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ABSTRACT Colorectal cancer (CRC) is marked by the development of tumors/outgrowths known as polyps.
Al-assisted endoscopy is inevitable in the modern world for better and more efficient polyp detection
and classification. Often, the risk associated with CRC is indicated by the polyp’s size. Automated size
classification of colorectal polyps from endoscopic images is a boon to endoscopists to monitor and
diagnose the polyps. While previous research efforts have predominantly centered around the pathological
categorization of polyps, limited attention has been directed towards the classification of polyp size. In this
paper, we have proposed a deep learning-based model for the multi-class classification of colorectal polyps
into four classes: 0-5 mm, 5-10 mm, 10-14 mm, and >=14 mm. A narrow range in polyp size classification
provides more information about the growth of the polyp as opposed to binary classification. We also show
that the One vs Rest classification technique using binary classifiers outperforms the usual approach of using
a single CNN for multi-class classification. Also, we use XGBoost with the binary classifiers to further
increase the performance of the model. The experimental results report the effectiveness of our proposed
model in performing multi-class polyp size classification. The approach is expected to assist clinicians in
estimating polyp size efficiently.

INDEX TERMS Endoscopy, colorectal polyps, size classification, depth maps, convolutional neural
networks, xgboost, one vs. rest classification.

I. INTRODUCTION

Colorectal cancer (CRC) is the third most deadly and fourth
most commonly diagnosed cancer in the world [1], [2].
Hence, early detection of colorectal polyps is crucial for the
diagnosis and treatment of CRC. Traditionally, colonoscopy
has been used for detecting such polyps and examining
the digestive tract. This non-surgical procedure involves the
insertion of a colonoscope (a light, flexible tube with a light
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and a camera), which enables the doctor to get views of the
colon and look for colorectal polyps. Such polyps may be
neoplastic or non-neoplastic. Non-neoplastic polyps are non-
malignant tissues, whereas neoplastic polyps are potentially
malignant. These polyps possess camouflage properties and
appear in large variations in terms of color, size, and shape.
Manually reviewing such polyps is a cumbersome task
and involves a high miss rate. An automatic, minimally
invasive procedure for polyp detection and classification is
thus extremely helpful for identifying and characterizing

polyps.
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Artificial Intelligence (Al)-assisted colonoscopy provides
an additional source for colonoscopists to reduce missed
detections via the naked eye. Such techniques are highly
desirable when there are a large number of patients to be
examined within a short period of time and the number
of available doctors is low. Al-based systems enable the
characterization of polyps in terms of the absolute size of
polyps and pathological diagnosis, which enables proper
screening, diagnosis, and treatment. The polyp sizes provide
critical information as larger polyps are associated with more
risk of cancer. Smaller polyps are less likely to be cancerous,
whereas polyps larger than 10 mm have a greater probability
of being cancerous. This makes it crucial to estimate the
polyp size for correct decision-making. However, most
of the previous works in the area of colonoscopy image
analysis have focused on the polyp classification based on
pathological diagnosis [1], [3], [4], [5] i.e., Hyperplastic
polyp, Sessile serrated lesion, Low-grade adenoma, etc.,
and ignored the important criteria of polyp size. Also,
a substantial amount of research has been dedicated to
the detection and segmentation of colorectal polyps from
endoscopic images [6], [7], [8], [9]. The classification of
polyps based on their absolute sizes has not been much
explored in the existing research.

Itoh et al. [10] proposed a binary polyp-size classification
method that estimates a polyp’s three-dimensional spatial
information using a combination of polyp localization and
depth estimation (i.e., localized depth maps) with a reported
accuracy of 0.88 on 787 polyps of both protruded and
flat types into less than 10 mm and greater than equal
to 10 mm. Itoh et al. [11] also proposed an approach using
RGBD images to classify colorectal polyps based on their
absolute size. They achieved binary and trinary polyp-size
classification with 79% and 74% accuracy from a single still
image of a colonoscopic video. Abdelrahim et al. [12] used
two approaches for the binary classification of colorectal
polyps according to their absolute size, into less than or
equal to 5 mm and greater than 5 mm. They developed
a deep learning model based on convolutional neural net-
works (CNNs) trained on RGB polyp images and found 80%
accuracy in 10 videos of human polyps. Chadebecq et al. [13]
proposed the Infocus-Breakpoint (IB) technique to estimate
an image-wise scale by detecting the blur/unblur break-point
in a video sequence. They simultaneously tracked a polyp
with a 2D affine transformation and estimated the amount
of defocus blur, which led to an area-wise scale estimate.
An image-wise estimation of the defocus blur allowed
extraction of the IB (sharpest image of the sequence), and
the depth of the scene corresponding to the IB is known by
calibration. They assumed that the polyp is planar and front
parallel to the gastroscope’s tip to approximate the size of the
polyp. They evaluated their method on three colonoscopic
sequences of humans. For the first video sequence, the
relative error of estimation of their method is 7%; for the
second sequence, the error of estimation is 6%, and 1%
for the third sequence. Villard et al. [14] proposed Siamese
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Networks for binary classification of colorectal polyps based
on size less than or above 10 mm. They trained Siamese
networks to build a high-dimensional feature embedding
extracted for each polyp size. As a second step, they used a
k-NN approach to classify polyp sizes based on the distance
between the feature embedding of the input image and the
whole embedding space learned by the Siamese Network.
They tested their model on 2,688 images and obtained 79.2%
accuracy in feature classification and 95.7% in polyp size
classification.

The existing works focused on polyp size classification
mainly considered binary classification and rarely performed
ternary classification, thus providing less precise information
about the polyp size. Classifying colorectal polyps into
narrower ranges enables us to obtain the absolute size of
polyps from endoscopic images directly without requiring
additional equipment during endoscopy, which otherwise
will be cumbersome. Also, endoscopic images related to
the identical polyps taken at different time intervals (after
two months, six months, etc.) would enable the doctors to
determine the growth of polyps in terms of size, which might
require significant medical attention. Therefore, in this paper,
we have performed multi-class classification of colorectal
polyp images according to their absolute size (in mm) using
CNNs and XGBoost classifiers. For multi-class classification
of images, the traditional approach uses only a single CNN.
Unlike this traditional approach, we used four different binary
classifiers to perform multi-class classification and further
combined each binary CNN with a corresponding XGBoost
classifier to improve the binary classification performance of
each binary classifier. This approach also improved the test
accuracy to 87.07% and the Fl-score to 86.95% for multi-
class classification. Similar to Itoh et al. [10], localized depth
maps of colorectal polyps were used as input to the models.
However, our method is different in terms of architecture and
the objective of multi-class classification. We have classified
colorectal polyps into four classes: polyps sized within
0-5 mm, 5-10 mm, 10-14 mm, and > 14 mm. The main
contributions of the proposed work are summarized below:

« We have proposed a deep learning based model with
multiple binary CNNs and XGBoost classifiers to
perform multi-class classification of colorectal polyp
size.

o Unlike existing works focusing on the binary clas-
sification of polyp size, we performed multi-class
classification considering four classes. This helps in
getting precise polyp size estimates.

e Our model outperformed the baseline method by
2.2% and 2.48% in terms of accuracy and F1-score,
respectively.

Il. MATERIALS AND METHODS

A. OVERVIEW

In this paper, we have proposed an approach to perform
multi-class classification to determine the colonic polyp size.
This is a novel application-based framework in the domain
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FIGURE 1. Polyp localization maps with polyp size and corresponding pixel area. The first row shows the original RGB images
with polyp size, and the second row presents the localization maps with the corresponding pixel area.
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FIGURE 3. Polyp localized depth maps pertaining to only the region of interest are shown.

of Colonoscopy that focuses on polyp size estimation. Our
method uses the One vs. Rest classification technique in
which N number of binary classifiers (My,My,....My) are
trained where N is the number of classes. The goal of
the classifier M; is to classify between i class and the
rest (all other classes except i class). During inference,
the input image is passed through all of the four models
to obtain probabilities of the respective classes. The class
corresponding to the maximum probability is chosen as the
predicted class. For our objective, we used four binary CNN
classifiers with four classes, as shown in Table 1. The CNNs
used for training consist of only three convolutional layers
and three linear layers. To further increase the performance
of the binary classifiers, after each binary CNN M; is trained,
we obtain predictions from the last hidden layer of the CNN
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(which consists of 512 features here) and train an XGBoost
Classifier XG; on the same. This process is followed for each
of the four binary CNNss trained. Finally, the individual binary
classifiers (CNN and XGBoost) are combined via the One
vs. Rest classification technique, which predicts the class
with maximum confidence in probability. The localized depth
maps of the corresponding polyp RGB images have been used
as the input feature to the model.

B. LOCALIZED DEPTH MAPS

In a localized depth map of an RGB polyp image, the region
containing the polyp is substituted with the corresponding
depth map pixel values, while all other pixels are set to zero
(blacked out). In this way, we have information about both
the area associated with the polyp and the relative distance
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FIGURE 4. Model architecture (Binary CNN with XGBoost). fc1 to fc4 are the fully connected layers. fc4 is dropped after the
training of the binary CNN classifier, and instead, an XGBoost classifier is attached.
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FIGURE 5. Multi-class classification inference. The figure depicts the
different binary CNNs along with the attached respective XGBoost
classifiers. The architecture of M1 to M4 is the same as the single binary
CNN. All these modules are attached to XGBoost classifiers denoted by
XG1 to XG4.

of the polyp from the camera (due to the depth map pixel
values). This distance information is vital for accurately
estimating the actual physical size of the polyp. Without
depth information, the model might struggle to differentiate
between different-sized polyps, which might appear to be
similar (in terms of the area of the polyp) in the 2D image.
On a similar basis, the model might differentiate between

128464

two polyps of the same size with varying appearances in
the 2D image due to different distances from the camera.
Including depth information takes care of these limitations.
Note that to obtain the localized polyp region, we have used
the available ground truth provided in the dataset. There
is no absolute relation between the size estimation that we
performed and the bounding box annotations. The purpose
of using bounding box annotations in the approach is to
make the model focus on the region of interest rather than
any unnecessary background details. During inference, the
localized depth map of the polyp RGB image is obtained by
using the DPT model [15]. The model generates the depth
map, and localization details of the polyp area are obtained
using annotations provided in the dataset. Some sample
polyp localization masks and polyp depth maps are shown
in Fig. 1 and Fig. 2, respectively. Combining both polyp
localization masks and corresponding depth maps, we obtain
polyp localized depth maps (see Fig. 3).

C. MODEL ARCHITECTURE

In this subsection, we explain the architecture of the binary
classifiers. In total, we have trained 8 different models for this
approach. Four binary classifying CNNs (Mg, M1,M>, M3)
have been trained for each of the classes, and for each CNN,
we have trained a corresponding XGBoost classifier (XGo,
XG1, XG, XG3) which takes the output of the last hidden
layer of the respective CNN as input. At first, we trained all
four binary CNN models (Mo, M1, M>, M3). After training,
we extracted the output from the last hidden layer of each
CNN model and trained an XGBoost classifier for each of the
four models. Model M; classifies the i class as 1 and all other
classes as 0. All CNN models have the same architecture and
hyperparameters. Similarly, all XGBoost classifiers have the
same hyperparameters.

VOLUME 11, 2023
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predictions and ground truth labels, respectively, for the four classes.

TABLE 1. Binary classifiers and their respective class of focus.

Model Label=1 Image count Label=0 Image count Class
Mp and XGg 0-5mm 16139 Rest 32110 0
M; and XGy 5-10mm 17086 Rest 30443 1
Mo and XGo 10-14mm 13611 Rest 41745 2
M3z and XG3 >=14mm 7799 Rest 40450 3

The training of the models consists of two parts.

- First, we train the individual binary CNNs against the
respective class-wise dataset.

- After the binary CNN classifiers have been trained,
we freeze the parameters of the CNN, obtain the output of the
last hidden layer of the CNN on the training dataset, and use
it to train an XGBoost classifier on the respective class-wise
dataset (see Fig. 4). In short, after training the CNN, we drop
the very last fully connected layer from the CNN and use the
flattened features extracted from the training dataset to train
an XGBoost classifier.

This process is repeated for each of the four pairs of
models. It is to be noted that for a particular model pair
(M;, XG;j), the goal is to classify the i class as 1 and
all other classes as 0. Here, i=0 implies polyps within
0-5mm (class CO) size, i=1 implies polyps within 5-10mm
(Class C1), i=2 implies polyps within 10-14mm (class C2)
and i=3 implies >14mm (class C3). We have used Binary
cross-entropy loss for calculating the difference between
network predictions and true labels and Adam optimizer for
back-propagating through the CNN. Dropout has been used
while training to prevent over-fitting in the CNN [16]. Also,
we have used Batch normalization in the convolutional layers.
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Hence, we trained each of the CNN (M;) on the respective
class-wise training dataset without using the XGBoost
classifier and later used the CNN extracted features to train
an XGBoost classifier (XG;) corresponding to each M;. This
method enables us to combine the powerful feature extraction
capabilities of CNN and the classification capabilities of
XGBoost classifiers. The output obtained through these
models consists of predicted probabilities for each class, the
maximum of which is selected to identify the predicted class.
This process is depicted in Fig. 5. Using XGBoost classifiers
on top of the CNN reported the best accuracy and F1-score
among the different experiments performed to evaluate our
approach. These experimental setups are explained below:

« Baseline approach using single CNN model: Here,
we followed the conventional approach of using a single
CNN for multi-class classification. The architecture
of the model is given in Fig. 6. The number of
output nodes is equal to the number of classes, i.e., 4.
SoftMax activation was applied on the output nodes to
obtain probabilistic values for each class. The target
vector was one-hot encoded, and cross-entropy loss
was used to compute the difference between predicted
values and true values. Adam optimizer was used
for weight optimization via back-propagation. Other
training hyper-parameters were the same as that in
the case of our proposed approach. During inference,
a localized depth map of the polyp RGB image was
passed to the model and predicted probabilities were
obtained, the maximum of which corresponded to the
predicted class.
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FIGURE 7. Different training phases for ablation study. (a) Without XGBoost classifier,

(b) With XGBoost Classifier.

o Multiple binary CNN model without XGBoost clas-
sifier: We used multiple binary CNN models to validate
the significance of XGBoost classifiers in our proposed
model. We used the same setup as our proposed model
except for the XGBoost classifiers, which are not used
in this case. The difference in the two training phases
(a) our proposed model (multiple binary CNN models
with XGBoost classifiers) and (b) multiple binary CNN
models without XGBoost classifiers can be observed
in Fig. 7. The figure shows a part of the proposed
model, i.e., a single binary classifier My with an
XGBoost classifier XGg. The other three sub-networks
of classifiers (M| to M3 and XG1 to XG3) have the same
architecture.
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Ill. RESULTS

A. DATASET AND TRAINING DETAILS

We used the SUN Database [17], [18] to evaluate our
model’s performance. It contains 109,554 frames non-polyp
frames and 49,136 polyp frames. The training set we used
comprises 80% of polyp frames; validation and test sets
are 10% each of polyp frames. The distribution of the
different classes in the test dataset is shown in Fig. 8. For both
training and evaluation purposes, we have used bounding box
annotations of polyps already provided in the SUN Database.
It is to be noted that for all operations, we have down-sampled
the images to (224,224) in order to reduce computational cost.
Training hyper-parameters for each CNN have been provided
in Table 2. For each XGBoost classifier, we used a maximum
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TABLE 2. Training hyperparameters for each CNN.

Hyperparameter Value
Epochs 10
Optimizer Adam
B1(for Adam optimizer) 0.9
B2((for Adam optimizer) 0.99
Learning rate 0.0001
Batch size 64

Loss function (for Binary CNNs)  Binary cross entropy

depth of 6. All model training and inferences have been done
in PyTorch. Testing of the models was done on the test dataset
comprising randomly selected 4825 images. Accuracy and
F1-score were chosen as evaluation metrics.

B. ABLATION STUDY

We performed an ablation study by evaluating our proposed
model in two scenarios: (a) with XGBoost classifiers and
(b) without XGBoost classifiers. The corresponding training
phases for a classifier M; are shown in Fig. 7. The results
obtained in each scenario are reported in Table 3. It can
be observed that in almost all cases, the performance of
each binary classifier increased in terms of accuracy and
F1 score when they were combined with the XGBoost
classifiers. XGBoost is a gradient-boosting algorithm that
is able to learn non-linear relationships between features
and labels applied to tabular data. CNNs, on the other
hand, are most efficient in handling two-dimensional data
as they effectively learn hierarchical representations of data
by applying convolutional filters, which involve extracting
local features and patterns from images. CNNs and XGBoost
classifiers are combined by feeding the extracted patterns
from CNN into the XGBoost classifier. Using CNNs with
XGBoost enables the model to effectively capture intricate
patterns and relationships in data. This ability is leveraged
by integrating CNN as a trainable feature extractor to
automatically obtain features from input data and XGBoost as
arecognizer in the network’s top level to obtain results. These
facts and observations illustrate the possible reasons for the
increment in polyp-size classification accuracy and F1-score
by combining CNNs and XGBoost classifiers as presented in
our work.
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C. COMPARATIVE ANALYSIS

We compared our model’s performance with (a) a baseline
multi-class classification approach using the single CNN
model, (b) multiple binary CNN models without XGBoost
classifiers, and (c) well-known image classification models:
ResNet-101, DenseNet-169, and Vision Transformer (VIT).
The associated results regarding (a) and (b) are shown in
Table 4. For multi-class classification on the test dataset,
a single CNN provided an accuracy of 84.87% and an
Fl-score of 84.47%; binary CNNs combined via One vs.
Rest classification provided an accuracy of 86.48% and an
Fl1-score of 86.87%; binary CNNs and XGBoost classifiers
combined via One vs. Rest classification provided an
accuracy of 87.07% and an fl-score of 86.95%. This shows
that our proposed model outperformed the baseline model
by a significant margin and achieved better accuracy and
F1-score using XGBoost classifiers. The qualitative analyses
of these models are shown in Fig. 9, Fig. 10, Fig. 11,
and Fig. 12. These figures mention the ground truth class and
the predicted class labels for some randomly chosen samples.
Fig. 12 presents some polyp images incorrectly classified by
the baseline model, whereas our proposed model correctly
predicted the labels for these samples. The effectiveness
of using One vs. Rest classification using multiple binary
classifiers can be attributed to the following facts:

(i) Simplified Decision Boundaries: In a single CNN
classifier for multi-class classification, the decision bound-
aries can be complex and intertwined, making it challenging
to separate different classes. By using One vs. Rest clas-
sification with binary CNNs, each classifier is trained to
differentiate one class from the rest, resulting in simpler
decision boundaries for each binary problem. (ii) Targeted
Feature Learning: Each binary CNN classifier in the One vs.
Rest classification focuses on distinguishing one class,
enabling it to learn features specific to that class. This
targeted feature learning can enhance the discriminative
power of the classifiers. In contrast, a single CNN for
multi-class classification learns features that need to be
shared across multiple classes, which may result in less
specialization for individual classes. (iii) Model Diversity:
One vs. Rest classification with binary CNNs creates an
ensemble of classifiers, where each classifier specializes in
distinguishing a particular class. This ensemble approach
harnesses the diversity of the classifiers, allowing them to
collectively capture a broader range of class characteristics
and improve overall performance, enhancing robustness and
generalization capabilities.

In addition to the above results, we have included con-
fusion matrices in Fig.13 for all the mentioned approaches.
We also compare our method against three well-known
image classification models: ResNet-101 [19], DenseNet-
169 [20] and Vision Transformer (VIT) [21]. We used transfer
learning in the case of both ResNet-101 and DenseNet-169.
The associated results are presented in Table 5. It can be
observed that our approach outperforms other well-known
image classification models by a significant margin in terms
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FIGURE 9. Some RGB Polyp images with respective localized depth maps and corresponding predictions on the test dataset using a single CNN, true
label, and actual size in mm. Note that class=0 implies (0-5) mm,class=1 implies [5-10) mm,class=2 implies [10-14) mm, and class=3 implies greater
than or equal to 14 mm.
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FIGURE 10. Some RGB Polyp images with respective localized depth maps and the corresponding predictions obtained via One vs. Rest classification
using binary classifying CNNs without XGBoost classifiers on the test dataset, true label, and actual size in mm. Note that class=0 implies (0-5)
mm,class=1 implies [5-10) mm,class=2 implies [10-14) mm, and class=3 implies greater than or equal to 14 mm.
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FIGURE 11. Some randomly picked-up images from the test dataset with the true label, predictions from Binary CNNs combined with XGBoost
classifiers, with the true size of the corresponding polyp in mm, respectively. Note that class=0 implies (0-5) mm,class=1 implies [5-10) mm,class=2
implies [10-14) mm, and class=3 implies greater than or equal to 14 mm.

TABLE 3. Ablation study on Binary CNNs without and with XGBoost classifiers for Binary Classification. The underlined values represent the best result in
the respective comparisons.

Accuracy F1-score
Model Without XGBoost  With XGBoost Without XGBoost With XGBoost
Mo 90.17% 90.88% 88.47% 86.60 %
M 88.04% 89.06% 84.40% 84.96 %
Mo 92.39% 94.40% 74.53% 78.22 %
M3 97.53% 97.7% 92.09% 95.58 %
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TABLE 4. Comparative analysis with different approaches. The underlined values represent the best result.

Method Accuracy  Fl-score
Baseline model (Single CNN model) 84.87% 84.47%
Multiple binary CNNs without XGBoost 86.48% 86.87%

Proposed model (Multiple binary CNNs with XGBoost) 87.07% 86.95%

TABLE 5. Comparative analysis with state-of-the-art image classification models. The underlined values represent the best result.

Model Accuracy Fl-score

DenseNet-169 (Transfer Learning) 69.13% 66.32%
Vision Transformer(VIT) 73.82% 70.78%
ResNet-101(Transfer Learning) 69.49% 65.39%
Single CNN(as described in Figure3) 86.48% 86.87%

Proposed model (Multiple binary CNNs with XGBoost (Figure2)) 87.07% 86.95%

100 200 ] 100 200 [} 100 200 ] 100 200 0 100 200 0 100 200 [} 100 200
True : 1, Single CNN: 3, True : 1, Single CNN: O, True : 0, Single CNN: 1, True : 3, Single CNN: 2, True : 2, Single CNN: 1, True: 2, Single CNN: 3, True : 1, Single CNN: 3,
XGBoosted Binary CNN : 1 XGBoosted Binary CNN : 1~ XGBoosted Binary CNN : 0 XGBoosted Binary CNN : 3  XGBoosted Binary CNN : 2 XGBoosted Binary CNN : 2 XGBoosted Binary CNN : 1
True Size : 8mm True Size : 7mm True Size : 3mm True Size : 15mm True Size : 10mm True Size : 12mm True Size : 6mm

100 200 ] 100 200 ] 100 200 ] 100 200 0 100 200 0 100 200 0 100 200
True : 2, Single CNN: 3, True : 1, Single CNN: 0, True : 2, Single CNN: 1, True: 1, Single CNN: 2, True : 1, Single CNN: 2, True : 0, Single CNN: 1, True : 1, Single CNN: 0,
XGBoosted Binary CNN: 2 XGBoosted Binary CNN : 1~ XGBoosted Binary CNN: 2 XGBoosted Binary CNN : 1 XGBoosted Binary CNN: 1 XGBoosted Binary CNN : 0 XGBoosted Binary CNN : 1
True Size : 12mm True Size : 7mm True Size : 10mm True Size : 5mm True Size : 5mm True Size : 4mm True Size : 5Smm

FIGURE 12. Some polyp images whose localized depth maps were incorrectly classified by the single CNN but correctly classified by the combined binary
classifiers with XGBoost. The true class, class predicted by single CNN, and class predicted by Binary CNNs with XGBoost, along with the true size of the
polyps in mm, have been provided for each image. Note that class=0 implies (0-5)mm, class=1 implies [5-10)mm, class=2 implies [10-14)mm, and
class=3 implies greater than or equal to 14mm.

of both Fl-score and accuracy for polyp size classification. networks with many layers, whereas our proposed model has
One possible explanation for these results is the sparse nature fewer layers (3 convolutional layers and 3 fully connected
of input features (images) that we have used in our work. layers). From the results tabulated below, it is clear that

Localized polyp depth maps are mostly sparse as most part shallow CNNs might be more effective than very deep CNNs
of the image is without polyp area, which is all black or for sparse image classification. Also, the results in Table 5
all zeros. Both ResNet-101 and DenseNet-169 are very deep demonstrate that shallow CNNs might outperform Vision
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FIGURE 13. Confusion matrix for (a) Single CNN model (b) Multiple
binary CNN model without XGBoost classifier, (b) Proposed approach.

Transformers (VIT) for image classification when the input
image is sparse, as in the case of localized depth maps
of polyps. Although the specified classification models are
well-known for their superior classification performance, for
this particular objective, our model, being a shallow model,
performs better.

IV. DISCUSSION

We evaluated the models on the test dataset comprising
4825 images (randomly sampled from the dataset) using three
approaches: a single CNN, multiple binary CNNs via One
vs. Rest classification, and multiple Binary CNNs (total of
4 in number) with XGBoost Classifiers (one for each binary

128470

CNN) via the One vs. Rest classification technique. The
obtained results report an increase in test accuracy by 1.61%
and Fl-score by 2.4% using multiple binary classifying
CNNs as compared to using a single CNN. Also, combining
the binary CNNs with XGBoost classifiers results in an
increase of test accuracy by 2.2% (106 images) and an
F1-score of 2.48% compared to using a single CNN.

The current approach mainly aims at the size estimation
of a given polyp; however, in the future, we might use an
object detection model for polyp localization as an initial step.
This includes adopting real-time object detection models like
YOLO [22], SSD [23] etc., followed by the multi-class classi-
fication of polyps based on their absolute size. Nevertheless,
our goal of polyp estimation and its clinical significance is
evident from the exhaustive experimental analysis.

V. CONCLUSION

In this paper, we have proposed a deep learning based
approach for multi-class classification of colorectal polyps
according to their absolute size (in mm). The four classes
included for classification are (0-5) mm, [5-10) mm, [10-14)
mm, and greater than or equal to 14 mm. Our proposed model
consists of four binary classifying CNNs along with XGBoost
classifiers. The individual binary classifiers are combined
via the One vs. Rest classification technique. Our proposed
model outperformed the baseline model by 2.2% and 2.48%
in terms of accuracy and Fl-score, respectively. Instead of
a binary classification of polyp size, which has been done
in most previous works, a muti-class classification enables
a much more accurate range of polyp size, which might be
beneficial for surgical procedures and related other medical
treatments. Though four different binary classifiers are more
computationally expensive, better accuracy is always desired
when it comes to Al-assisted endoscopy, as it will have a
significant impact on the treatment.
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