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ABSTRACT Following the intuitive idea of detecting changes by directly measuring dissimilarities
between pairs of features, change detection methods based on feature similarity learning have emerged
as a crucial field. However, large variances in the scale and location of required contextual information
and heavy imbalance between easy and hard samples remain challenging issues. To address the first
issue, we propose the Local-Specificity and Wide-View Attention Network (LSWVANet), which features
a series of attention modules named Local-Specificity and Wide-View Attention Modules (LSWVAMs).
Each LSWVAM consists of two contextual feature units: the Local-Specificity Feature Pyramid unit, which
extracts part-specific contexts at the fine-grained level to focus on subtle changes within local discriminative
parts, and the Wide-View Feature Pyramid unit, which extracts wide-view contexts at the long-range level
to highlight significant changes in large-scale regions. To tackle the second issue, we introduce a novel
sample-specific loss function called Hard Sample-Aware Contrastive Loss (HSACL), which is designed
to downweight easy samples from both changed and unchanged categories, thereby rapidly shifting the
training focus towards the informative hard samples.We demonstrate the effectiveness of ourmethod through
experiments on three challenging datasets, VL-CMU-CD, PCD2015 and PSCD, and report the experimental
results showing that our approach achieves state-of-the-art accuracy.

INDEX TERMS Change detection, hard sample, feature similarity learning, attention mechanism.

I. INTRODUCTION
Street-view scene change detection (SCD) is a crucial com-
puter vision task with a wide range of applications, including
urban planning [1], [2], [3], traffic surveillance [4], [5],
abandoned object detection [6], [7], disaster evaluation [8],
action recognition [9], [10] and self-driving [11], [12].
With the emergence of self-driving cars and robotic patrols,
accurate navigation and planning based on map information
have become increasingly important. Many researchers [1],
[11], [12] use street-view change detection algorithms to
update map information. Therefore, improving the accuracy
of change detection model is a critical challenge in SCD.
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With the powerful feature representation of convolutional
neural networks [13], [14], [15] (CNNs), fully convolutional
networks [14], [16] (FCNs) have been widely used in
the field of change detection. FCN-based methods can be
broadly classified into two categories. The first category
is semantic segmentation-based methods [12], [16], [17],
[18], which treat changed and unchanged samples as a
binary classification problem. The second category is feature
similarity learning-based methods (FSL) [8], [19], [20],
which regard changes as feature dissimilarities and employ
the Euclidean distance to measure the dissimilarity between
sample pairs. In this paper, our focus is on FSL methods.
To achieve more discriminative features, Zhan et al. [19] and
Guo et al. [21] adopt the contrastive loss (CL) to ensure
that unchanged regions yield lower distances while changed
regions yield higher distances. Although these models have

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 129009

https://orcid.org/0000-0001-7398-3800
https://orcid.org/0000-0002-9352-0237


E. Guo, X. Fu: LSWVANet With Hard Sample Aware Contrastive Loss for Street SCD

FIGURE 1. Illustration of challenges in street-view change detection.
(a) Overlooking subtle changes in local parts. (b) Inconsistency change
detection in large-scale object. (c) Imbalance between easy and hard
samples.

achieved high accuracy, the challenge of handling hard
samples remains a crucial concern in change detection. This
challenge can be delineated in two ways:

(1) There is significant variance in the scale and
location of contextual information required for detecting
changes. Firstly, the required contextual information of
local discriminative parts needs to consider local specificity.
In Fig.1(a), subtle changes such as windows (marked as
A) and doors (marked as B) can be easily overlooked.
Therefore, it is crucial to extract part-specific discrimina-
tive features to highlight these subtle changes. Secondly,
the required contextual information of large-scale change
regions also needs to consider long-range consistency.
In Fig.1(b), local features attributed to the changed cate-
gory vary dramatically due to the differences in textural
information or lighting conditions, resulting in inconsistent
predictions.

(2) During the training process, there exists a significant
imbalance both within and between classes regarding easy
and hard samples. Firstly, an extreme class imbalance
between changed and unchanged samples (8% vs. 92%)
causes neural networks to favor majority classes and ignore
minority ones. Consequently, minority class samples (e.g.,
sample G) tend to become hard samples. Secondly, even
within each class, hard samples are less abundant compared
to easy ones. For example, within the changed class, hard
samples like sample A are fewer than easy samples like
sample C; similarly, within the unchanged class, hard samples
like E are fewer than easy samples like sample F. This class
imbalance hampers performance because the cumulative
contribution of numerous easy samples can overwhelm the
contribution of the fewer hard samples, making the training
process less efficient.

To address the first issue, several strategies have been
proposed in previous studies, including multiscale feature
fusion [21], [22], multilevel feature fusion [23], adding
auxiliary information [24], [25], [26], gate-based atten-
tion [27], [28], [29] and pairwise affinity attention [30],

[31], [32]. Among these methods, gate-based attention
methods that cooperate with gating functions (e.g., sigmoid
function) often show considerable performance, because
attention mechanisms theoretically enable the focus on the
most relevant contextual information across various scale.
These methods generally involve two steps: first, extracting
contextual features, and then generating an attention mask
based on these contextual features. In other words, gate-based
attention methods heavily rely on contextual information.
Specifically, Squeeze-and-Excitation (SE) variants [33],
[34], Convolutional Block Attention Module (CBAM) vari-
ants [29], [35] and Split Attention variants [36], [37] employ
global average pooling (GAP) to aggregate global channel
or spatial contextual information. However, these methods
often sacrifice local details, resulting in the loss of small-scale
change regions. Approaches like U-shaped attention [38]
and hourglass-based attention [39], [40] have been proposed
to preserve rich feature map details and enhance the
ability to detect small-scale change regions. Constrained
by limited receptive field, these methods may struggle to
ensure long-range consistency. Furthermore, scale-adaptive
attention module [41] and local-global attention module [42]
have been proposed to simultaneously capture local details
and global semantic features for detecting multi-scale
change regions. Despite the development of addressing scale
variance, there is still significant room for improvement in
detecting subtle changes within local distinctive parts. This
limitation arises because local details are not fine-grained
enough to distinguish subtle appearance differences. There-
fore, the attention network for SCD requires further
works on extracting fine-grained discriminative features
and enhancing local specificity for the detection of subtle
changes.

To address the aforementioned limitations, we pro-
pose Local-Specificity and Wide-View Attention Network
(LSWVANet), which features a series of attention modules
named (LSWVAM). Each LSWVAM consists of two con-
textual feature units: (1) a Local-Specificity Feature Pyramid
unit (LSFP) models part-specific discriminative contexts at
the fine-grained level, and (2) a Wide-View Feature Pyramid
unit (WVFP) models wide-view contexts at the long-range
level. The LSFP comprises four branches, each employing
distinct partition methods. Within each branch, independent
convolutional layers are used to extract part-specific dis-
criminative features from distinctive spatial parts, thereby
enhancing local specificity. Meanwhile, the WVFP unit
consists of four branches, each integrating two successive
dilation convolutional layers to capture long-range context
features, thereby improving semantic consistency. Unlike
other attention modules [29], [30], [33], [41], the advantage
of LSWVANet is that it not only extracts long-range context
features but also emphasizes local specificity within local
parts, enabling the module to highlight subtle changes at the
fine-grained level.

To tackle the class imbalance issue, several studies in the
field of FSL have introduced reweighting loss techniques,
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including the weighted contrastive loss [19], the weighted
double-margin contrastive loss [30], and the combined
loss [43]. These techniques aim to mitigate the imbalance
issues by suppressing sample losses from the unchanged class
while highlighting sample losses from the changed class.
Despite the advances in addressing interclass imbalance,
these methods often result in undesirable effects, such as
suppressing informative hard samples from the unchanged
class, while simultaneously upweighting easy samples from
the changed class. This limitation arises from the fact that
these class-specific loss functions struggle to effectively
distinguish between easy and hard samples within each class
at the fine-grained level, thus failing to upweighting hard
samples from the unchanged class and downweighting easy
samples from the changed class.

In our paper, we propose a sample-specific loss function
called Hard Sample-Aware Contrastive Loss (HSACL).
Inspired by focal loss [44], which quantifies hard samples
using confidence scores, we adopt sample distance as a
metric to measure hardness. Based on this definition, HSACL
concentrates on optimizing samples with larger distance
values from the changed class and samples with smaller
distance values from the unchanged class, both of which
are categorized as hard samples. In contrast to the class-
specific losses [19], [30], the advantage of HSACL lies
in downweighting the losses of easy samples from both
the changed and unchanged classes based on their distance
values, and rapidly shifting the training focus towards
informative hard samples, such as subtle changes (e.g.,
sample A in Fig.1(a)) and background overactivation (e.g.,
sample E in Fig.1(b)).

We demonstrate the effectiveness of the proposed
LSWVANet with HSACL through experiments on three
challenging street-view datasets: the VL-CMU-CD [12],
PCD2015 [8], and PSCD [24]. Our experimental results
show that it achieves state-of-the-art accuracy. Furthermore,
we validate the effectiveness of the proposed method
through visualization of the distance distribution under polar
coordinates and feature latent space distribution. Our main
contributions are as follows:

(1) We propose a novel attention network called
LSWVANet for street-view change detection, which features
a series of attention modules named LSWVAMs. Each
LSWVAM consists of two contextual feature units: (1) LSFP,
which extracts local-specific contexts at the fine-grained level
to focus on subtle changes within local discriminative parts,
and (2) WVFP, which extracts wide-view contexts at the
long-range level to highlight significant changes in large-
scale regions.

(2)We propose a novel sample-specific loss function called
HSACL, which is designed to identify hard samples from
both changed and unchanged classes at the fine-grained
level, subsequently downweighting the loss assigned to easy
samples while rapidly shifting the training focus towards the
hard samples.

(3) We conduct comprehensive comparative experiments
on three challenging datasets: VL-CMU-CD, PCD2015 and
PSCD. The results demonstrate that the proposed method
achieves impressive performance and outperforms state-of-
the-art methods by a considerable margin.

The rest of this work is structured as follows. The
related works on change detection, attention mechanisms
and reweighting loss are described in Section II. Section III
describes our proposed method in detail. The experimental
setup and results are presented in Section IV. The discussion
and conclusions of this paper are presented in Section V and
Section VI, respectively.

II. RELATED WORK
A. SCENE CHANGE DETECTION
In general, a change detection algorithm based on a CNN
comprises two main components, a feature embedding and
a detection head with a loss function.

1) FEATURE EMBEDDING
From the feature embedding perspective, CNN-based meth-
ods can be classified as single-stream, double-stream
and hybrid structures. Single-stream structures, shown in
Fig.2(a), fuse RGB image channels at {T0,T1} using
methods like channel concatenation [45], differential channel
fusion [46], or nonlinear image fusion [47], [48]. Fig.2(b)
and Fig.2(c) show that the double-stream frameworks detect
changes based on high-level features. Hybrid structures
are mostly building spatial-spectral and spatial-temporal
information using temporal module, such as long short-term
memory (LSTM) [49]. In the context of street-view change
detection, double-stream structures with weight-sharing
siamese networks are widely adopted. Specifically, well-
establishedCNNmodels, such asDeconvNet [12], UNet [13],
FCN8S [14], and Deeplab [21] have been introduced for
change detection. However, these baseline methods still
face challenges in dealing with significant variations in
the scale and location of contextual information. To tackle
this challenge, Varghese et al. [22] proposed a hierar-
chically dense connection to capture multi-scale features.
Lei et al. [23] proposed a novel multi-level feature fusion
network to hierarchically exploit channel information. Dense
optical flow [25], [26] methods have also been proposed to
model spatial correspondences between images at different
times. Additionally, attention modules, like pairwise affinity
attentions [30], [36] and gate-based attention methods [27],
[38] have been proposed to locate the changed areas at
various scales. Despite the remarkable performance achieved
by previous methods, most methods focus on addressing
scale variance, but they often overlook spatial variance,
which is crucial for detecting subtle changes. Therefore,
we propose a novel attentionmodule called LSWVAM,which
emphasizes local specificity within discriminative local parts.
More details on related attention methods will be provided in
subsection B.
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FIGURE 2. Schematic diagram of different architecture configurations based on CNNs including feature embedding structures and
detection heads: (a) single-stream structure with classification head; (b) double-stream structure with classification head;
(c) double-stream structure based on feature similarity learning with binary decision head; and (d) hybrid structure based on
spatial-temporal feature learning with classification head.

2) DETECTION HEAD WITH LOSS FUNCTION
In general, the detection head can be divided into super-
vised and unsupervised algorithms. Many unsupervised
methods rely on clustering techniques, including K-Nearest
Neighbors [49], superpixels [50], K-means [51] and fuzzy
c-means [52]. For CNN-based algorithms, the detection heads
include semantic segmentation (SS) and feature similarity
learning (FSL), illustrated in Fig.2(b) and Fig.2(d). SS treats
changed and unchanged samples as a binary classification
problem and is optimized using cross-entropy. In con-
trast, FSL detects changes by measuring the dissimilarity
between sample pairs and is optimized by contrastive loss.
However, a limitation of these loss functions is that they
assign the same weights to all samples. To address this
issue, numerous reweighting losses [19], [30] have been
proposed to mitigate interclass imbalance. Nevertheless,
these reweighting losses are class-specific. In this paper,
we introduce a novel loss named HSACL, which can identify
hard samples from both changed and unchanged classes.
More details on related reweighting loss will be provided in
subsection C.

B. ATTENTION MECHANISM ON CHANGE DETECTION
Attention mechanisms on change detection can be divided
into two types: (1) pairwise affinity attention method and
(2) gate-based attention method. The core idea of pairwise
affinity attention method is to use dot product to build pixel-
to-pixel relations. Specifically, Chen and Shi [27] utilizes the
self-attention mechanism to establish long-range dependen-
cies for capturing global-view features. Chen et al. [30] also
propose a dual attentionmodule that automatically focuses on
the most relevant channel and spatial information. However,
these methods are computationally intensive, particularly for
high-resolution street-view images. In contrast, gate-based
attention techniques offer a lightweight and computationally
efficient alternative. The core idea of gate-based attention
method is to serve as feature filters that highlight important
features and suppress unnecessary features in different
locations. Specifically, SENets [33], [34] employ GAP
to leverage coarse channel wise attention relationships.

Similarly, CBAM [29], [35] and Split Attention [36], [37]
utilize GAP to aggregate global contextual information,
emphasizing important features while suppressing unimpor-
tant ones. To preserve rich feature maps details, U-shaped
attention variants [39] and hourglass-based attention [40],
[41] are proposed to enhance the ability to detect small-scale
change areas. Furthermore, scale-adaptive attention mod-
ule [38] and local-global attention module [42] have been
proposed to simultaneously capture local details and global
semantic features for detecting multi-scale change regions.
However, local details are not fine-grained enough to
distinguish subtle changes. In this paper, we utilize part-
specific feature strategy to extract fine-grained discriminative
features and enhance local specificity for the detection of
subtle changes.

C. REWEIGHTING LOSS ON CHANGE DETECTION
Considering that not all samples contribute equally to
training a model, reweighting loss is a common practice
in hard sample mining methods [44], [53], [54], [55]. The
fundamental concept behind reweighting loss is to decrease
the loss assigned to easy samples and increase the loss
assigned to hard samples. In the field of change detection,
Lei et al. [23], and Song and Jiang [56] propose the
weighted cross-entropy loss function to address interclass
imbalance issues. Similarly, Chen et al. [30] also proposes
a weighted double-margin contrastive loss to mitigate the
effects of unchanged regions by setting weight coefficients.
Li et al. [43] combines weighted binary cross-entropy loss
and dice coefficient loss to address the imbalance of positive
and negative samples. These class-specific reweighting losses
can improve the interclass imbalance between changed and
unchanged samples but still face challenges in addressing
the imbalance between easy and hard samples within each
class. In this paper, we introduce a novel sample-specific
loss called HSACL, which identifies hard samples from both
changed and unchanged classes and assigns different weights
to samples based on their distance values. The core idea of
HSACL is inspired by focal loss [44]. However, a major
difference exits: focal loss is a scaled cross entropy loss that
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FIGURE 3. (a) The overall architecture of LSWVANet-HL, which combines LSWVANet with the optimization of HSACL. LSWVANet consists of two main
components: a SFSL baseline and an attention module-based neck. The SFSL component, enclosed in the blue box, comprises two parts: (1) a siamese
network-based backbone and (2) a feature similarity-based detection head. The attention module-based neck, enclosed in the red box, consists of four
stacked LSWVAMs.(b) The data flow diagram of the proposed LSWVANet. (c) The architecture of LSWVAM. (d) The data flow diagram of HSACL.

employs prediction confidence as a measure of hardness,
while HSACL is a scaled contrastive loss that utilizes distance
values to measure hardness.

III. METHODOLOGY
In this section, we introduce our change detection framework
called LSWVANet-HL, which combines the deep attention
architecture of LSWVANet with the optimization of HSACL.
As illustrated in Fig.3(a), LSWVANet is built upon a
Standard Feature Similarity Learning (SFSL) baseline, whose
components are shown in the blue box. SFSL aims to detect
change regions by treating changes as feature dissimilarities
and subsequently employs the Euclidean distance to measure
dissimilarity between pairs of images captured at different
times. To adapt to location and scale variations, LSWVANet
incorporates a novel attention module-based neck enclosed

in the red box, which consists of four sequentially stacked
LSWVAMs. The schematic representation of LSWVANet’s
data flow is demonstrated in Fig.3(b). Delving into specifics,
LSWVAM aims to generate a spatial attention mask that
exhibits both local specificity and long-range consistency,
enabling the model to highlight features within local discrim-
inative parts and large-scale changed regions. This module
is a lightweight component and can be easily integrated into
the SFSL baseline. Furthermore, LSWVANet is optimized by
HSACL. Fig.3(d) illustrates the data flow ofHSACL,where it
identifies hard samples from both the changed and unchanged
classes based on the sample distance value. The HSACL
dynamically adjusts the loss weights, downweighting easy
samples and upweighting hard examples from both classes.
Subsequently, we provide detailed information on the SFSL
baseline in subsection A, describe the novelty of LSWVAM
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in subsection B, and detail the design of our proposedHSACL
in subsection C.

A. STANDARD FEATURE SIMILARITY LEARNING BASELINE
As depicted in Fig.3, SFSL consists of two parts: (1) a siamese
network-based backbone and (2) a feature similarity-based
detection head. Specifically, the image pairs (XT0 ,XT1 ) ∈

RC×H×W pass through a Siamese network-based backbone
to yield a feature pair (FT0 ,FT1 ) ∈ Rc×h×w. Subsequently,
for a feature sample (f T0i , f T1i ) ∈ Rc at the ith position within
the h× w feature map, the feature similarity-based detection
head evaluates the dissimilarity of the feature pair using the
Euclidean distance Di. Finally, change regions are identified
by selecting the pixels whose distance values exceed the
predefined threshold.

To enhance the distance value for changed samples
and reduce it for unchanged samples, it is common to
utilize contrastive loss (CL) in optimizing the SFSL-based
change detection model. For clarity, during the training
phase, we formulate a pair of feature samples si as
{(f T0i , f T1i ), yi,Di}, where yi denotes the corresponding label
of si, and Di denotes the Euclidean distance between
L2-normalized feature vectors f T0i and f T1i . We define si as
a changed sample or positive sample when yi = 1, and as an
unchanged sample or negative sample when yi = 0. CL is
formulated in Equation 1 as follows:

CL =

{
(Di − m1)2 yi = 0
(max(0,m2 − Di)))2 yi = 1

(1)

The parameters m1 and m2 represent the margins for
positive and negative samples, respectively. In our case,
we set m1 to 0 and m2 to 2.

Despite achieving impressive results in change detection,
SFSL still faces challenges related to hard samples due to
significant variance in the scale and location of contextual
information and the heavy imbalance between easy and
hard samples. We aim to address these challenges from two
perspectives: (1) We introduce the LSWVAM as a neck
component that considers not only the broader contextual
information but also emphasizes part-specific contexts within
local parts and (2) We utilize the HSACL to shift the training
focus towards hard samples.

B. LOCAL-SPECIFICITY AND WIDE-VIEW ATTENTION
MODULE
1) OVERVIEW
The structure of LSWVAM is illustrated in Fig.3(c). Each
LSWVAM is composed of two branches: a feature branch and
an attention branch. In the feature branch, feature encoding
is performed using two 3 × 3 dilated convolutions, which
project the input feature FE ∈ Rc/2×h×w into decoded
features FD ∈ Rc×h×w. The attention branch, on the other
hand, is responsible for projecting the input features FA ∈

Rc/2×h×w into an attention mask MAtt ∈ Rh×w, where the
response of this mask reflects the most relevant contextual

FIGURE 4. Change regions vary at spatial scales and locations.

information. Our attention mechanism empowers the module
to effectively highlight subtle changes in local parts, as well
as significant changes in larger-scale regions. Finally, the
aggregated features FAtt ∈ Rc×h×w are represented by the
weighted combination of the attention mapMAtt ∈ Rh×w and
the decoded feature map FD ∈ Rc×h×w. The refined feature
map FAtt is computed as follows:

FAtt = FD ⊗MAtt (2)

where ⊗ denotes elementwise multiplication.

2) ATTENTION BRANCH
The proposed attention branch generates a spatial attention
map, denoted as MAtt ∈ Rh×w, to highlight or suppress
features in different locations. Therefore, it is crucial to
determine which contextual features should be focused on.
As observed in Fig.4, contextual information related to
change regions exhibits two characteristics: local specificity
and long-range consistency. Firstly, contextual features must
account for local specificity within discriminative local parts.
For instance, small-scale objects like the road signals in
Fig.4(a) are situated on the left side and occupy approxi-
mately 1/16 of the image, while subtle changes, as shown
in local parts like the windows in Fig.4(b), are located on
the right and also occupy about 1/16 of the image. Secondly,
contextual features should also consider long-range consis-
tency within large-scale objects. For example, the change
regions depicted in Fig.4(d), Fig.4(e), and Fig.4(f) have large
spatial scales and occupy almost the entire image. Based on
these observations, we introduce a novel Local-Specificity
Feature Pyramid (LSFP) to extract part-specific contextual
information, emphasizing the local discriminative change
parts and a Wide-View Feature Pyramid (WVFP) to capture
long-range contextual information for large-scale change
regions. Fig.5 illustrates the processes of LSFP and WVFP.

Local-Specificity Feature Pyramid: To achieve a bal-
ance between hierarchical feature embedding and com-
putational efficiency, we adopt the multi-groups structure
through channel-wise splitting operations proposed in
ShuffleNet [57]. Within each group, we employ dif-
ferent part-specific feature strategies to capture diverse
local-specificity context features. As depicted in Fig.5, given
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FIGURE 5. Illustration of the proposed attention branch, which utilizes a novel local-specificity feature pyramid and wide-view
feature pyramid to extract part-specific and long-range context features.

the input feature map FA ∈ Rc×h×w, we first perform a
channel split operation to obtain four groups of features{
F̄1; F̄2; F̄3; F̄4

}
∈ R(c/4)×h×w. For each feature group,

we divide the feature map into several non-overlapping
patches. Considering that change regions have different
spatial scales and locations, we split four groups of feature
maps into different feature parts at various spatial scales
as follows. (1) The first feature map F̄1 ∈ R(c/4)×h×w

is divided into 4 × 4 parts, where each part f
4×4
1 has a

spatial size of (c/4) × (h/4) × (w/4); (2) The second feature
map F̄2 ∈ R(c/4)×h×w is divided into 2 × 2 parts, where
each part f

2×2
2 has a spatial size of (c/4) × (h/2) × (w/2);

(3) The third feature map F̄3 ∈ R(c/4)×h×w is divided
into 1 × 2 parts along the width axis, where each part
f
1×2
3 has a spatial size of (c/4) × h × (w/2); and (4) The
fourth feature map F̄4 ∈ R(c/4)×h×w is divided into 2 ×

1 parts along the height axis, where each part f
2×1
4 has a

spatial size of (c/4) × (h/2) × w. After obtaining these
feature parts, for each feature group, we apply independent
convolutional layers with a 3 × 3 kernel size for each part
to extract local-specific context features. These convolutional
layers capture distinctive features from different spatial parts,
facilitating the extraction of context features characterized by
local specificity. Finally, we aggregate all feature parts across
height and width axes and concatenate the four groups of
features to obtain local-specificity context features F̃LS along
the channel axis. This process can be computed as follows:

F
N i
h×N

i
w

i = Gather(g3×3(f
N i
h×N

i
w

i )) for i = 1, 2, 3, 4

(3)

F̃LS = Concat
{
F
N i
h×N

i
w

i ; for i = 1, 2, 3, 4
}

(4)

Here, f
N i
h×N

i
w

i represents the split of the ith feature group
into feature parts, with N i

h × N i
w denoting the number of

feature parts. In our paper, the default settings for the number
of feature parts {(N i

h,N
i
w)|for i = 1, 2, 3, 4} corresponding to

the ith feature group are determined according to the order of
the set {(4, 4), (2, 2), (1, 2), (2, 1)}. The term g3×3 indicates
convolution with a 3 × 3 kernel size. ‘Gather’ represents
the operation that aggregates feature parts across height and
width axes, while ‘Concat’ represents the operation that
aggregates features across channel axes.

Wide-View Feature Pyramid: Similar to LSFP, we utilize
the multi-groups structure in WVFP through channel-wise
splitting operations to capture diverse long-range context
features. As depicted in Fig.5, given the input feature map
FAtt ∈ RC×H×W , we perform a channel split operation to
obtain four groups of features

{
F̂1; F̂2; F̂3; F̂4

}
∈ Rc/4×h×w.

Then, for each group feature, we apply two 3 × 3 dilated
convolutions with different dilation rates to incorporate
long-range context features. Finally, we concatenate all four
groups of features to obtain wide-view context features F̃WV

along the channel dimension. The process described above
can be computed as follows:

F̂
d i1=n,d

i
2=m

i = g
d i2=m
3×3 (g

d i1=n
3×3 (F̂i)) for i = 1, 2, 3, 4 (5)

F̃WV = Concat
{
F̂
d i1=n,d

i
2=m

i ; for i = 1, 2, 3, 4
}
(6)
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TABLE 1. The detailed architecture of LSWVAM, k: kernel size, o: output
channel, d: dilate rate, LSFP: Local-specificity feature pyramid, WVFP:
Wide-view feature pyramid.

Here, g
d i1=n
3×3 denotes the first dilated convolution for the ith

feature group with a 3 × 3 kernel size and a dilation rate of
n. In our paper, the default settings for the two successive
dilation rates {(d i1, d

i
2)|for i = 1, 2, 3, 4} corresponding to the

ith feature group are determined following the order of the set
{(1, 2), (2, 4), (4, 6), (6, 8)}.

Spatial Attention Mask Generation: After obtaining the
local-specificity context features F̃LS and wide-view context
features F̃WV , we first concatenate them along the channel
dimension and apply a 1 × 1 convolution, batch normaliza-
tion and sigmoid function to produce the spatial attention
mask MAtt ∈ Rh×w.

MAtt = σ
(
BN

(
Conv1×1

(
Concat(F̃LS; F̃WV )

)))
(7)

where σ denotes the sigmoid function, BN denotes batch
normalization, concat denotes feature channel concatenation,
and Conv1×1 denotes the convolutional filter with the 1 ×

1 kernel. The detailed architecture of LSWVAM is shown in
Table 1.

C. HARD SAMPLE-AWARE CONTRASTIVE LOSS
1) CL ANALYSIS
As mentioned above, the most common loss function for
SFSL-based change detection methods is CL. To provide an
intuitive understanding of how CL works (e.g., the impact of
margins m1 and m2), we transform the Euclidean distance
map to distance distribution under polar coordinates. Fig.6
shows an example of the distance distribution under polar
coordinates. Specifically, the green dot represents the positive
sample (yi = 1), the blue star represents the negative sample
(yi = 0), the red circles represent the margins m1 = 0.0 and
m2 = 2.0, and the Euclidean distanceDi represents the radial
coordinate. For a more detailed explanation of the distance
distribution under polar coordinates, we select some samples:
sample A(yA,DA), sample B(yB,DB), sample C(yC ,DC ) and

FIGURE 6. Conversion of the Euclidean distance map to a distance
distribution under polar coordinates. (a) Input images, (b) ground truth,
(c) Euclidean distance map, and (d) distance distribution under polar
coordinates.

FIGURE 7. (a) Sample A is a negative easy sample and sample B is a
positive easy sample, (b) Sample C is a negative hard sample and sample
D is an positive hard sample, (c) Sample E is a negative medium sample
and sample F is an positive medium sample.

sample D(yD,DD). From the visualization of those selected
samples, we can obtain three properties as follows:

(1) All the sample distances are in the range of [m1,m2].
In other words, margin m2 defines the upper bound of the
distance distribution, and marginm1 defines the lower bound.
(2) After optimization by CL, the majority of positive

sample distances (e.g., sample D) are constrained to the
upper bound, and most of the negative sample distances (e.g.,
sample C) converge to the lower bound.

(3) Some positive samples exist with small distance
values (e.g., sample B) are constrained to the lower bound;
meanwhile, some negative samples with large distance values
(e.g., sample A) converge to the upper bound.

In summary, although most samples have been well-
optimized, there are always a small number of samples that
are difficult to train. However, CL treats each sample equally
and assigns the same weight to all samples. To address this
limitation, we need to identify hard samples and adaptively
assign different weights to samples based on their difficulty
levels.

2) HARD SAMPLE DEFINITION
In this subsection, we focus on defining of the hard sample
levels. As depicted in Fig. 7, we can observe three aspects
regarding the sample distance distribution: (1) Positive
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samples with large distance values (e.g., sample B) or
negative samples with small distance values (e.g., sample A)
tend to be easy samples; (2) Positive samples with small
distance values (e.g., sample D) or negative samples with
large distance values (e.g., sample C) are more likely to
be hard samples; and (3) There are also positive medium
samples (e.g., sample F) or negative medium samples (e.g.,
sample E) with distance values falling within the range
between the lower and upper bounds. In that case, considering
that samples have different difficulty levels, we partition all
positive/negative samples into three levels using the sample
distance value as an evaluation criterion. The definitions are
as follows:

(1) We partition all positive samples into three levels,
namely, ‘positive easy sample’, ‘positive medium sample’,
and ‘positive hard sample’. The positive hard sample set
contains samples in which the distance Di is in the interval of
[0, τ1], while the positive easy sample set contains samples in
which the distanceDi is in the interval of [τ2, 2.0] (the default
margin value of contrastive loss is 2.0). The positive medium
sample set contains samples in which the distanceDi is in the
interval of [τ1, τ2]. In our work, we set τ1 as 0.3 and τ2 as 1.7.
(2) Similarly, we partition all negative samples into three

sets, namely, ‘negative easy sample’, ‘negative medium
sample’, and ‘negative hard sample’. The negative easy
sample set contains samples in which the distanceDi is in the
interval of [0, τ4], while the negative hard sample set contains
samples in which the distanceDi is in the interval of [τ3, 2.0].
The negative medium sample set contains samples in which
the distanceDi is in the interval of [τ4, τ3]. In our work, we set
τ4 as 0.3 and τ3 as 1.7.

3) HSACL DEFINITION
Based on the hard sample definition, we propose HSACL to
address the shortcomings of the CL. We design a modulating
factor Spos for positive samples as ∥(exp(−Di))γ ∥, while
set the scaling factor Sneg for negative samples as ∥(1 −

exp(−Di))γ ∥. Among them, γ is a hyperparameter that
control the rate at which easy examples are down-weighted.
More details are shown in Equation 8 and Equation 9:

HSACL =

{
Sneg(Di − m1)2 yi = 0
Spos(max(0,m2 − Di)2 yi = 1

(8){
Sneg = ∥(1 − exp(−Di)γ ∥

Spos = ∥(exp(−Di))γ ∥
(9)

Similar to Equation 1, Di denotes the Euclidean distance
between the two L2-normalized feature vector of (f T0i , f T1i ).
m1 and m2 are the margins for positive and negative samples,
respectively. In our work, we set m1 to 0 and m2 to
2. Fig.8(c)(d) describes the positive and negative sample
weight distributions, and we analyse the distributions as
follows:

(1) Assume that si = {(f T0i , f T1i ), yi,Di} is a positive
sample. As shown in Fig.8(c), when Di is close to 0, the
sample si is a positive hard example, and the corresponding

FIGURE 8. (a) Positive sample weight distribution of contrastive loss,
(b) negative sample weight distribution of contrastive loss, (c) positive
sample weight distribution of hard sample-aware contrastive loss, and
(d) negative sample weight distribution of hard sample-aware contrastive
loss.

modulating factor ∥(exp(−Di)γ ∥ is close to 1, meaning that
the loss is unaffected; whenDi is close to 2.0, the sample si is
a positive easy sample, and the scaling factor is approximately
equal to 0, which greatly reduces the loss contribution from
easy examples.

(2) Similarly, assume that si = {(f T0i , f T1i ), yi,Di} is a
negative sample. As shown in Fig.8(d), when Di is close to 0,
the sample si is a negative easy sample and the scaling factor
∥(1−exp(−Di))γ ∥ goes to 0; whenDi is close to 1, the sample
is a negative hard sample, and the scaling factor is close to 1.
It means that scaling factor can automatically suppress the
negative easy examples and rapidly focus on hard examples.

(3) As mentioned above, the hyperparameter γ controls
the rate at which samples are suppressed. When γ =

1, the weight assigned to easy sample is approximately
0.05, at which point the easy sample is not sufficiently
suppressed. As γ increases, the corresponding factor heavily
reduces the loss contribution from easy examples. When
γ = 5, not only the loss weight of the easy sample goes
to zero, but also the loss weight of medium example in
the range [1.0,1.7] is overly reduced, which may affect the
optimization of the medium example. Similarly, the loss
weight of the negative easy sample decreases sharply as γ

increases, while the loss weight assigned to negative hard
sample equals 1, which means that optimization pay more
attention to the hard samples. Notably, small γ values are
not sufficiently suppressive for easy samples, while large γ

values may impede the optimization of the medium samples.
How to choose an appropriate γ will be discussed in next
section.
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IV. EXPERIMENT
In this section, we describe our experimental evaluation
and conduct an ablation study of our proposed architecture.
We apply our method to the task of street-view scene change
detection and demonstrate competitive performance com-
pared to the baseline on theVL-CMU-CD [12], PCD2015 [8],
and PSCD [24] datasets.

A. IMPLEMENTATION DETAILS
In our experiment, we fine-tune the proposed method
based on ResNet50 by removing its last classification
layer. We initialize the learning rate as 1e-6 and train all
models using stochastic gradient descent with a momentum
of 0.95 and weight decay of 5e-5. During the training
process, we conduct a series of ablation experiments on
the validation set of the VL-CMU-CD dataset to determine
the optimal model designs, such as patch sizes or dilation
rates in LSWVAM, as well as the optimal hyperparameters,
including the γ value in HSACL and the learning rate. The
experiments are conducted on the PyTorch platform [58],
and an Nvidia GTX TITAN X is used as the training
hardware.

To improve performance during the training process,
we employ three commonly used strategies from previous
works [59], [60]: (1) Data augmentation techniques [61]
enhance data diversity by introducing visual variability,
including scale and color variations, addressing dataset
imbalances [62], and preventing overfitting. In our work,
we employ image transformations such as cropping, hori-
zontal flipping, and the addition of random Gaussian noise.
Specifically, for both the PCD 2015 and PSCD datasets,
we use a sliding window of 28 pixels in width during
cropping, generating 29 patches, each with a resolution of
224 × 224. Additionally, each cropped training sample is
resized to 384 × 384 and flipped horizontally and vertically.
For the VL-CMU-CD dataset, all training samples are resized
to 512× 512 and flipped horizontally and vertically. (2) Early
stopping: To prevent overfitting and speed up computation,
we implement early stopping to halt the training process if the
model’s F1-score metric stops improving on the validation
dataset over a predefined number of consecutive epochs,
known as patience. Specifically, we set a patience value
of 10 for the VL-CMU-CD dataset and 7 for both the
PCD2015 and PSCD datasets. (3) Learning rate decay: To
speed up model convergence and improve the accuracy and
stability of the trained model, we utilize the poly learning
rate policy to gradually decrease the learning rate during the
training process. Specifically, the learning rate is multiplied
by (1 −

iter
total_iters )

0.95
, where iter denotes the current number

of iterations and total_iters denotes the total number of
iterations. The total number of iterations depends on the
number of training samples and the predefined number of
training epochs. Specifically, we set the training epochs to
120 for the VL-CMU-CD dataset and 60 epochs for both the
PCD2015 and PSCD datasets.

B. EVALUATION METRICS
To evaluate the performance of our method, we employ
three evaluation metrics [63]: precision (P), recall (R), and
F1-score (F1). These metrics are defined as follows:

P =
TP

TP+ FP
(10)

R =
TP

TP+ FN
(11)

F1 =
2 × P× R
P+ R

(12)

where TP denotes the number of true positives, FP denotes
the number of false positives and FN denotes the number of
false negatives. P denotes the ratio of truly changed regions
detected among all detected regions. R denotes the ratio
of truly changed regions detected compared to the ground
truth. The F1 is the harmonic mean of precision and recall,
ranging from 0 to 1. From the definitions, we can observe
that precision favours methods with a low false detection rate
(low FP), while recall favours methods with a low missed
detection rate (low FN ). As a result, the F1 provides a
balanced metric that demands lower values of both FP and
FN and a higher TP value. A larger F1 indicates better
performance, making it a more reliable metric for evaluating
change detection.

C. DATASET
1) VL-CMU-CD DATASET
The VL-CMU-CD dataset [12] is a change detection dataset
with challenging changes, including structural changes (e.g.,
building demolition and traffic signs) and noisy changes
(e.g., lighting condition/weather/season changes, viewpoint
changes, and dynamic changes). The dataset contains
152 sequences with 1362 image pairs. According to the
data splits provided in [12], the training data consist of
97 sequences with 933 image pairs, and the testing set
consists of 54 sequences with 429 image pairs.

2) PCD2015 DATASET
The PCD2015 dataset [8] consists of two subsets: Tsunami
and GSV. Specifically, the Tsunami dataset describes the
street scene changes after a tsunami disaster, includ-
ing 200 image pairs, and the GSV dataset describes
the street-view changes from Google Maps, including a
total of 92 image pairs. To validate the model perfor-
mance, we perform fivefold cross-validation as mentioned
in [8].

3) PSCD DATASET
The PSCD dataset [24] is a panoramic semantic change
detection dataset that contains a range of challenging factors,
including dynamic illumination conditions and camera view-
point differences. The PSCD dataset comprises 770 image
pairs. To validate the model performance, we perform
fivefold cross-validation as mentioned in [24].
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FIGURE 9. Visual quality comparison of different baseline methods. From left to right in each row: image at T0, image at time T1,
ground truth, result generated by Baseline SFSL, result generated by LSWVANet, result generated by SFSL-HASCL, and result
generated by LSWVANet-HL.

D. ABLATION STUDIES
1) BASELINE COMPARISON
We design comparison experiments on the validation set of
the VL-CMU-CD dataset by progressively adding modules,
including the baseline SFSL (optimized by CL), LSWVANet
(integrated with LSWVAM and optimized by CL), SFSL-
HSACL (optimized by HSACL), and LSWVANet-HL (inte-
grated with LSWVAM and optimized by HSACL). Table 2
shows the experimental results. The baseline method SFSL
achieves an F1 of 69.4% on the validation set of the
VL-CMU-CD dataset. Compared to the baseline SFSL,
LSWVANet and SFSL-HSACL yields improvements of
2.8% and 5.4%, respectively. Our LSWVANet-HL markedly
outperforms the baseline methods and achieves an 8.8%
improvement.

To validate the impact of LSWVAM, we conduct ablation
studies comparing methods with and without LSWVAM
under the same loss function. The comparison included
baseline SFSL and LSWVANet, as well as SFSL-HSACL
and LSWVANet-HL. The visual results in Fig. 9 confirm
the effectiveness of LSWVAM in two key aspects: (1) High-
lighting subtle changes in local parts. As depicted in Fig. 9,
the baseline SFSL fails to detect subtle changes, such as the
window areas within dashed box A1 in S1 and the bicycle
within dashed boxC1 in S2. In contrast to the spatial-invariant
method (SFSL), LSFP in LSWVAM employs a part-specific
learning strategy to model spatial variance, enabling the
distinction of subtle visual differences among various local
parts, such as the bicycle and fence in S2. (2) Enhancing
consistency of large-scale objects. Fig. 9 illustrates that the

TABLE 2. Performance comparison between different baseline methods
on the VL-CMU-CD validation set. R: ResNet50, C: Contrastive Loss, A:
Attention Module, H: Hard sample aware contrastive loss. The best
results are in bold.

baseline SFSL fails to ensure consistent detection results,
such as the truck within dashed box E1 in S3 and the vehicle
within dashed box G1 in S4. In contrast to single-scale
context embedding (SFSL), WVFP in LSWVAM utilizes
multi-groups dilated convolutions to model multi-scale
contexts. This strategy establishes long-range relationships
between different regions, improving prediction consistency,
such as the truck within dashed box E2 in S3. A similar
conclusion can also be drawn from the comparison between
SFSL-HSACL and LSWVANet-HL. Compared with SFSL-
HSACL, LSWVANet-HL, incorporating LSWVAM, exhibits
a better ability to localize changes in local parts and large-
scale objects.

To validate the impact of HSACL, we conduct ablation
studies comparing CL-based methods with HSACL-based
methods using the same backbone architecture. As depicted
in Fig. 9, it is evident that HSACL-based methods outperform
CL-based methods. For instance, the result of baseline SFSL
shows significant noise detection within dashed box D1 and
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FIGURE 10. (a) Rate of positive sample distance, (b) Rate of negative sample distance.

FIGURE 11. Visual quality comparison of attention masks based on different gate-based attention modules.

missed detection within dashed box C1 in S2. Similarly,
the result of LSWVANet exhibits background overactivation
within dashed boxes D2 in S2 and F2 in S3. In contrast to
CL-based methods, HSACL-based methods present a cleaner
background and smoother foreground. To further explore the
superiority of HSACL, we also analyze the contributions of
LSWVAM and HSACL to the accuracy improvement of the
overall architecture. As shown in Table 2, SFSL-HSACL and
LSWVANet-HL outperform LSWVANet by 2.6% and 6.0%,
respectively, indicating that the main improvement is gained
through HSACL. Although LSWVAM effectively detects
subtle changes through a part-specific strategy, it may be
sensitive to visual differences caused by imagemisalignment,

leading to noise detection within dashed box F2 in S4. From
the perspective of hard sample mining, missed detection
correspond to positive hard samples, while noise detection
relate to negative hard samples. Owing to the hard sample
mining strategy, HSACL-basedmethods can effectively focus
on these hard samples, ensuring that hard examples are ‘well-
optimized’.

To further verify the effectiveness of LSWVANet-HL in
handling hard sample issues, we statistically analyse the posi-
tive/negative sample distance distribution at different distance
intervals. Fig.10 shows the comparison of positive/negative
sample distance distributions between LSWVANet-HL and
other baseline methods. As shown in Fig.10, compared to the
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FIGURE 12. Visual quality comparison of different gate-based attention methods with and without HSACL.

TABLE 3. Comparison with other gate-based attention methods on
with/without HSACL on the VL-CMU-CD validation set. CL: Contrastive
loss, HSACL: Hard sample-aware contrastive loss. The best results are in
bold.

baseline SFSL, our method achieves a significant reduction in
positive hard sample rates, with a decrease of 16.9% (22.3%
vs. 5.4%), and a reduction in negative hard sample rates by
0.08% (0.09% vs. 0.01%).

2) COMPARISON WITH OTHER GATE-BASED ATTENTION
METHODS
To explore the effectiveness of LSWVANet, we conduct
an ablation experiment in comparison to other gate-based
attention methods, including SFSL-CBAM [35], SFSL-BAM
[15], SFSL-TMAM [40], and SFSL-UAM [38]. All models
are built on the SFSL baseline with four stacked attention
modules. The results in Table 3 show that our method
significantly outperforms the baseline methods. Compared to
the other gate-based attention methods, LSWVANet achieves
an 1.6% improvement over SFSL-CBAM, 1.3% over SFSL-
TMAM, 0.7% over SFSL-BAM, and 0.5% over SFSL-UAM.

Fig.11 illustrates a visual quality comparison of attention
masks generated by different gate-based attention meth-
ods. The visualization results confirm the effectiveness
of LSWVAM in two key aspects: (1) In comparison to
CBAM and BAM, LSWVAM leverages the LSFP to localize
part-specific discriminative change regions, significantly

TABLE 4. Comparison with other attention methods on computational
cost on the VL-CMU-CD validation set. The best results are in bold.

improving the detection of subtle changes in local parts (e.g.,
the window in the first row) and small-scale objects at various
locations (e.g., the litter in the second row). (2) Compared
to SFSL-TMAM and SFSL-UAM, LSWVANet employs
the WVFP to extract long-range contextual features and
enhance semantic consistency, thereby greatly improving
the prediction of large-scale change regions (e.g., the
construction regions in the third row).

We also evaluate the impact of HSACL on different
gate-based attention methods. As shown in Table 3, HSACL
achieves an absolute gain of 4.5%, 4.3%, 4.9%, and 5.2%
in F1-score over SFSL-CBAM, SFSL-TMAM, SFSL-BAM
and SFSL-UAM, respectively. Fig.12 provides a visual
comparison of gate-based attentionmethods with and without
HSACL. It is evident that HSACL focuses onmining negative
hard samples such as noise detection and positive hard
samples such as noise detection, resulting in a cleaner
background and smoother foreground. Our proposed HSACL
demonstrates robustness across different gate-based attention
methods.

3) COMPUTATIONAL COST ANALYSIS
Street-view change detection algorithms are commonly
employed in traffic surveillance and self-driving scenarios,
making it crucial to balance real-time requirements with high
accuracy. To validate the effectiveness of LSWVANet in
terms of real-time performance, we conduct a computational
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TABLE 5. Ablation study on patch sizes in LSFP module. The best results
are in bold.

cost evaluation by comparing LSWVANet with several base-
line methods using three metrics: the number of parameters
(Params), the number of floating-point operations (FLOPs),
and the inference time (Time (ms)). We evaluated both
gate-based attention methods (GBA) and pairwise affinity
attention methods (PAA), such as self-attention (SA [27]) and
dual attention (DA [30]). All reported results are based on
an input size of 512 × 512. Theoretically, for input features
F ∈ RC×H×W , PAA computes pixel-to-pixel relations
with a complexity of O(CH2W 2), while GBA methods
calculate attention masks with a complexity of O(CK 2HW ),
where K represents the convolution kernel size. Since the
spatial size is larger than the kernel size, the computational
costs of SFSL-SA and SFSL-DA are higher than those of
other methods. From Table 4, it can be observed that PAA
methods achieve higher accuracy but slower inference speeds.
Specifically, LSWVANet achieves the same accuracy in F1
as DA but exhibits 2x faster inference speed and frames
per second (FPS). Consequently, LSWVANet better meets
real-time requirements than PAA methods under the same
hardware conditions.

Among the GBAmethods, SFSL-CBAM employs shallow
convolutional layers, resulting in relatively low compu-
tational complexity. SFSL-BAM and SFSL-TMAM also
employ channel reduction rates and stacked downsam-
pling operations to reduce computational costs. SFSL-
UAM uses a multibranch U-shape attention module to
extract multi-scale features, effectively improving change
detection performance, but also increasingmodel complexity.
In contrast, LSWVANet adopts a feature grouping strategy to
significantly reduce computational costs, enabling real-time
inference at 23 FPS. Furthermore, LSWVANet leverages
two well-designed feature pyramid units to extract relevant
contextual features across local to global scales, achieving
the highest accuracy in F1. The quantitative results in
Table 4 demonstrate that LSWVANet achieves a favorable
trade-off between real-time requirement and change detection
accuracy when compared to other attention methods.

4) EFFECTIVENESS OF LSFP AND WVFP
To demonstrate the benefits of the LSFP and WVFP,
we conduct a series of experiments using ablated variant
modules. To address concerns about accuracy improvements
due to extra parameters, we introduce a conventional attention
module (CA) without patch-specific or dilated convolutional
operations.

TABLE 6. Ablation study on dilation rates in WVFP module. The best
results are in bold.

TABLE 7. Varying γ for HSACL on the VL-CMU-CD validation set. The best
results are in bold.

TABLE 8. Comparison with other hard sample mining methods on the
VL-CMU-CD validation set. OHEM: Online hard example mining, LC: Layer
cascade, WCL: Weighted contrastive loss, HSACL: Hard sample-aware
contrastive loss. The best results are in bold.

First, we explore the impact of the LSFP. In Table 5,
we present the results obtained under several set-
tings: (1) the baseline model SFSL built on ResNet50,
(2) SFSL-CA, with four branches and no patch split
({Nh,Nw} = {1, 1}, {1, 1}, {1, 1}, {1, 1}), (3) SFSL-
LSFP-SP with four branches and smaller patch sizes
({Nh,Nw} = {2, 2}, {4, 4}, {8, 8}, {16, 16}), (4) SFSL-LSFP-
LP with four branches and larger patch sizes ({Nh,Nw} =

{1, 1}, {1, 2}, {2, 1}, {2, 2}) and (5) SFSL-LSFP with the
default settings ({Nh,Nw} = {1, 2}, {2, 1}, {2, 2}, {4, 4}).
As shown in Table 5, the proposed LSFP obtains the
best performance, achieving an 1.4% improvement over
the baseline SFSL, 0.9% over SFSL-CA, 0.5% over
SFSL-LSFP-SP and 0.3% over the baseline SFSL-LSFP-LP.
It is worth noting that the performance of LSFP-LP decreases
when using smaller part sizes than those employed by LSFP.
One possible explanation for this is that extremely localized
parts may fail to offer sufficient context for describing
semantic information, which can adversely affect change
detection accuracy.

Next, we conduct comparative experiments for the WVFP.
In Table 6, we present results from several settings: (1) the
baseline model SFSL built on ResNet50, (2) SFSL-CA,
with four branches and no dilation rates ({d1, d2} = {1, 1},
{1, 1}, {1, 1}, {1, 1}), (3) SFSL-WVFP-LRwith four branches
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FIGURE 13. Visual quality comparison of different methods on a variety of challenging sequences of VL-CMU-CD testing set (S1-S5). From left to
right in each row: Image at T0, Image at T1, CDNet [12], CDNet-FCN [12], DOF-CDNet [26], CosimNet [21], CSCDNet [64], SimUNet [38], DASNet [30],
HPCFNet [23], LSWVANet, LSWVANet-HL and Ground Truth.

and larger dilation rates ({d1, d2} = {4, 6}, {6, 8}, {8, 12},
{12, 16}) and (4) SFSL-WVFP with the default settings
({d1, d2} = {1, 2}, {2, 4}, {4, 6}, {6, 8}). As shown in Table 6,
the proposed SFSL-WVFP obtains the best performance,
achieving an 1.3% improvement over the baseline SFSL,
0.8% over SFSL-CA, and 0.2% over SFSL-WVFP-LR. It’s
worth noting that the performance of WVFP-LR decreases
when using larger dilation rates compared to WVFP,
indicating that an overly large dilation rate introduces
excessive irrelevant contextual information, leading to
semantic confusion.

5) IMPORTANCE OF HYPERPARAMETER SELECTION FOR
HSACL
As formulated in Equation 9, we employ the hyperparameter
γ to downweight the easy samples. To determine the optimal
value for γ , we conduct a series of experiments on the
validation set of the VL-CMU-CD dataset, using both the
baseline SFSL and LSWVANet models. We explore various
values of γ within the range {0, 1, 2, 3, 4, 5}. The comparison
results for different γ values are presented in Table 7.
Through these comparative experiments, we discover that
HSACL with γ = 2 significantly outperformed other
hyperparameters. As a result, all subsequent experiments with
HSACL are conducted using this optimal parameter setting as
the default.

6) COMPARISON WITH OTHER HARD SAMPLE MINING
METHODS
To further demonstrate the effectiveness of HSACL, we con-
duct an experiment comparing it with existing hard example
mining methods, including Layer Cascade (LC) [54], Online
Hard Example Mining (OHEM) [55] and Weighted Con-
trastive Loss (WCL) [19]. To ensure a fair comparison,
we integrate all these methods into the same baseline (SFSL).

TABLE 9. Comparison of performance with the baseline method over the
testing set of the VL-CMU-CD dataset. The best results are in bold.

As shown in Table 8, our method significantly outperforms
other hard example mining techniques. Compared to WCL,
OHEM, and LC, HSACL demonstrates substantial perfor-
mance improvements of 3.9%, 2.7% and 1.2%, respectively.
These results clearly indicate that HSACL enhances change
detection.

E. COMPARISON WITH STATE-OF-THE-ART ALGORITHMS
1) RESULTS ON VL-CMU-CD DATASET
We evaluate existing advanced algorithms on the testing
set of the VL-CMU-CD dataset. Specifically, we adopt
ResNet50 as the backbone. The results are shown in
Table 9. Compared with the baseline method based on
semantic segmentation, LSWVANet improves accuracy by
3.5% over CDNet-FCN [12], 1.0% over CSCDNet [64].
In comparison to the baseline method based on feature
similarity learning, LSWVANet enhances accuracy by 3.2%
over DOF-CDNet [26], 1.4% over CosimNet [21], and 0.6%
over SimUNet [38]. With the optimization of HSACL, our
proposed LSWVANet-HL outperforms all existing advanced
methods. Specifically, LSWVANet-HL achieves a 5.3%
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FIGURE 14. Visual quality comparison of SimSac and our proposed
methods on a variety of challenging sequences of VL-CMU-CD testing set
(S6-S8). From left to right in each row: Image at T0, Image at T1,
SimSac [25], LSWVANet, LSWVANet-HL and Ground Truth.

improvement over DASNet [30], 2.2% over HPCFNet [23],
and 1.8% over SimSac [25]. It’s worth noting that compared
with LSWVANet, LSWVANet-HL achieves a 5.4% improve-
ment, indicating that the primary increase in accuracy is
attributed to HSACL.

Furthermore, we select challenging sequences from
the testing set, including scenes with lighting condition
changes and seasonal variations, and conduct visual quality
comparisons of different methods on various challenging
scenes from the VL-CMU-CD testing set. As depicted in
Fig.13, when compared with other baseline methods such
as CDNet-FCN, DOF-CDNet, and SimUNet, LSWVANet
refines the boundaries of large-scale objects, such as the
fence in S4. Additionally, in comparison to SimSac in Fig.14,
LSWVANet excels at identifying subtle changes, such as
the road sign within box A2 in S6. However, LSWVANet
still faces challenges with hard samples, resulting in missed
detection within the dashed box C2 in S8 and noise
detection within the dashed box B2 in S7. With the
optimization of HSACL, LSWVANet-HL outperforms other
existing advanced methods. We will discuss the performance
improvement facilitated by HSACL in the following two
aspects:

(1) Enhancing real change detection through positive hard
sample learning: Distinguishing semantic changes is a key
aspect of change detection tasks. When comparing the results
with and without HSACL in Fig. 13 and Fig. 14, the
missed detections produced by LSWVANet are refined by
concentrating on training positive hard samples. For example,
LSWVANet-HL improves semantic consistency in S4 and S8
and accurately locates small-scale objects like rubbish in S2.
Compared with previous advancedmethods, LSWVANet-HL
also exhibits smoother foreground detection. For instance,
in comparison to HPCFNet and DASNet, LSWVANet-
HL enhances the performance of localizing foreground
objects in S3 and S5. Compared to SimSac, LSWVANet-HL
improves the ability to identify subtle changes in local parts
within dashed box A3 in S6. Positive hard sample learning
effectively enhances the identification of real changes and
refines missed detections.

FIGURE 15. Visual quality comparison of different methods on the
PCD2015 dataset. (a) Image at T0, (b) Image at T1, (c) CNN-Feat [8],
(d) CDNet [12], (e) CosimNet [21], (f) SimUNet [38], (g) DOF-CDNet [26],
(h) DASNet [30], (i) CSCDNet [64], (j) HPCFNet [23], (k) LSWVANet, (l)
LSWVANet-HL, (m) Ground Truth.

(2) Rejecting noise detection through negative hard sample
learning: Excluding noisy changes is another crucial aspect
of the change detection task. As shown in Fig.13 and
Fig.14, all the results predicted by baseline methods fail
to eliminate fake changes, indicating that these models
struggle to learn discriminative features and distinguish real
changes from noisy changes. For instance, seasonal condition
changes in S2 are misclassified as real changes by CDNet,
DOF-CDNet, and CSCDNet. Lighting condition changes in
S5 are also misclassified as structural changes by CSCDNet
and HPCFNet. Similarly, SimSac fails to accurately locate
structural changes, misclassifying the background as changes
within box B1 in S7 and box C1 in S8. In contrast,
LSWVANet-HL treats the noise detections as negative hard
samples and places more emphasis on optimizing them until
these hard samples are ‘well-optimized’.

2) RESULTS ON PCD2015 DATASET
We evaluate the performance of LSWVANet-HL on
PCD2015 dataset. From the comparison results described
in Table 10, our method achieves state-of-the-art accuracy.
Specifically, LSWVANet-HL has an 1.9% improvement
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TABLE 10. Comparison of performance with other popular methods over
the PCD2015 dataset. The best results are in bold.

FIGURE 16. Visual quality comparison between SimSac, LSWVANet and
LSWVANet-HL on the GSV dataset.

TABLE 11. Comparison of performance with other popular methods over
the PSCD dataset. The best results are in bold.

in the Tsunami dataset and an 1.5% improvement in the
GSV dataset compared with HPCFNet [23]. Compared with
SimSac [25], LSWVANet-HL achieves an 2.2% improve-
ment for the Tsunami dataset and an 0.9% improvement for
the GSV dataset. The visualization results of the proposed
method are shown in Fig.15 and Fig.16. We observe that
LSWVANet-HL achieves a smoother change map (e.g.,
large buildings and small pedestrians) and fewer noise
detection, which proves that handling hard examples can
solve the semantic inconsistence problem. In particular, when
compared with SimSac in Fig. 16, our proposed methods
exhibit superior capability in detecting subtle changes, such
as the signboard within boxes A3 and A4.

3) RESULTS ON PSCD DATASET
Table 11 presents the quantitative comparison results for
the PSCD dataset. As shown in Table 11, the proposed
LSWVANet-HL outperforms existing methods. Specifically,

compared to the segmentation-based baseline method,
LSWVANet-HL achieves an improvement of 1.6% over
SiameseCDResNet [64] and 1.5% over CSCDNet [64] in F1.
The visualization results of the proposed method are depicted
in Fig.17. From the representation of dashed rectangles,
LSWVANet-HL can effectively locate and delineate real
changes. In contrast, the baseline method CSCDNet misses
many subtle changes due to heavy occlusion (e.g., the
building located at the yellow dashed rectangle, the traffic
pole located at the blue dashed rectangle, the advertisement
board located at the red dashed rectangle).

V. DISCUSSION
A. THE ROLE OF HSACL
To further validate the effectiveness of the HSACL during the
optimization phase, we analyze the gradient distributions of
the converged model. For a sample si = {yi,Di}, we treat the
distance valueDi as the independent variable and compute the
gradients by calculating the derivatives of the CL andHSACL
with respect to the distance value Di. For a positive sample,
the gradient is computed as follows:

For CL:

∂CL
∂D

= −2(m2 − D) = GPos ∗
∂CL
∂D

GPos = 1 (γ = 0) (13)

For HSACL:

∂HSACL
∂D

= GPos ∗ (−2(m2 − D)) = GPos ∗
∂CL
∂D

GPos = (e−D)γ (γ (m2 − D) + 2)/2 (γ ≥ 1) (14)

Meanwhile, for a negative example, the gradient is
computed as follows:

For CL:

∂CL
∂D

= 2D = GNeg ∗
∂CL
∂D

GNeg = 1 (γ = 0) (15)

For HSACL:

∂HSACL
∂D

= GNeg ∗ (2D) = GNeg ∗
∂CL
∂D

GNeg = (1 − e−D)γ−1(2 + γDe−D)/2 (γ ≥ 1) (16)

From Equation 14 and 16, it can be observed that
the HSACL gradient calculation for positive and negative
samples can be regarded as introducing scaling factors GPos

and GNeg to the CL gradient calculation. The curve of
the gradient scaling factors GPos and GNeg with respect to
the distance value is illustrated in Fig.18 (a). For positive
samples, when γ = 0, all gradient weights are equal to
1. As γ increases, the gradient weight assigned to easy
samples approaches 0, while more weight concentrates on the
hard samples. Similarly, for negative samples, the gradient
weight assigned to the easy samples tends to 0, while
the gradient weight assigned to the hard sample increases
to 1. Consequently, HSACL prevents the numerous easy
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FIGURE 17. Visual quality comparison of different methods on the PSCD dataset. (a) Image at T0, (b) Image at T1, (c) Ground Truth,
(d) CSCDNet [64], (e) LSWVANet-HL. Subtle changes within dashed rectangles present that our method has better detection results
compared with CSCDNet.

FIGURE 18. (a) Sample gradient weight distribution for positive and negative samples for different values of γ . (b) Cumulative
distribution functions for normalized gradient for positive and negative samples for different values of γ .

samples from dominating the gradients during the training
process and forces the model updates to concentrate on the
informative hard samples. To gain further insight into the
HSACL, we analyze how HSACL addresses the intraclass
and interclass imbalances between easy and hard samples.

1) INTRACLASS IMBALANCE ANALYSIS
We conduct an analysis of the intraclass imbalance using
the cumulative gradient distribution function. For both
positive and negative samples, we calculate the gradients and
normalize them to ensure that their sum equals one. Then,
we sort the normalized gradient values from low to high.
The cumulative distribution of the normalized gradients for
the positive and negative samples, with varying settings for

γ , is illustrated in Fig.18 (b). When γ = 0, the gradients
are dominated by numerous easy samples during the training
process. Specifically, for positive samples, approximately
20% of the hardest positive samples contribute only 10% of
the total gradients. With increasing γ , the majority of the
gradient originates from a small fraction of hard samples,
which become concentrated in the top 20% of the hardest
samples. In detail, with γ = 2, approximately 20% of the
hardest positive samples account for approximately 70% of
the total gradients. Furthermore, the impact of γ on the
negative samples is even more significant. With γ = 0,
approximately 20% of the hardest negative samples account
for only 5% of the total gradients of the negative samples.
However, with γ = 2, approximately 20% of the hardest
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TABLE 12. Ablation study on interclass imbalance with different values
of γ .

FIGURE 19. Visual quality comparison of the attention masks generated
by the last LSWVAM between LSWVANet and LSWVANet-HL.

positive samples contribute to approximately 85% of the total
gradients. Clearly, the HSACL can effectively downweight
easy samples from both changed and unchanged classes,
which addresses the intraclass imbalance issues.

2) INTERCLASS IMBALANCE ANALYSIS
We analyze the impact of HSACL on the interclass imbalance
between positive and negative samples. We first separately
compute the positive gradients (PG) and negative gradients
(NG). Based on this, we calculate the ratio of negative gra-
dients to positive gradients (NPR), the positive gradient rate
(PR), and the negative gradient rate (NR). The calculations
are as follows:

NPR =
NG
PG

PR =
PG

PG+ NG

NR =
NG

PG+ NG
(17)

Due to the dynamic change in the number of positive
and negative samples during HSACL optimization, we do
not specifically set parameters to balance the importance
of positive and negative samples. However, as shown in
Table 12, due to the significant suppression of numerous
negative easy samples, HSACL also mitigates the interclass
imbalance problem.

3) THE IMPACT OF HSACL ON LSWVAM
To clearly demonstrate the superiority of the proposed
HSACL, we compare the learned attention masks of the last
attention module between LSWVANet and LSWVANet-HL.
As depicted in Fig.19, the attention masks generated by

LSWVANet provide insights into where the network should
focus. However, there are still instances of failure, such as
false attention applied to other objects (e.g., the door in
S1 and the bin in S3) and background overactivation (e.g.,
the lighting condition noises in S4). Moreover, in Fig.19,
it is evident that the attention mask with the optimization
of HSACL covers the change regions more effectively than
that of LSWVANet. For example, the local specificity of
subtle changes in S1 and the long-range consistency of
large-scale objects in S2 are further improved. Meanwhile,
unnecessary noisy changes (e.g., the lighting condition
changes in S3 and S4) are significantly suppressed. It appears
that LSWVANet-HL has a better ability to concentrate on the
most relevant subtle changes and ignore noisy changes with
the optimization of HSACL.

B. HARD SAMPLE DISTANCE DISTRIBUTION
The greatest problem with hard samples is that positive
samples with small distance values or negative samples with
large distance values can increase the intraclass distance
variance. Meanwhile, positive samples with large small
values can entangle with negative samples, which may reduce
interclass separability. To demonstrate the effectiveness of the
proposed method, we visualize changes in the hard sample
distance distribution with respect to the training epoch. The
details of the hard sample distance distribution are illustrated
in Fig.20.

From the visualization of the distance distribution, we can
observe the following: (1) At the beginning of training
processing (e.g., epoch 0), it is impossible to distinguish
semantic changes from noisy changes because the positive
and negative sample distance distributions are all mixed.
(2) During the optimization (e.g., epoch 8 to epoch 90),
the distance value of positive samples grows as the training
process progresses, while the distance value of negative
samples decreases, indicating that an increasing number
of hard samples become easy samples by enlarging the
distance of positive samples and reducing the distance of
negative samples. However, there are still many hard samples,
for example, negative samples with large distances, which
give rise to incorrect activation in background regions, and
positive samples with small distances, making the prediction
fragmented. (3) As the training processing is finished, the
majority of positive sample distances are constrained to the
upper bound (margin m2 = 2), and most of the negative
sample distances tend to the lower bound (margin m1 = 0),
significantly reducing the intraclass distance variance and
interclass distance separability. These observations prove the
effectiveness of our proposed method.

C. FEATURE LATENT SPACE DISTRIBUTION
The fundamental goal for addressing hard sample issues is
learning a discriminative feature representation. To further
explore how the proposed model achieves the goal, we use
the t-SNE [65], [66] algorithm to visualize the feature latent

VOLUME 11, 2023 129027



E. Guo, X. Fu: LSWVANet With Hard Sample Aware Contrastive Loss for Street SCD

FIGURE 20. Visualization of changes in the hard sample distance distribution under polar coordinates during the training process.

FIGURE 21. Comparison visualization result of feature latent space distribution between Baseline SFSL and LSWVANet-HL.

space distribution of the last feature layer and provide a
visual comparison between Baseline SFSL and LSWVANet-
HL. The results of the two-dimensional feature sample are
illustrated in Fig.21, where red dots denote positive/changed
samples and cyan dots represent negative/unchanged sam-
ples. From the comparison results described in Fig.21, the
advantage of the proposed LSWVANet-HL is that it can
keep the boundary smooth and make change detection con-
sistent. Moreover, we observe that learned features extracted
from LSWVANet-HL have larger interclass separability
and smaller intraclass variations, making features scatter
and gather more distinctly. It seems that handling hard
sample issues forces intraclass compactness and interclass
separability, contributing to learning more disentangled
features and leading to better performance.

VI. CONCLUSION
In this paper, we proposed the Local-Specificity and Wide-
View Attention Network to adapt to location and scale

variations of change regions. Our attention network could
not only take into account long-range contextual information
but also emphasize the local specificity within discriminative
local parts, enhancing the detection accuracy of subtle
changes in local parts as well as significant changes in
large-scale regions. To tackle the issue of heavy imbalance
between easy and hard samples, we introduced a novel
sample-specific loss function called Hard Sample-Aware
Contrastive Loss, which downweights easy samples from
both changed and unchanged categories, putting more focus
on training informative hard samples. Experiments conducted
on three datasets (i.e., VL-CMU-CD, PCD2015 and PSCD)
clearly demonstrate the effectiveness of our approach.

In the future, we will focus on addressing the limitations
in two aspects. Firstly, while LSWVAM captures both
local-specificity and long-range contexts, the generation of
the attention mask relies solely on spatial-wise features. Our
future research will aim to incorporate more channel-wise
and spatial-temporal information. Secondly, the supervised
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learning approach requires a large number of annotations;
however, acquiring annotations is time-consuming. There-
fore, the next research will also focus on detecting changes
using unsupervised methods or prompt learning methods.
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