = 2,G = W−1FH. It can be
seen from Figs. 3-10(b)(d)(f) that the estimates of the existing
models exhibit erratic oscillation as they do not exploit the
smoothness of the PSDs. In Figs. 7-10(b)(d)(f) where J is
increased to 2, the erratic oscillation is slightly reduced but
still clearly visible, suggesting the limitation of the ensemble
average (26) when J is small (see Remark 1 for the reason
why J is set to be small in weather radar applications). The
post-smoothing is found to reduce the erratic oscillation to

a certain extent, as shown in Figs. 3-10(c)(e)(g). However,
the sparsity of the estimate is impaired, i.e., the number
of entries of large magnitude that are not present in the
ground-truth increases, because the sparsity is not considered
in the post-smoothing step. In contrast, in Figs. 3-10(h),
the proposed approach obtains the estimates that have both
sparsity and smoothness. While the estimates of the mixed
ℓ2/ℓ1 regularization model after the post-smoothing seem
similar to the ground-truth at a glance of Figs. 3-10(g),
erroneous spread of the nonzero components are more clearly
seen from enlarged views shown in Figs. 11 and 12. From
Figs. 11 and 12, we also see that the proposed model
estimates the area of nonzero components more accurately
than the mixed ℓ2/ℓ1 regularization model with the post-
smoothing. Since the area of the nonzero components is
related to the existence of the corresponding wind velocity
components (see Example 1), this is a significant advantage
of the proposed approach for weather radar applications.
We also see that the erratic oscillation is still visible for

the estimates of the MMSE beamformer and the ℓ1 regular-
ization model after the post-smoothing in Figs. 3-10(c)(e),
suggesting the limitation of the post-smoothing. In particular,
while the objective accuracies of the ℓ1 regularization model
after the post-smoothing are close to those of the proposed
model when J is increased to 2 and the standard DFT is used,
the erratic oscillation is not eliminated as seen in Figs. 7(e)
and 9(e). Compared to the ℓ1 regularization model, the erratic
oscillation is considerably reduced in the estimates of the
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FIGURE 3. Ground-truth of the PSDs and their estimates for a simulation of the PAWR using the following settings: L = 32, J = 1, G = FH.

FIGURE 4. Ground-truth of the PSDs and their estimates for a simulation of the PAWR using the following settings: L = 32, J = 1, G = W−1FH.

FIGURE 5. Ground-truth of the PSDs and their estimates for a simulation of the PAWR using the following settings: L = 128, J = 1, G = FH.

FIGURE 6. Ground-truth of the PSDs and their estimates for a simulation of the PAWR using the following settings: L = 128, J = 1, G = W−1FH.
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FIGURE 7. Ground-truth of the PSDs and their estimates for a simulation of the PAWR using the following settings: L = 32, J = 2, G = FH.

FIGURE 8. Ground-truth of the PSDs and their estimates for a simulation of the PAWR using the following settings: L = 32, J = 2, G = W−1FH.

FIGURE 9. Ground-truth of the PSDs and their estimates for a simulation of the PAWR using the following settings: L = 128, J = 2, G = FH.

FIGURE 10. Ground-truth of the PSDs and their estimates for a simulation of the PAWR using the following settings: L = 128, J = 2, G = W−1FH.
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FIGURE 11. An enlarged view of Ground-truth of the PSDs and their estimates for the following settings: L = 128, J = 1, G = FH.

FIGURE 12. An enlarged view of Ground-truth of the PSDs and their estimates for the following settings: L = 128, J = 1, G = W−1FH.

mixed ℓ2/ℓ1 regularization model after the post-smoothing,
as shown in Figs. 3-10(g). This could be attributed to the
property that the block-sparse model does not necessarily
promote the smoothness but force the components in the same
block to zeros together, which would be beneficial to promote
the smoothness in the post-processing step. Although the
estimates of the mixed ℓ2/ℓ1 regularization model after the
post-smoothing seem smooth enough, from enlarged views
in Figs. 11 and 12, we see that they have slight unnatural
fluctuation, and the estimates of the proposed model are
smoother even compared with them.

The line-like artifacts in the estimates shown in Figs. 3, 5,
7, and 9 are more or less reduced in the estimates shown
in Figs. 4, 6, 8, and 10 thanks to the window function that
reduces the heights of the sidelobes. Although the estimates
obtained with the windowed DFT are visually closer to the
ground-truth than those obtained with the standard DFT, the
objective accuracy shown in Table 1 is not always improved
perhaps because the window function increases the width
of the mainlobe. Since the line-like artifacts are caused
due to the sidelobes of the window function with finite L,
the line-like artifacts are more reduced when L = 128.
In particular, the line-like artifacts are almost completely
eliminated in the proposed estimates when L = 128,
as shown in Figs. 6(h) and 10(h).

V. CONCLUSION
We presented a convex optimization model for the estimation
of sparse and smooth PSDs of complex-valued random
processes from noisy mixtures of realizations. While the
PSDs are related to the expectation of the magnitude of
the frequency components of the realizations, it has been
difficult to exploit the smoothness of the PSDs as naive
penalties for the difference of the magnitude of the frequency
components induce hard nonconvex optimization problems.
To resolve this difficulty, we designed the proposed model

that jointly estimates complex-valued frequency components
and nonnegative PSDs. More precisely, we first applied
the optimally structured block-sparse model of [38] for the
frequency component estimation. Then, to estimate the PSDs,
we newly leveraged the latent variable of the model, which
was originally introduced to optimize the block structure.
Namely, we demonstrate that the latent variable is in fact
related to the square root of the PSDs, enabling us to exploit
the smoothness of the PSDs via convex optimization by
penalizing the difference of the nonnegative latent variable.
Moreover, to further enhance the smoothness of the PSDs of
complex-valued random processes, the proposed framework
can readily incorporate many smoothness priors designed for
real-valued signals. Numerical experiments on the PAWR
showed that the proposed approach achieved better objective
accuracy and yielded visually better estimates compared with
the existing sparse estimation models, even when they are
combined with the post-smoothing.

APPENDIX A
SOLVER FOR PROPOSED REGULARIZATION MODEL
The proposed regularization model (25) can be solved by
using the proximal splitting techniques [47], [48], [49], [50],
[51] with the closed-form computation of the proximity
operator of φ. As a concrete example, using the ADMM [48],
[49], we provide an iterative solver that is guaranteed to
converge to an optimal solution of (25). The ADMM solves
the following convex optimization problem

minimize
v∈V,w∈W

F(v) + G(w) subject to w = Lv (27)

by the iterations
v(i+1)

∈ argmin
v∈V

[
γF(v) +

1
2
∥w(i)

− z(i) − Lv∥2
]

w(i+1)
= proxγG(Lv(i+1)

+ z(i))

z(i+1)
= z(i) + Lv(i+1)

− w(i+1),
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where we suppose that V and W are finite-dimensional
Hilbert spaces, F and G are proper lower semicontinuous
convex functions, L is a linear operator, proxγG(w) :=

argminω∈W
[
γG(ω) +

1
2∥w− ω∥

2
]
is the proximity opera-

tor of γG, and γ > 0.
To apply the ADMM, we rewrite (25) as

minimize
u,σ ,x,ũ,σ̃ ,η

F(u, σ ) + G(x, ũ, σ̃ , η)

subject to xj,n = Guj,n (∀j, n)

ũj,n = uj,n (∀j, n)

σ̃ n = σ n (∀n)

ηn = Drσ n (∀n)


, (28)

where we let

F(u, σ ) := 0,

G(x, ũ, σ̃ , η) :=
1
2

J∑
j=1

∥∥∥∥∥yj −
N∑
n=1

Anxj,n

∥∥∥∥∥
2

+ λ

N∑
n=1

L∑
k=1

φ
(
(ũj,n[k])Jj=1, σ̃n[k]

)
+ιBα1 (

η) ,

and ιBα1 (η) is the indicator function of the ℓ1 ball, i.e.,

ιBα1
(η) :=


0, if

N∑
n=1

∥ηn∥1 ≤ α;

∞, otherwise.

Since the constraint of (28) can be expressed in the form
of (27), we can therefore apply the ADMM to (28), and
obtain the iterative algorithm shown in Algorithm 1. For
our formulation, since the minimizer of the first step of the
ADMM is unique, the convergence to an optimal solution
of (28) follows from [51]. From the equivalence between (25)
and (28), (u(i))∞i=1 and (σ (i))∞i=1 generated by Algorithm 1
converges to the solution of (25) for the variables u and σ

respectively.
The operators in Algorithm 1 can be computed as

follows. Expressing φ(v, σ ) as the sum of the perspective
function [52], [53], [54] of ∥v∥2

2 and the linear function J
2σ ,

based on [54, Example 2.4], we can compute proxκφ for
κ = γλ by

proxκφ(v, σ )

=


(0, 0), if 2κσ + ∥v∥2 ≤ Jκ2;(

0, σ −
κJ
2

)
, if v = 0 and 2σ > Jκ;(

v − κs
v

∥v∥
, σ + κ

s2 − J
2

)
, otherwise,

where s > 0 is the unique positive root of

s3 +

(
2
κ
σ + 2 − J

)
s−

2
κ

∥v∥ = 0,

and can be explicitly given based on Cardano’s formula as
follows [38] and [55]. Let p =

2
κ
σ +2− J and D = −

∥v∥2

κ2
−

p3

27 . Then,

s =



3

√
∥v∥
κ

+
√

−D+
3

√
∥v∥
κ

−
√

−D, if D < 0;

2 3

√
∥v∥
κ
, if D = 0;

2

√
−
p
3
cos

(
arctan(κ

√
D/∥v∥)

3

)
, if D > 0,

where 3
√

· denotes the real cubic root. The ℓ1 ball projection
PBα1 , which is the proximity operator of ιBα1 (η), can be
computed in O(NL) expected complexity, e.g., by the
algorithm of [56].

A. IMPLEMENTATION FOR WEATHER RADAR
APPLICATIONS
The matrix inversions in Algorithm 1 can be efficiently
computed for application to weather radars as follows.

a) To efficiently compute the inversion of (IL + GHG),
we use the property

GGH
= diag(ν) ∈ RL

++,

which holds for, e.g., the DFT in Example 2 and the
windowed DFT in Example 3. More precisely, from
this property, we have

(IL + GHG)−1
= IL − GH(IL + GGH)−1G

= IL − GH(IL + diag(ν))−1G

= IL − GHdiag

((
1

1 + νℓ

)L
ℓ=1

)
G,

where the first equality follows from the Sherman-
Morrison-Woodbury matrix inversion lemma [57].
Note that the multiplications of G and GH can be
computed in O(L logL) by the fast Fourier transform
(FFT) for Examples 2 and 3.

b) Since D in (18) is a circulant matrix, the inversion of
(IL + (Dr )⊤Dr ) can be computed in O(L logL) with
the FFT [57].

c) For the PAWR shown in Example 1, the inversion of
INL + AHA ∈ CNL×NL can be computed in O(N 3),
independently of the value of L, because it can be
translated into a block-diagonal matrix after some
permutations. We show this explicitly in another way.
Notice that (x(i+1)

j,n )Nn=1 in Algorithm 1 is the solution of

minimize
(xj,n)

N
n=1

γ

2

∥∥∥∥∥yj −
N∑
n=1

Anxj,n

∥∥∥∥∥
2

+
1
2

N∑
n=1

∥Gu(i+1)
j,n + q(i)j,n − xj,n∥2


. (29)
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Algorithm 1 Iterative Solver for the Proposed Regularization Model (25)

Input: γ > 0, A := [A1, . . . ,AN ] ∈ Cd×NL , x(0)j,n ∈ CL , ũ(0)j,n ∈ CL , σ̃ (0)
n ∈ RL

+, η
(0)
n ∈ RL , q(0)j,n ∈ CL , r(0)j,n ∈ CL ,

τ
(0)
n ∈ RL , ζ (0)

n ∈ RL (j ∈ {1, 2, . . . , J} and n ∈ {1, 2, . . . ,N }).
for i = 0, 1, 2, . . . do

for n ∈ {1, 2, . . . ,N } do
for j ∈ {1, 2, . . . , J} do

u(i+1)
j,n = (IL + GHG)−1

(
GH(x(i)j,n − q(i)j,n) + ũ(i)j,n − r(i)j,n

)
σ
(i+1)
n = (IL + (Dr )⊤Dr )−1

(
(Dr )⊤(η(i)n − ζ

(i)
n ) + σ̃ (i)

n − τ
(i)
n

)
for j ∈ {1, 2, . . . , J} do(

x(i+1)
j,n

)N
n=1

= (INL + γAHA)−1
(
γAHyj +

(
Gu(i+1)

j,n + q(i)j,n
)N
n=1

)
for (n, k) ∈ {1, 2, . . . ,N } × {1, 2, . . . ,L} do(

(ũ(i+1)
j,n [k])Jj=1, σ̃

(i+1)
n [k]

)
= proxγλφ

((
u(i+1)
j,n [k] + r (i)j,n[k]

)J
j=1
, σ

(i+1)
n [k] + τ

(i)
n [k]

)
(
η
(i+1)
n

)N
n=1

= PBα1

((
Drσ

(i+1)
n + ζ

(i)
n

)N
n=1

)
for n ∈ {1, 2, . . . ,N } do

for j ∈ {1, 2, . . . , J} do
q(i+1)
j,n = q(i)j,n + Gu(i+1)

j,n − x(i+1)
j,n

r(i+1)
j,n = r(i)j,n + u(i+1)

j,n − ũ(i+1)
j,n

τ
(i+1)
n = τ

(i)
n + σ

(i+1)
n − σ̃ (i+1)

n

ζ
(i+1)
n = ζ

(i)
n + Drσ

(i+1)
n − η

(i+1)
n

From the definitions of y(pawr)j and A(pawr)
n in Exam-

ple 1, we have∥∥∥∥∥y(pawr)j −

N∑
n=1

A(pawr)
n xj,n

∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
yj[1] −

∑N
n=1 xj,n[1]a(θn)
...

yj[L] −
∑N

n=1 xj,n[L]a(θn)


∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
yj[1]⊤ −

∑N
n=1 xj,n[1]a(θn)

⊤

...

yj[L]⊤ −
∑N

n=1 xj,n[L]a(θn)
⊤


∥∥∥∥∥∥∥
2

fro

= ∥Y⊤
j − XjS⊤

∥
2
fro,

where we let

Yj : = (yj[1], . . . , yj[L]) ∈ CM×L ,

Xj : = (xj,1, . . . , xj,N ) ∈ CL×N ,

S : = (a(θ1), . . . , a(θN )) ∈ CM×N ,

and ∥ · ∥fro denotes the Frobenius norm of the matrix.
From this expression, it is clear that the step (29) can
be solved in O(N 3) for the inversion regarding S⊤.

Namely, (x(i+1)
j,n )Nn=1 in Algorithm 1 is obtained by(

x(i+1)
j,1 , . . . , x(i+1)

j,N

)
=

(
γY⊤

j S
∗

+ GU(i+1)
j + Q(i)

j

)
(IN + γS⊤S∗)−1,

where S∗ is the complex conjugate of S, and

U(i+1)
j :=

(
u(i+1)
j,1 , . . . ,u(i+1)

j,N

)
∈ CL×N ,

Q(i)
j :=

(
q(i)j,1, . . . ,q

(i)
j,N

)
∈ CL×N .

Meanwhile, we remark that the inversions in Algorithm 1 are
the same for all the iterations, and thus can be computed in
advance and stored in the memory.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers
for their valuable comments on the original version of the
manuscript.

REFERENCES
[1] P. Stoica and R. L. Moses, Spectral Analysis of Signals. Upper Saddle

River, NJ, USA: Prentice-Hall, 2005.
[2] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods. Cham,

Switzerland: Springer, 2009.
[3] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,

3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2009.

128872 VOLUME 11, 2023



H. Kuroda et al.: Convex Estimation of Sparse-Smooth Power Spectral Densities

[4] V. N. Bringi and V. Chandrasekar, Polarimetric Doppler Weather Radar:
Principles and Applications. Cambridge, U.K.: Cambridge Univ. Press,
2001.

[5] D. S. Zrnic and R. J. Doviak, ‘‘Velocity spectra of vortices scanned with
a pulse-Doppler radar,’’ J. Appl. Meteorol., vol. 14, no. 8, pp. 1531–1539,
Dec. 1975.

[6] L. Janssen and G. Van Der Spek, ‘‘The shape of Doppler spectra from
precipitation,’’ IEEE Trans. Aerosp. Electron. Syst., vol. AES-21, no. 2,
pp. 208–219, Mar. 1985.

[7] Y.Wang, T.-Y. Yu,M.Yeary, A. Shapiro, S. Nemati,M. Foster, D. L. Andra,
and M. Jain, ‘‘Tornado detection using a neuro–fuzzy system to integrate
shear and spectral signatures,’’ J. Atmos. Ocean. Technol., vol. 25, no. 7,
pp. 1136–1148, Jul. 2008.

[8] T.-Y. Yu, R. R. Rondinel, and R. D. Palmer, ‘‘Investigation of non-Gaussian
Doppler spectra observed by weather radar in a tornadic supercell,’’
J. Atmos. Ocean. Technol., vol. 26, no. 3, pp. 444–461, Mar. 2009.

[9] D. S. Zrnic, J. F. Kimpel, D. E. Forsyth, A. Shapiro, G. Crain, R. Ferek,
J. Heimmer, W. Benner, F. T. J. McNellis, and R. J. Vogt, ‘‘Agile-beam
phased array radar for weather observations,’’ Bull. Amer. Meteorological
Soc., vol. 88, no. 11, pp. 1753–1766, Nov. 2007.

[10] D. McLaughlin et al., ‘‘Short-wavelength technology and the potential for
distributed networks of small radar systems,’’ Bull. Amer. Meteorological
Soc., vol. 90, no. 12, pp. 1797–1818, Dec. 2009.

[11] B. Isom, R. Palmer, R. Kelley, J. Meier, D. Bodine, M. Yeary,
B.-L. Cheong, Y. Zhang, T.-Y. Yu, andM. I. Biggerstaff, ‘‘The atmospheric
imaging radar: Simultaneous volumetric observations using a phased array
weather radar,’’ J. Atmos. Ocean. Technol., vol. 30, no. 4, pp. 655–675,
Apr. 2013.

[12] E. Yoshikawa, T. Ushio, Z. Kawasaki, S. Yoshida, T. Morimoto,
F. Mizutani, andM.Wada, ‘‘MMSE beam forming on fast-scanning phased
array weather radar,’’ IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5,
pp. 3077–3088, May 2013.

[13] D. S. Zrnic, V. M. Melnikov, R. J. Doviak, and R. Palmer, ‘‘Scanning
strategy for the multifunction phased-array radar to satisfy aviation and
meteorological needs,’’ IEEE Geosci. Remote Sens. Lett., vol. 12, no. 6,
pp. 1204–1208, Jun. 2015.

[14] F. Mizutani, T. Ushio, E. Yoshikawa, S. Shimamura, H. Kikuchi, M.Wada,
S. Satoh, and T. Iguchi, ‘‘Fast-scanning phased-array weather radar with
angular imaging technique,’’ IEEE Trans. Geosci. Remote Sens., vol. 56,
no. 5, pp. 2664–2673, May 2018.

[15] E. Yoshikawa, T. Ushio, and H. Kikuchi, ‘‘A study of comb beam
transmission on phased arrayweather radars,’’ IEEETrans. Geosci. Remote
Sens., vol. 59, no. 8, pp. 6346–6356, Aug. 2021.

[16] D. Kitahara, H. Kuroda, A. Hirabayashi, E. Yoshikawa, H. Kikuchi,
and T. Ushio, ‘‘Nonlinear beamforming based on group-sparsities of
periodograms for phased array weather radar,’’ IEEE Trans. Geosci.
Remote Sens., vol. 60, 2022, Art. no. 4106819.

[17] D. Malioutov, M. Cetin, and A. S. Willsky, ‘‘A sparse signal reconstruction
perspective for source localization with sensor arrays,’’ IEEE Trans. Signal
Process., vol. 53, no. 8, pp. 3010–3022, Aug. 2005.

[18] P. Stoica, P. Babu, and J. Li, ‘‘SPICE: A sparse covariance-based estimation
method for array processing,’’ IEEE Trans. Signal Process., vol. 59, no. 2,
pp. 629–638, Feb. 2011.

[19] L. Wang, L. Zhao, G. Bi, C. Wan, L. Zhang, and H. Zhang, ‘‘Novel
wideband DOA estimation based on sparse Bayesian learning with
Dirichlet process priors,’’ IEEE Trans. Signal Process., vol. 64, no. 2,
pp. 275–289, Jan. 2016.

[20] P. Stoica, P. Babu, and J. Li, ‘‘New method of sparse parameter estimation
in separable models and its use for spectral analysis of irregularly sampled
data,’’ IEEE Trans. Signal Process., vol. 59, no. 1, pp. 35–47, Jan. 2011.

[21] C. R. Rojas, D. Katselis, and H. Hjalmarsson, ‘‘A note on the SPICE
method,’’ IEEE Trans. Signal Process., vol. 61, no. 18, pp. 4545–4551,
Sep. 2013.

[22] J. Fang, F. Wang, Y. Shen, H. Li, and R. S. Blum, ‘‘Super-resolution
compressed sensing for line spectral estimation: An iterative reweighted
approach,’’ IEEE Trans. Signal Process., vol. 64, no. 18, pp. 4649–4662,
Sep. 2016.

[23] X. Shang, J. Li, and P. Stoica, ‘‘Weighted SPICE algorithms for range-
Doppler imaging using one-bit automotive radar,’’ IEEE J. Sel. Topics
Signal Process., vol. 15, no. 4, pp. 1041–1054, Jun. 2021.

[24] M. Yuan and Y. Lin, ‘‘Model selection and estimation in regression with
grouped variables,’’ J. Roy. Stat. Soc. Ser. B, Stat. Methodol., vol. 68, no. 1,
pp. 49–67, Feb. 2006.

[25] M. Stojnic, F. Parvaresh, and B. Hassibi, ‘‘On the reconstruction of block-
sparse signals with an optimal number of measurements,’’ IEEE Trans.
Signal Process., vol. 57, no. 8, pp. 3075–3085, Aug. 2009.

[26] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, ‘‘Block-sparse signals:
Uncertainty relations and efficient recovery,’’ IEEE Trans. Signal Process.,
vol. 58, no. 6, pp. 3042–3054, Jun. 2010.

[27] X. Lv, G. Bi, and C. Wan, ‘‘The group lasso for stable recovery of block-
sparse signal representations,’’ IEEE Trans. Signal Process., vol. 59, no. 4,
pp. 1371–1382, Apr. 2011.

[28] E. Elhamifar and R. Vidal, ‘‘Block-sparse recovery via convex opti-
mization,’’ IEEE Trans. Signal Process., vol. 60, no. 8, pp. 4094–4107,
Aug. 2012.

[29] L. Jacob, G. Obozinski, and J.-P. Vert, ‘‘Group lasso with overlap and graph
lasso,’’ in Proc. Int. Conf. Mach. Learn. (ICML), Jun. 2009, pp. 433–440.

[30] G. Obozinski, L. Jacob, and J.-P. Vert, ‘‘Group lasso with overlaps: The
latent group lasso approach,’’ 2011, arXiv:1110.0413.

[31] P. Ciuciu, J. Idier, and J.-F. Giovannelli, ‘‘Regularized estimation of
mixed spectra using a circular Gibbs-Markov model,’’ IEEE Trans. Signal
Process., vol. 49, no. 10, pp. 2202–2213, Oct. 2001.

[32] D. D. Ariananda and G. Leus, ‘‘Compressive wideband power spectrum
estimation,’’ IEEE Trans. Signal Process., vol. 60, no. 9, pp. 4775–4789,
Sep. 2012.

[33] L. Wang, T. Gerkmann, and S. Doclo, ‘‘Noise power spectral density
estimation using MaxNSR blocking matrix,’’ IEEE/ACM Trans. Audio,
Speech, Lang., Process., vol. 23, no. 9, pp. 1493–1508, Sep. 2015.

[34] Y. Lu and P. C. Loizou, ‘‘A geometric approach to spectral subtraction,’’
Speech Commun., vol. 50, no. 6, pp. 453–466, Jun. 2008.

[35] Y. Zhao, X. Zhao, and B. Wang, ‘‘A speech enhancement method based
on sparse reconstruction of power spectral density,’’ Comput. Electr. Eng.,
vol. 40, no. 4, pp. 1080–1089, May 2014.

[36] J. A. Bazerque and G. B. Giannakis, ‘‘Distributed spectrum sensing for
cognitive radio networks by exploiting sparsity,’’ IEEE Trans. Signal
Process., vol. 58, no. 3, pp. 1847–1862, Mar. 2010.

[37] F. Li and Z. Xu, ‘‘Sparse Bayesian hierarchical prior modeling based
cooperative spectrum sensing in wideband cognitive radio networks,’’
IEEE Signal Process. Lett., vol. 21, no. 5, pp. 586–590, May 2014.

[38] H. Kuroda and D. Kitahara, ‘‘Block-sparse recovery with optimal block
partition,’’ IEEE Trans. Signal Process., vol. 70, pp. 1506–1520, 2022.

[39] T. Chan, A. Marquina, and P. Mulet, ‘‘High-order total variation-based
image restoration,’’ SIAM J. Sci. Comput., vol. 22, no. 2, pp. 503–516,
Jan. 2000.

[40] G. D. Maso, I. Fonseca, G. Leoni, and M. Morini, ‘‘A higher order model
for image restoration: The one-dimensional case,’’ SIAM J. Math. Anal.,
vol. 40, no. 6, pp. 2351–2391, Jan. 2009.

[41] K. Bredies, K. Kunisch, and T. Pock, ‘‘Total generalized variation,’’ SIAM
J. Imag. Sci., vol. 3, no. 3, pp. 492–526, 2010.

[42] H. Kuroda, D. Kitahara, E. Yoshikawa, H. Kikuchi, and T. Ushio,
‘‘Sparsity-smoothness-aware power spectral density estimation with
application to phased array weather radar,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Jun. 2023, pp. 1–5.

[43] H. B. Bluestein, J. G. Ladue, H. Stein, D. Speheger, and W. F. Unruh,
‘‘Doppler radar wind spectra of supercell tornadoes,’’ Monthly Weather
Rev., vol. 121, no. 8, pp. 2200–2222, Aug. 1993.

[44] E. Yoshikawa, S. Kida, S. Yoshida, T. Morimoto, T. Ushio, and
Z. Kawasaki, ‘‘Vertical structure of raindrop size distribution in lower
atmospheric boundary layer,’’ Geophys. Res. Lett., vol. 37, no. 20,
Oct. 2010, Art. no. L20802.

[45] V. Chandrasekar, R. M. Beauchamp, and R. Bechini, Introduction to Dual
Polarization Weather Radar: Fundamentals, Applications, and Networks.
Cambridge, U.K.: Cambridge Univ. Press, 2023.

[46] H. Kuroda and D. Kitahara, ‘‘Graph-structured sparse regularization via
convex optimization,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2022, pp. 5538–5542.

[47] A. Chambolle and T. Pock, ‘‘A first-order primal-dual algorithm for convex
problems with applications to imaging,’’ J. Math. Imag. Vis., vol. 40, no. 1,
pp. 120–145, May 2011.

[48] D. Gabay and B. Mercier, ‘‘A dual algorithm for the solution of nonlinear
variational problems via finite element approximation,’’ Comput. Math.
Appl., vol. 2, no. 1, pp. 17–40, 1976.

[49] J. Eckstein and D. P. Bertsekas, ‘‘On the Douglas—Rachford splitting
method and the proximal point algorithm for maximal monotone
operators,’’Math. Program., vol. 55, nos. 1–3, pp. 293–318, Apr. 1992.

[50] P. L. Combettes and J.-C. Pesquet, ‘‘Proximal splitting methods in signal
processing,’’ in Fixed-Point Algorithms for Inverse Problems in Science
and Engineering, H. H. Bauschke, R. S. Burachik, P. L. Combettes,
V. Elser, D. R. Luke, andH.Wolkowicz, Eds. Cham, Switzerland: Springer,
2011, pp. 185–212.

VOLUME 11, 2023 128873



H. Kuroda et al.: Convex Estimation of Sparse-Smooth Power Spectral Densities

[51] L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi, ‘‘Proximal
splitting algorithms for convex optimization: A tour of recent advances,
with new twists,’’ SIAM Rev., vol. 65, no. 2, pp. 375–435, May 2023.

[52] P. L. Combettes, ‘‘Perspective functions: Properties, constructions, and
examples,’’ Set-Valued Variational Anal., vol. 26, no. 2, pp. 247–264,
Jun. 2018.

[53] P. L. Combettes and C. L. Müller, ‘‘Perspective functions: Proximal
calculus and applications in high-dimensional statistics,’’ J. Math. Anal.
Appl., vol. 457, no. 2, pp. 1283–1306, Jan. 2018.

[54] P. L. Combettes and C. L. Müller, ‘‘Perspective maximum likelihood-type
estimation via proximal decomposition,’’Electron. J. Statist., vol. 14, no. 1,
pp. 207–238, Jan. 2020.

[55] H. H. Bauschke, M. Krishan Lal, and X. Wang, ‘‘Real roots of real cubics
and optimization,’’ 2023, arXiv:2302.10731.

[56] L. Condat, ‘‘Fast projection onto the simplex and the ℓ1 ball,’’ Math. Pro-
gramm., vol. 158, no. 1, pp. 575–585, 2016.

[57] G. H. Golub and C. F. Van Loan,Matrix Computations, 4th ed. Baltimore,
MD, USA: Johns Hopkins Univ. Press, 2013.

HIROKI KURODA (Member, IEEE) received the
B.E. degree in computer science and the M.E. and
Ph.D. degrees in information and communications
engineering from the Tokyo Institute of Tech-
nology, Tokyo, Japan, in 2013, 2015, and 2019,
respectively.

In 2019, he was a Postdoctoral Researcher
with the National Institute of Advanced Indus-
trial Science and Technology, Ibaraki, Japan.
From 2020 to 2022, he was an Assistant Professor

with the College of Information Science and Engineering, Ritsumeikan
University, Shiga, Japan. Since 2022, he has been an Assistant Professor
with the Department of Information and Management Systems Engineering,
Nagaoka University of Technology, Niigata, Japan. His research interests
include signal processing and its applications, inverse problem, sparse
modeling, and optimization theory.

Dr. Kuroda was a recipient of the Young Researcher Award from the
IEICE Technical Group on Signal Processing, in 2018; and the Seiichi
Tejima Doctoral Dissertation Award from the Tokyo Institute of Technology,
in 2020.

DAICHI KITAHARA (Member, IEEE) received
the B.E. degree in computer science and the
M.E. and Ph.D. degrees in communications and
computer engineering from the Tokyo Institute
of Technology, Tokyo, Japan, in 2012, 2014, and
2017, respectively.

From 2017 to 2022, he was an Assistant
Professor with the College of Information Science
and Engineering, Ritsumeikan University, Shiga,
Japan. Currently, he is a Researcher with the

Graduate School of Engineering, Osaka University. His research interests
include signal processing and its applications, inverse problem, optimization
theory, and multivariate spline theory.

Dr. Kitahara was a recipient of the Young Researcher Awards from the
IEICE Technical Group on Signal Processing, in 2013; the SICE Technical
Committee on Remote Sensing, in 2015; and the IEEE Computational
Intelligence Society Japan Chapter, in 2016. He was also a recipient of the
IEEE Signal Processing Society (SPS) Japan Student Journal Paper Award
from the IEEE SPS Tokyo Joint Chapter, in 2016; and the Yasujiro Niwa
Outstanding Paper Award from the Tokyo Denki University, in 2018.

EIICHI YOSHIKAWA (Member, IEEE) received
the B.E. degree in aerospace engineering from
Osaka Prefecture University, Sakai, Japan,
in 2005, and the M.E. and Ph.D. degrees from
Osaka University, Suita, Japan, in 2008 and 2011,
respectively.

In 2011, he was a Postdoctoral Researcher with
Osaka University and Colorado State University,
Fort Collins, CO, USA; and a Postdoctoral Fellow
of the Research Fellowship for Young Scientists,

sponsored by the Japan Society for the Promotion of Science (JSPS). In 2012,
he joined the Japan Aerospace Exploration Agency (JAXA), Mitaka, Tokyo,
Japan, where he is currently an Associate Senior Researcher. He is also a
Research Scientist with Colorado State University. His research interests
include weather radar remote sensing, radar-based analyses, and applications
for general and aviation weather.

HIROSHI KIKUCHI (Member, IEEE) received the
B.S. degree from the Department of Engineering,
Doshisha University, Kyoto, Japan, in 2008, and
the M.S. and Ph.D. degrees from the Division of
Electrical, Electronic and Information Engineer-
ing, Osaka University, Suita, Japan, in 2010 and
2013, respectively.

He joined theDivision of Electrical, Electric and
Information Engineering, Osaka University, as a
Specially Appointed Researcher, in 2013. In 2017,

he was a Research Assistant Professor with Tokyo Metropolitan University.
In 2018, he joined The University of Electro-Communications, where he
is currently an Associate Professor. His research specialties are the remote
sensing for an atmospheric electricity with space-borne platforms, weather
radar remote sensing, and a development of the radar systems.

TOMOO USHIO (Senior Member, IEEE)
received the B.S., M.S., and Ph.D. degrees in
electrical engineering from Osaka University,
Suita, Japan, in 1993, 1995, and 1998, respec-
tively.

He was with the Global Hydrology and Climate
Center, Huntsville, AL, USA, as a Postdoctoral
Researcher, from 1998 to 2000. In 2000, he joined
the Department of Aerospace Engineering, Osaka
Prefecture University, Sakai, Japan, as anAssistant

Professor. In 2006, he joined the Division of Electrical, Electronic and
Information Engineering, OsakaUniversity, as anAssociate Professor, where
he has been a Professor, since 2019. In 2017, he joined the Department
of Aeronautics and Astronautics, Tokyo Metropolitan University, Hino,
Tokyo, Japan, as a Professor. His research specialties are radar-based remote
sensing, passive and active remote sensing of atmosphere from space-borne
platforms, and atmospheric electricity.

128874 VOLUME 11, 2023


