
Received 18 October 2023, accepted 9 November 2023, date of publication 15 November 2023,
date of current version 21 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3332904

Optimal Scheduling of Electric Vehicle Integrated
Energy Station Using a Novel Many-Objective
Stochastic Competitive Optimization Algorithm
BANGLI YIN , XIANG LIAO , BEIBEI QIAN , JUN MA , AND RUNJIE LEI
Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, School of Electrical and Electronic
Engineering, Hubei University of Technology, Wuhan 430068, China

Corresponding author: Xiang Liao (liaoxiang@hbut.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 51809097, in part by the Open
Foundation of Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System
under Grant HBSEES202312, and in part by the Open Foundation of Hubei Engineering Research Center for Safety Monitoring of New
Energy and Power Grid Equipment under Grant HBSKF202125.

ABSTRACT The construction of the Electric Vehicle Integrated Energy Station (EV-IES) is a prerequisite for
the rapid development of the EV industry. However, how to optimize the operation of the EV-IES is a problem
worthy of study. Therefore, this paper designs an EV-IES model with PV and Energy Storage System (ESS).
Fully consider the peak-valley time-of-use electricity price, user traffic flow, PV output, and other factors.
On this basis, the three objectives of the maximum daily revenue of the EV-IES, the minimum exchanged
energy between the EV-IES and the Regional Power System (RPS), and the minimum pollutant emission
are optimized at the same time. Secondly, this paper proposes a Many-objective Stochastic Competition
Optimization (MOSCO) algorithm, which is utilized to assess the DTLZ1-7 benchmark functions and the
optimization scheduling problem of EV-IES. By comparing its simulation results with those of five other
optimization algorithms, it is evident that the MOSCO algorithm outperforms the other five in terms of
IGD, GD, HV, and Spread values. This indicates the effectiveness of the MOSCO algorithm in addressing
many-objective optimization problems. Finally, in order to illustrate the feasibility of designing the EV-IES
model, three comparative cases were designed. The Pareto solutions of these cases were obtained using
the MOSCO algorithm, and the Entropy-Technique for Order Preference by Similarity to Ideal Solution
(ETOPSIS) method was applied to determine the optimal solution for each case. Compared to the traditional
charging station (case 1), the daily revenue of the EV-IES increased by 27.97%. Pollutant emissions were
reduced by 25.29%.

INDEX TERMS Electric vehicle, EV integrated energy station,many-objective optimal scheduling,MOCSO
algorithm.

NOMENCLATURE
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FCSS Fast Charging Service Station.
GA Genetic Algorithm.
GLMO Grouped and Linked Mutation Operator.
HESS Home Energy Storage System.
MGSOACC Multi-objective Group Search Optimizer

with Adaptive Covariance matrix and
Chaotic search.

PIS Positive Ideal Solution.
PSO Particle Swarm Optimization.
RPS Regional Power System.
SOC State Of Charge.
SO Snake Optimization.
t-DEA Theta Dominance based Evolutionary

Algorithm.

I. INTRODUCTION
In recent years, the world has advocated efficient, clean,
and sustainable energy development. Traditional fuel engine
vehicles have the disadvantages of high carbon emissions and
high energy consumption [1]. At the same time, with China
setting dual carbon goals, electric vehicles play a crucial role
in achieving these objectives [2], [3]. Therefore, the electric
vehicle industry is in the development stage, and it is expected
that electric vehicles will grow exponentially in the next few
years.

Several studies have addressed optimal charging sched-
ules for Electric Vehicles (EVs). Li et al. [4] propose a
charge-discharge strategy that can be automatically adjusted
to the change in time-varying peak-to-valley tariffs. Kang
et al. [5] propose a centralized charging strategy for EVs in
a battery-switching scenario. Zhao et al. [6] developed an
optimization model that incorporates wind and solar energy,
energy storage systems, gas turbines, and the regional power
system. Reference [7] propose a smart charging strategy to
avoid EV charging hours overlapping with residential peak
load hours. Reduces grid power losses and voltage deviations
while satisfying EV charging services [8]. Li et al. [9] estab-
lished a model for electric vehicle swapping stations, which
primarily consists of electric vehicles and the regional power
system. They formulated an objective function to minimize
battery acquisition costs and addressed the battery capacity
decision problem. Additionally, they proposed a centralized
optimization scheduling strategy. In this paper, according
to the peak-valley time-of-use price of the Regional Power
System (RPS), EV charging load of the Fast Charging Service
Station (FCSS), and photovoltaic (PV) output, the charging
and discharging amount of Energy Storage System (ESS) in
each period is determined.

At present, there is both single-objective and many-
objective optimization research on the optimal scheduling
of Electric Vehicle Integrated Energy Station (EV-IES). The
incorporation of EVs into an integrated energy system can
serve as a cornerstone of a decarbonized economy while
also lowering the long-term cost of an integrated energy
system [10]. Document [11] proposes a home energy man-

agement system composed of solar energy, a Home Energy
Storage System (HESS), and an EV. This system optimizes
the peak load of RPS by scheduling the charge and discharge
strategies of the EV and HESS Baik et al. [12] propose
a method to calculate the specific number of EV charging
equipment and the capacity of auxiliary equipment for fast
charging station operators to maximize the revenue of the
fast charging station. In [5], a centralized charging strategy
is proposed to reduce the overall charging cost and to cen-
trally charge batteries during peak hours of the grid. Zaher
et al. [13] constructed the model of the exchange station to
determine the best charge-discharge and exchange plan for
the battery of the swapping station to reach the maximum
economic revenue. Wind energy and solar energy have the
characteristics of uncertainty and intermittency. Therefore,
in the optimization scheduling of EV-IES with wind and solar
systems, ESS are essential components [14]. Zhao et al. [15]
developed a battery charging and swapping station model that
incorporates changes in State of Charge (SOC) and includes
wind and solar energy, energy storage systems, and the power
grid. They simultaneously optimized three objectives: trans-
mission losses, voltage deviations, and wind and solar energy
curtailment. Furthermore, they employed a many-objective
weighted method to transform the many-objective opti-
mization problem into a single-objective optimization prob-
lem. In the context of the existing single-objective study,
the optimization objectives are basically in-station eco-
nomic benefit, charging cost, life cycle cost [16], grid load
variance, etc.

After reading the recent literature, it is not difficult to find
the application of many-objective optimization to EVs and
smart grids. A dynamic prediction method is proposed in
[17] to determine the optimal location and capacity of the
EV charging station. Yao et al. [18] balanced the conflicting
objectives of minimizing annual investment and total energy
cost and maximizing annual angular flow to increase the eco-
nomic return to the investor. However, the optimal charging
schedule for individual EV users is not addressed, affecting
EV user satisfaction. In [19], a model of fast EV charging
stations for wind, PV, and storage systems is constructed to
minimize the cost of electricity and environmental pollution
emissions. The model is solved using a Multi-objective Par-
ticle Swarm Optimization (MOPSO) algorithm to determine
the optimal capacity of each system. This study takes into
account the economic and environmental aspects of the fast
charge station but does not consider the potential interference
between the fast charge station and the RPS. Wang et al.
[20] studied EV travel law and constructed a regional elec-
tricity price optimization model to maximize the economic
benefits of charging stations and minimize regional load
peaks. Although this study examines the impact of charging
stations on the RPS, it does not address environmental objec-
tives to reduce pollutant emissions. Li et al. [21] integrated
a PV power generation system into a centralized battery
replacement charging system, proposed a centralized battery
replacement charging system to minimize the total operating
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TABLE 1. The above research explores the differences among various optimization scheduling models.

cost with a smooth load fluctuation many-objective optimiza-
tion operation method, and also proposed a many-objective
optimization algorithm that modifies the Non-dominated
Sorting Genetic Algorithm III (NSGA-III) cross variance
operator to solve the model. However, they propose a method
that does not consider the environmental pollution caused
by energy originating from the grid side. Wang et al. [22]
constructed an interaction model between the distribution
network and EVs, developed an orderly charging strategy,
and proposed a method to optimize operation with mini-
mum charging cost and load variance. Das et al. [23] study
the joint optimal scheduling of EV charging stations, bat-
tery replacement stations, and renewable energy. Meanwhile,
propose a many-objective technical economic environmental
concept of EV charger and discharger scheduling. Construct-
ing four objective functions for user-side energy cost, battery
degradation, grid interaction energy, and carbon emission
is a typical many-objective optimization problem. However,
on the power supply side, the regional power system’s power
generation process is inevitably accompanied by pollutants
other than carbon pollution. Eldeeb et al. [24] proposed an
approach to optimize the operation of the PV-EV station to
maximize the daily economic benefit of charging stations

while reducing the capacity decline of the battery storage
system. They studied the battery storage capacity variation,
which is also not covered in this paper, but they not only did
not consider the impact on the RPS but also did not reduce
pollutant emissions. Shi et al. [25] Use a weighted approach
to simultaneously optimize energy costs and grid load. Oper-
ational carbon emission constraints reduce carbon emissions.
However, it is not optimized as a separate objective, and the
relationship between the objectives cannot be weighed. Apart
from [21], a new many-objective optimization algorithm is
not proposed, but the model is solved by applying the existing
many-objective algorithm.

Based on the aforementioned research, numerous scholars
have made significant contributions to the field of opti-
mal scheduling for EV-IES. It is evident that the optimiza-
tion and scheduling of EV-IES represent a many-objective
optimization problem. In existing studies, most models for
EV-IES are predominantly single-objective or bi-objective
optimization models, typically solved using solvers, linear
programming methods, or artificial intelligence algorithms.
Some studies also employ weighted approaches to transform
the many-objective optimization problem of EV-IES into a
single-objective problem for solving. Additionally, it can be
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observed that the economic benefit of EV-IES is a crucial
indicator in the optimization models and is considered one of
the objective functions in this paper. The objective function
involving the exchange energy between the RPS and EV-IES
reflects the energy interaction between the two systems in
different time periods, reducing the impact on the RPS. As
China setting dual carbon goals, pollutant emissions are also
considered as one of the objective functions in this paper.
Existing literature has not yet addressed the simultaneous
optimization of these three objectives in scheduling models.
Therefore, this paper aims to optimize all three objectives
concurrently. The distinctions between our study and the
aforementioned research are summarized in Table 1.

The model-solving method is a crucial part of the optimal
scheduling problem for EV-IES. Dominguez-Navarro et al.
[26] optimized of the installation and operation of an EV fast
charging station using aGenetic Algorithm (GA). Zheng et al.
[27] show that the optimal scheduling of an integrated energy
system is a non-convex and non-linear optimization problem,
as is the problem of optimal scheduling of EV-IES, both of
which are many-objective optimization problems. Yao et al.
[18] designed an integrated charging system for power distri-
bution and EVs. TheMulti-objective Evolutionary Algorithm
Based on Decomposition (MOEA/D) optimization algorithm
is applied to solve the model to obtain a non-dominated solu-
tion. Wei et al. [28] used the life-cycle mean and deviation to
evaluate the investment cost and risk of an integrated energy
system and proposed a Multi-objective Group Search Opti-
mizer with Adaptive Covariance matrix and Chaotic search
(MGSOACC) algorithm to solve this many-objective opti-
mization problem. Miao et al. [29] considered the interests of
users on the one hand and service providers on the other. From
different perspectives, two conflicting objectives are estab-
lished, and the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) is applied to obtain the Pareto solution. Due to
the fact that EV-IES is a many-objective and multi-constraint
model, this paper proposes Many-objective Stochastic Com-
petition Optimization (MOSCO) for solving this model.

Since the many-objective optimization algorithm solves
the optimization model to obtain a set of Pareto solutions.
How to determine the optimal solution from the Pareto solu-
tion is amajor difficulty faced by decision-makers. Therefore,
this paper uses the Entropy-Technique for Order Preference
by Similarity to Ideal Solution (ETOPSIS) decision method
to determine the optimal solution from the Pareto solution.
Xu et al. [30] used the NSGA-II algorithm to solve the
many-objective optimization model of the hybrid energy stor-
age system configuration and used the VlseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) method to
determine the optimal solution. Sarshar et al. [31] used the
TOPSIS method to find the optimal solution from the Pareto
solution of the Economic Dispatch-based Non-dominated
Sorting Genetic Algorithm II (EDNSGA-II) algorithm. Sun
[19] used the MOPSO algorithm to solve the many-objective
fast charging station optimization model and used the

TOPSIS method to determine the optimal solution from the
Pareto solution.

The contributions of this paper are summarized as follows:
(1) In this paper, a joint optimal scheduling model of EV-

IES andRPS, which includes PV, ESS, and FCSS is proposed.
The EV-IES model not only meets the charging demand of
EV users but also enhances daily economic benefits while
reducing pollutant emissions.

(2) At the same time, for the first time, the daily revenue of
EV-IES, the energy exchange between RPS and EV-IES, and
pollutant emissions have been optimized synchronously.

(3) A new MOSCO algorithm is proposed. It calculates
GD and IGD values using DTLZ1-7 benchmark functions
and obtains Spread, HV, and Runtime data during model
solving. These results are compared with the outcomes of
five other algorithms to demonstrate that MOSCO possesses
strong solving capabilities and can effectively address high-
dimensional many-objective optimization problems.

The rest of this paper is organized as follows. Section II
explains the mathematical model of the EV-IES in detail.
Section III elaborates on the methods for determining the
optimal solution of the EV-IES model. Section IV describes
how the decision variables of the model are converted into
the energy flow of each system and determines the range of
random numbers of the MOSCO algorithm for solving the
EV-IES model. Section V shows the simulation results and
results analysis; Section VI concludes the paper.

II. MATHEMATICAL MODEL OF THE EV-IEES
A. EV-IES
The EV-IES consists of three subsystems: PV system, ESS,
and FCSS. At the same time, the station is connected to the
RPS. Therefore, the station can purchase or sell electricity
from the RPS. The EV-IES not only meets the charge needs
of users, but can also use RPS to achieve energy arbitrage,
thereby improving the economic benefits of the EV-IES. The
overall model is shown in Fig. 1. The whole EV-IES realizes
the dynamic interaction of power generation, EV battery
charging operations for users, and energy inter-feeding with
the RPS. The components of each subsystem of the station
are described as follows:

(1) PV system: PV panels are directly connected to the
AC bus through the AC/DC module. PV panels convert solar
energy into electrical energy; that can be stored in the ESS,
used for user EV charging, or grid-connected to the RPS. Its
installed capacity is 62.51 kW.

(2) ESS: It consists of 20 EV batteries of 60 kW, which are
connected to the AC bus through AC/DC modules. The ESS
can not only absorb the power generated by the PV system
but also supply power to the EV. In addition, it can regulate
the peak and valley values of the RPS load.

(3) Fast charging service station: It consists of 12 charging
posts. When EV users arrive at the EV-IES and charge the
EV battery to the State of Charge (SOC) limit to meet user
demand.
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FIGURE 1. Structure diagram of EV integrated energy station.

B. MATHEMATICAL MODEL
The EV-IES designed in this paper is a many-objective opti-
mization model that aims to maximize the daily revenue of
the EV-IES, minimize the exchanged energy between the
RPS and the EV-IES, andminimize pollutant emissions while
satisfying all constraints.

1) OBJECTIVE FUNCTIONS
(1) EV-IES with maximum daily revenue

The daily revenue of the EV-IES is a basic economic
indicator, and the main source consists of two parts: (1) The
revenue from charging the batteries of EV users by the EV-
IES. (2) The ESS charges the RPS during off-peak load
periods and feeds power back to the RPS during peak load
periods. They form a mutual feedback relationship, and
energy arbitrage is realized. Therefore, the objective func-
tion of maximizing the daily revenue of the EV-IES can be
described as Equation (1).

maxF1 =

24∑
t=1

PFCSS (t) × 1h× pcharge

+

24∑
t=1

(PESS (t) + PFCSS (t) − PPV (t))

× 1h× Ce(t) (1)

where PESS (t) is the charging power of the ESS to the RPS
at time t; PPV (t) is the PV output power at time t; PFCSS (t)
is the charging power of the FCSS at time t; pch arg e is the

price of EV charging (where pch arg e = 1.2568); Ce(t) is the
peak-to-valley electricity tariff; 1h is the charging time. The
calculation method for PPV (t) and EESS (t) is as follows:

The mathematical model of its PV panel output power can
be described as Equation (2) [32].

PPV (t) =
Gc(t)
Gr

× Prp−PV × ηPV × [1 + k(Tc(t) − Trc)]

(2)

where Gc(t) is the sunlight intensity at time t; Gr is the
rated insolation intensity in a standard scenario (the standard
insolation intensity in this paper is 1000 W/m2); Prp−PV is
the rated power of PV panels at standard temperature and
sunlight intensity (25 kW); ηPV is the efficiency of PV panels
to generate electricity (85%); Tc(t) is the temperature at
time t; Trc is the rated temperature in a standard scenario (the
temperature is 25◦C); k is the power temperature coefficient.

The mathematical model of its ESS can be described by
Equation (3).

EESS (t) = EESS (t − 1) + [Pch arg eESS (t) × η
ch arg e
ESS × µ

ch arg e
ESS

− Pdisch arg eESS (t)/ηdisch arg eESS × µ
dischage
ESS ] × 1h (3)

where EESS (t) is the amount of electricity in the ESS at
time t; Pch arg eESS (t) and Pdisch arg eESS (t) are the charging and dis-
charging power of the ESS at time t, respectively; µ

ch arg e
ESS

and µ
disch arg e
ESS are binary numbers that indicate the discharg-

ing and charging states of the ESS, respectively η
ch arg e
ESS and

η
disch arg e
ESS represent the charging and discharging efficiency

of the ESS, respectively.
(2) Minimization of exchanged energy between the RPS

and the EV-IES
The ESS of the EV-IES discharges during the peak load

of the RPS and charges otherwise. In this way, the load
curve of the RPS becomes flat and the peak-to-valley dif-
ference becomes smaller, which makes the RPS operate
more safely. Therefore, the objective function of the energy
exchange between the RPS and the EV-IES can be described
as Equation (4).

minF2 =

√√√√ 24∑
t=1

(PESS (t) + PFCSS (t) − PPV (t))2 (4)

(3) Minimal pollutant emissions
EVs are considered the main solution to reduce pollutant

emissions in the global transportation sector. In EV-IES, the
main source of environmental pollutants is the portion of
electricity purchased from the RPS. Therefore, the pollutant
emission minimization model is intended to reduce emissions
of CO2, SO2, and NOx . The objective function of pollutant
emissions can be described as Equation (5)-(6) [19].

minF3 =

24∑
t=1

PGrid (t) × 1h× (eCO2 + eSO2 + eNOx ) (5)
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PGrid (t) =

{
0 PESS (t) + PFCSS (t) ≤ 0
PESS (t) + PFCSS (t) PESS (t) + PFCSS (t) > 0

(6)

where eCO2 , eSO2 , eNOx is the emission factor of CO2, SO2,

NOx respectively PGrid (t) is the power charged from the RPS
to the EV-IES at time t; In [19] eCO2 = 0.997kg/kWh, eSO2 =

0.03kg/kWh, eNOx = 0.015kg/kWh.

2) CONSTRAINTS
(1) Equation (7) is the power constraint equation for ESS
charging in each time period.

PESS (t) = NB × BCap
× (SOC(t) − SOC(t − 1)), t = 1, 2, . . . , 24

(7)

where NB is the number of ESS batteries; BCap is the rated
capacity of the EV battery; SOC(t) is the state of charge of
the ESS at time t.

(2) Equation (8) represents the energy balance of various
subsystems within the EV-IES model.

(PESS (t) + PPV (t) + PFCSS (t) + PRPS (t)) × 1h = 0 (8)

where PRPS (t) the power supplied by RPS to the EV-IES
model.

(3) Equation (9) is the priority of each system charging.

PFCSS ◁ {PRPS ,PESS} (9)

where A◁B represents that A is superior to B, ◁ is the priority
symbol.

(4) Equation (10)-(11) is the constraint on the battery SOC.

SOCmin ≤ SOC(t) ≤ SOCmax (10)

SOCESS (0) = SOCESS (24) = 20% (11)

where SOCmin is the lower limit of the battery state of charge,
which is taken as 20% in the paper; SOCmax is the upper
limit of the battery state of charge, which is taken as 80% in
the paper; SOCESS (0) is the starting charge state of the ESS;
SOCESS (24) is the termination of the ESS charge state.
(6) Equation (12)-(13) is the constraint on charging and

discharging power.

0 ≤ |PESS (t)| ≤ Pmax (12)

0 ≤ |PFCSS (t)| ≤ NB × Pmax
FCSS (13)

where Pmax is the maximum charging power of the ESS;
Pmax
FCSS is the maximum charging power of the charging post

at the FCSS.
(6) Equation (14) is the constraint on the ESS capacity.

Emin
ESS ≤ EESS (t) ≤ Emax

ESS (14)

where Emin
ESS is the minimum allowable storage capacity of the

ESS; Emax
ESS is the maximum allowable storage capacity of the

ESS.

(7) Equation (15) is the constraint for the balance between
charging and discharging of the ESS.

24∑
t=1

PESS (t) × 1h = 0 (15)

(8) Equation (16) is the constraint for ESS charging and
discharging operations.

µ
disch arg e
ESS × µ

ch arg e
ESS = 0 (16)

III. METHODOLOGY
In order to obtain the optimal solution of the EV-IES opti-
mization model, this paper proposes a MOSCO algorithm.
The MOSCO algorithm is used to solve the optimization
model to obtain the Pareto solution, and then the ETOPSIS
method is applied to determine the optimal solution of the
optimization model. The solving process of the EV-IES opti-
mization model is shown in Fig. 2.

FIGURE 2. The solving process of the EV-IES optimization model.

A. MOSCO ALGORITHM
Due to the optimization problem of EV-IES is a
multi-constraint and many-objective problem. Therefore,
the algorithm for solving the EV-IES model needs to have
stronger search and convergence capabilities. Because the
Black Widow Optimization (BWO) algorithm [33] and
Snake Optimization (SO) algorithm [34] have good global
search ability and convergence ability. The Levy strategy
can effectively prevent the algorithm from falling into local
optimum. Therefore, the MOSCO algorithm draws on the
BWOalgorithm pheromone updatemethod and the SO global
search method and introduces the Levy strategy. Its pseudo-
code is shown in Algorithm 1.

The steps of the MOSCO algorithm are as follows:
Step 1: Initializing the parent population Nt , the maximum

number of iterations Tmax, and input the initial data of the
EV-IES, such as traffic flow, PV output, etc.

Step 2: Generate a random number r , and determine the
population update method according to the size of the random
number.
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When r ≤ R1, the population update method adopts
Equation (17):

X⃗i(t + 1) =
1
2
[X⃗r1 − (−1)val X⃗r2] (17)

where X⃗i(t + 1) is the individuals after the position update;
r1 and r2 is the random number in the range [1,N ]; val is a
binary number.

When r > R1&&r ≤ R2, the population update method
adopts Equation (18):

X⃗i(t + 1) =



X⃗r1 − rand() × ((upper − lower)
×rand() + lower)

rand() > 0.5
X⃗r1 + rand() × ((upper − lower)
×rand() + lower)

rand() ≤ 0.5

(18)

where rand() is the uniformly distributed random number;
upper, lower is the upper and lower bounds of the population,
respectively.

When r > R2, the population update method adopts
Equation (19)-(21):

X⃗i(t + 1) = X⃗best −

∣∣∣X⃗best − X⃗i(t)
∣∣∣× LevyFlight (19)

α =

(
0(1 + ε) × sin(πε

2 )

0((1 + ε)/2) × ε × 2(
ε−1
2 )

) 1
ε

(20)

LevyFlight = 0.25 ×
δ × α∣∣λ ∣∣ 1ε (21)

where X⃗best is the best individual in the population; 0 is the
gamma function; ε is a constant; λ , δ is a random number
between 0 and 1.

Step 3: Get an updated offspring populationNoff , the parent
population and the offspring population are combined into a
new populationNn, stratify the populationNt according to the
result of the undominated sort (F1,F2,F3).
Step 4: If |Set | = N , all individuals in the previousFL strata

(including the stratum FL) will be the next parent population.
Step 5: If |Set | > N , use equation (22)-(24) to normalize

the population on FL . Then, linked to the reference points, the
k population were selected from the FL level.

ASF(x, ω) = max
j=1,2,...M

F ′
i (x)

ωj
i = 1, 2, · · · ,N (22)

F ′
i (x) = Fi(x) − zmax

i (23)

ωj =

 1 10−6 10−6

10−6 . . . 10−6

10−6 10−6 1

 (24)

where zmax
i the extreme point of the ith objective; M is

the number of objective functions; F ′
i (x) is the transformed

objective function.
Step 6: If t > Tmax, terminate the iteration and output

the Pareto optimal frontier of the many-objective EV-IES

Algorithm 1 The Procedure of MOSCO Algorithm
Input: Define the population size Np, the maximum number of

iterations Tmax, Input the initial data of the EV-IES, such as traffic
flow, PV output, peak-valley time-of-use electricity pricing, etc.

Ensure: The best path of each EV-IES
1: t = 1
2: Generate parent population Nt
3: if t ≤ Tmax then
4: for i = 1 : Np do
5: if rand() ≤ R1 then % R1 is a random number between

0 and 1.
6: Population update using Equation 17
7: elseif rand() > R1 rand() ≤ R2%R2 is a random

number between 0 and 1, and R2 > R1.
8: Population update using Equation 18
9: else
10: Population update using Equation 19
11: end if
12: end for
13: Get an updated offspring population Noff
14: Parents and offspring combine to form a new population

Nn = Nt ∪ Noff
15: Population Nn was selected as the next parent population

Nt by Equation (22)-(24)
16: t = t + 1

17: end if

optimization problem; otherwise, return to step 2 to continue
the iteration.

B. ETOPSIS
The TOPSIS method is a subjective comprehensive evalua-
tion method that makes full use of the information from the
original data, and its results can accurately reflect the gaps
between evaluation schemes [35], [36], [37]. The entropy
weight method, which calculates the weight of each evalu-
ation index, is also an objective comprehensive evaluation
method [38]. Since the TOPSIS method is not sufficient
to solve multi-dimensional complex decision problems, this
paper applies the ETOPSIS method [39] to determine the
optimal operation scheme of the EV-IES from the Pareto
solution.

(1) Construction of decision matrix

T =


c11 c12 · · · c1m
c21 c22 · · · c2m
...

...
. . .

...

cn1 cn2 · · · cnm

 (25)

where m denotes the number of evaluation indicators and n
denotes the number of evaluation solutions. In the paper, m is
the number of objective functions, and n is the number of
Pareto solutions.

(2) Normalize the decision matrix according to
Equation (26).

Xij =
Maxncnm − cnm

Maxncnm −Minncnm
· · · · · · · · · (a)

Xij =
cnm −Minncnm

Maxncnm −Minncnm
· · · · · · · · · (b)

(26)
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where objective function F1 is a positive indicator and is
normalized using equation (a). Objective functions F2 and
F3 are negative indicators and are normalized using
equation (b).

(3) Calculate the entropy value of the jth indicator.

Ej = −
1

ln(n)

n∑
i=1

[(Xij

/
n∑
i=1

Xij)× ln(Xij

/
n∑
i=1

Xij)] (27)

(4) Calculate the weights of each indicator.

ϖj =
1 − Ej∑m

j=1 (1 − Ej)
(28)

(5) Construct the weighted decision matrix.

A = (ϖjaij)n×m (29)

(6) Find the positive and negative ideal solutions of the
weighted decision matrix. As in (30), shown at the bottom
of the page, where A+

0 is the Positive Ideal Solution (PIS) and
A−

0 is the Negative Ideal Solution (NIS). j+ and j− are positive
and negative indicators, respectively.

(7) Calculate the distance between each scheme and the
positive and negative ideal points

PISd+

i =

√∑m

j=1
(A+

0 − (ϖjcij))2

NISd−

i =

√∑m

j=1
(A−

0 − (ϖjcij))2
(31)

where PISd+

i and NISd−

i denote the distance of the
ith scheme to PIS and NIS, respectively.

(8) Calculate the fit degree of each scheme.

ϑi =
NISd−

i

PISd+

i + PISd−

i

(32)

where a higher ϑi means that this scheme is better. Therefore,
the value of ϑi is used to determine the optimal operation
scheme.

IV. OPTIMAL SCHEDULING PLANNING FOR EV-IES
A. MOSCO ALGORITHM AND MODEL INTEGRATION
METHOD
The EV-IES is simulated and modeled in MATLAB, and
the traffic flow, PV output, peak-valley time-of-use electric-
ity price, and charging price in each period are input into
the EV-IES model as the original data. Then the MOSCO
algorithm is used to solve the EV-IES model, and the energy
flow of each subsystem is judged. The decision variables
are the SOC variation of ESS and electric vehicle battery.
Algorithm 2 describes how the decision variables are con-
verted into energy changes and the energy flow of each
subsystem.

Algorithm 2 The Transformation Process of the Decision
Variables
Input: The population size Np, the maximum number of iterations

Tmax, Input the initial data of the EV-IES. Including traffic flow,
PV output, peak-valley time-of-use electricity pricing, the capacity
of the ESS, the number of charging post.

Ensure: The energy change value of each system
1: for i = 1 : Np do
2: SOCESS

= SOCmin + (SOCmax − SOCmin) × [0, 1] %SOCmax and
SOCmax represent the lower limit and upper limit of the battery
capacity of the ESS

3: SOCFCSS
= SOCmin + (SOCmax − SOCmin) × [0, 1]

4: end for
5: Using algorithm1 to solve the EV-IES model, the pareto solution

set is obtained.
6: for i = 1 : Np do
7: for t = 1 : 24 do
8: PESS (t) = NB × Bcap × (SOCESS (t + 1) − SOCESS (t))
9: PFCSS (t) = Bcap × (SOCFCSS (t + 1) − SOCFCSS (t))
10: if PESS (t) > 0 then % To determine the ESS is charging

or discharging, PESS (t) > 0 indicates charging.
11: if PPV (t) ≥ PESS (t) + PFCSS (t) then % PV output can

meet the demand of FSCC and ESS system.
12: PESS (t) = PPV−ESS (t),PFCSS (t) = PPV−FCSS (t)% All the

energy of ESS and FCSS comes from the PV system.
13: elseif

PPV (t) ≥ PESS (t) PPV (t) < PESS (t) + PFCSS (t) %PV output can
not meet both ESS and FCSS systems, but can meet ESS system.

14: PG−FCSS (t) = PFCSS (t)-(PPV (t) − PESS (t)),
PESS (t) = PPV−ESS (t) % The PV output preferentially meets the
ESS, and the excess energy is transmitted to the FCSS. The rest
of the FCSS needs energy from the RPS.

15: else %PV output does not meet the ESS demand.
16: PG−ESS (t) = PESS (t) − PPV (t),PPV−ESS (t) = PPV (t),

PG−FCSS (t) = PFCSS (t), % The energy of ESS comes from
PV system and RPS, and the energy of FCSS comes from RPS.

17: end if
18: else %PESS (t) > 0 indicates discharging.
19: if PPV (t) − PESS (t) > PFCSS (t) % PV output and ESS

discharge are greater than FCSS demand.
20: PIES−G(t) = PPV (t) − PESS (t) − PFCSS (t),PFCSS (t) = PFCSS (t) %PV

output and ESS discharge are preferentially satisfied with FCSS,
and the remaining energy is transmitted to the RPS.

21: else % PV output and ESS discharge are less than or equal to FCSS
demand.
22: PG−FCSS (t) = PFCSS (t) − PPV (t) + PESS (t),PPV−FCSS (t) = PPV (t),

PESS−FCSS (t) = −PESS (t) %The demand for
FCSS comes from PV systems, ESS and RPS.

23: end if
24: end if
25: end for

26: end for

B. PARAMETER SENSITIVITY ANALYSIS
Aiming at the model of the EV-IES, the different ranges of
random numbers in the MOSCO algorithm will affect the
experimental results of the model. Therefore, the influence
of different ranges of random numbers on the experimental
results of the EV-IES is discussed. In sensitivity analysis, the

A+

0 =

{
( max
1≤i≤n

(ϖjaij)|j ∈ j+, min
1≤i≤n

(ϖjaij)|j ∈ j−)|i = 1, · · · , n
}

A−

0 =

{
( min
1≤i≤n

(ϖjaij)|j ∈ j+, max
1≤i≤n

(ϖjaij)|j ∈ j−)|i = 1, · · · , n
} (30)
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population sizeNp = 400, the maximum number of iterations
Tmax = 600, and each algorithm are run 10 times.

In order to evaluate the solutions obtained by many-
objective optimization algorithms, this paper assesses the
superiority of the algorithm using five metrics: Spread [40],
HV [41], GD [42], IGD [43], and Runtime.

(1) HV: The volume of the region in the target space
enclosed by the obtained non-dominated solution set and
the reference point, the larger the HV value, the better the
comprehensive performance of the algorithm. HV is defined
as (33).

HV = δ(∪|S|

i=1vi) (33)

where δ denotes the Lebesgue measure, which is used to
measure the volume; |S| denotes the number of nondominated
solution sets, and vi denotes the hypervolume consisting of
the reference point and the ith solution in the nondominated
solution set.

(2) Spread: It is used to measure the distribution range
and propagation degree of the obtained non-dominated solu-
tions. The lower the spread value, the better the distribution
and diversity of non-dominant solutions. Spread is defined
as (34).

1 =

df + dl +
N−1∑
j=1

∣∣dj − d̄
∣∣

df + dl + (N − 1)d̄
(34)

where df and dl denote the Euclidean distance between the
extreme solutions and the boundary solutions of the obtained
set of non-dominated solutions; dj is the Euclidean distance
between the continuous solutions of the obtained set of non-
dominated solutions, and d̄ is the average of all dj.
(3) GD: This metric is used to assess the convergence of

the obtained solutions. GD is defined as (35).

GD =
(
∑n

j=1 d
p
j )

1/p

n
(35)

where n is the total number of Pareto solutions.
(4) IGD: This metric is a comprehensive indicator used to

assess the convergence and diversity of obtained solutions.
IGD is defined as (36).

IGD =

∑n
j=1

∣∣dj∣∣
n

(36)

(5) Runtime: the length of the operation time indicates
the computational complexity of the algorithm, and the
longer operation time indicates the higher complexity of the
algorithm.

Since the EV-IES model lacks a real Pareto frontier, the
specific values of the random numbers R1 and R2 are deter-
mined through HV and Spread values. The results are shown
in Table 2.

It can be seen from Table 2 that when the average value
of HV is optimal and the average value of Spread is subop-
timal, r ≤ 0.2 uses Equation (17) to update the population,

r > 0.2&&r ≤ 0.8 uses Equation (18) to update the popu-
lation, r > 0.8 uses Equation (19) to update the population.
When the average value of Spread is optimal, r ≤ 0.6 uses
Equation (17) to update the population, r > 0.6&&r ≤

0.8 uses Equation (18) to update the population, r > 0.8 uses
Equation (19) to update the population. Because the dif-
ference between the average values of Spread in these two
ranges is not large, the difference between the average values
of HV is large. Therefore, when solving the EV-IES model,
the random number in the MOSCO algorithm is r ≤ 0.2 uses
Equation (17) to update the population, r > 0.2&&r ≤

0.8 uses Equation (18) to update the population, r > 0.8 uses
Equation (19) to update the population. Therefore, the value
of R1 is 0.2, and the value of R2 is 0.8. The flowchart of the
MOSCO algorithm for solving the optimal scheduling of the
EV-IES is shown in Fig. 3.

FIGURE 3. The flow chart of EV-IES model solved by MOSCO algorithm.

V. CASE STUDY
Experiments are run in MATLABR2021a with the following
computer configurations: an Intel(R) Core (TM) i5-6300HQ
CPU running at 2.30 GHz and 8 GB of RAM.

A. DATA COLLECTION
Sun et al. collected the local information on sunlight intensity
and temperature, and calculated the output curve of PV panels
by the PV system model [19], as shown in Fig. 4. The peak-
to-valley tariff peak-valley time-of-use electricity pricing of
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TABLE 2. Units for magnetic properties.

the Wuhan RPS is shown in Fig. 5. During periods of high
demand in the RPS, it corresponds to the peak electricity price
for the EV-IES. Conversely, during periods of low demand,
it corresponds to the off-peak electricity price for the EV-IES.

FIGURE 4. Photovoltaic output curve.

Liu et al. [44] modeled the charging time from EVs to
fast charging stations; Liu et al. [45] fitted the final travel
end curve of EV owners through the survey data of the
whole family travel; the model of the two can be described
as Equation (37), and is normally distributed. It shows that
the traffic flow of the EV-IES conforms to the normal
distribution. The number of EV charging in each period of

FIGURE 5. Peak-valley time-of-use electricity pricing.

multiple local fast charging stations is counted, the propor-
tion is reduced, and the curve that basically conforms to the
normal distribution is fitted. The specific data of traffic flow
are shown in Fig. 6, which is used as the traffic flow of the
EV-IES in this paper.

In the EV-IES model, the priority is to meet the charging
demand of EV users in each time period. By determining the
decision variable, which is the product of the EV users of
battery SOC variation and the traffic flow, we can obtain the
charging load of the FCSS for each time period.

N (t) =



1

δN
√
2π

exp

[
−
(t − µN )2

2δ2N

]
(µN − 12) < t ≤ 24

1

δN
√
2π

exp

[
−
(t + 24 − µN )2

2δ2N

]
0 < t ≤ (µN − 12)

(37)

where µN = 17.6, σN = 3.4; t is the moment of charging.

FIGURE 6. Number of electric vehicle arrivals by time period.

B. CASE STUDY SETTING
(1) Case 1.

In this case, there is no PV and BESS in the EV-IES
model, directly connected to the RPS. It belongs to a typical
traditional charging station model. Since the FCSS does not
involve feeding power back to the RPS, objective function
F2 is positively correlatedwithF3. Therefore, in Case 1, only
objective functions F1 and F3 are optimized. This case needs
to satisfy the constraints (8)-(10) and (13).

(2) Case 2.
In this case, there is no BESS in the EV-IES model. The

power required by the model is composed of two parts. One
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part comes from the PV system, and the other part comes from
the RPS. Because Case 2 has the same problem as Case 1,
it optimizes only objective functions F1 and F3. This case
needs to satisfy the constraints (8)-(10) and (13).

(3) Case 3.
In Case 3, there is no PV in the EV-IES model. In Case 3,

there is no PV system in the EV-IES model. The primary
distinction from the EV-IES model is the absence of the
PV generation component. Case 3 is optimized for objective
functions F1,F2, and F3 because it has an ESS involving
power feedback from the storage system to the RPS. This case
needs to satisfy the constraints (7)-(16).

TABLE 3. Components of each case.

Table 3 shows the difference between cases and the EV-IES
model designed in this paper. Case 1 represents the traditional
charging station model. Case4 is the model designed in this
paper.

C. RESULTS DISCUSSION
1) ALGORITHM COMPARISON BY BENCHMARK FUNCTIONS
NSGA-III [46], an Adaptive-reference-point-based Nondom-
inated Sorting Genetic Algorithm (ANSGA-III) [47], a
Grouped and Linked Mutation Operator (GLMO) algorithm
[48], a Theta Dominance based Evolutionary Algorithm
(t-DEA) [49], and NSGA-II [50] are compared with the
MOSCO algorithm to verify the effectiveness. In these six
algorithms, the population sizeNp = 400, and each algorithm
are run 10 times in this paper.

Because the DTLZ series of functions have real Pareto
fronts, we use IGD and GD to evaluate the simulation results
of these six algorithms. Detailed data on the IGD and GD
obtained by the six algorithms are provided in Tables 4 and 5.

Based on the data in Tables 4 and 5, it can be observed that
the MOSCO algorithm outperforms the other five algorithms
in terms of IGD and GD values in most cases, includ-
ing best, average, and worst values. By analyzing the GD
and IGD values, it can be demonstrated that the algorithm
exhibits excellent convergence and solution set diversity. This
indicates that the MOSCO algorithm excels in effectively
addressing many-objective problems. The reason why the
MOSCO algorithm excels is because it cleverly incorporates
both global search and Levy strategies to enhance its per-
formance. The global search strategy helps the algorithm
rapidly discover optimal solution sets, thereby improving
convergence speed. Meanwhile, the Levy strategy effectively
prevents the algorithm from getting trapped in local optima.
As a result, the MOSCO algorithm not only demonstrates

remarkable convergence but also possesses the capability to
avoid falling into local optima. It shows that the MOSCO
algorithm has good solving ability.

2) ALGORITHM COMPARISON BY THE EV-IES MODEL
NSGA-III, ANSGA-III, GLMO, t-DEA, and NSGA-II are
compared with the MOSCO algorithm to verify the effec-
tiveness. Fig. 7 shows the results of the six algorithms for
solving the optimal scheduling model of the EV-IES. In these
six algorithms, the population size Np = 400, the maximum
number of iterations Tmax = 600, and each algorithm are run
10 times in this paper.

Since the designed EV-IES model does not have a real
Pareto front, GD and IGD cannot be used to evaluate the
optimized scheduling results of the EV-IES. Therefore, three
indicators, HV, Runtime, and Spread, are used to evaluate the
optimal scheduling results of the six algorithms.

The comparison of Spread, HV, and Runtime obtained
by NSGA-III, ANSGA-III, GLMO, t-DEA, NSGA-II, and
the MOSCO algorithm is shown in Tables 6, 7, and 8,
respectively.

As can be seen from the spread evaluation index in Table 6,
no matter the ‘‘Best’’, ‘‘Mean’’ and ‘‘Worst’’ Spreads, the
MOSCO algorithm solves the non-dominated solution set
with a smaller Spread value than the other five algorithms.
It shows that the distribution of the non-dominated solution
set solved by the MOSCO algorithm is more uniform. As
shown in the HV evaluation index in Table 7, the MOSCO
algorithm has the best ‘‘Best’’ and ‘‘Mean’’ HV evaluation
indices among the six algorithms, with the ‘‘Worst’’ HV value
index being second only to the NSGA-II algorithm. As shown
in the runtime evaluation index in Table 8, The runtime of
theMOSCO algorithm is second only to NSGA-II, indicating
that the MOSCO algorithm exhibits excellent convergence. It
proves that the MOSCO algorithm has good comprehensive
performance.

Based on the HV, Spread, and running time results of the
MOSCO algorithm and the other five algorithms for solving
the Pareto solution set of the EV-IES model, it shows that
the Pareto solution set solved by the MOSCO algorithm is
superior to the other five algorithms.

3) ANALYSIS OF MODEL RESULTS
(1) Case 1

In case 1, the decision variable is the SOC change of the EV
battery of FCSS users. The objective functions of the optimal
operation scheme in case 1 are as follows:F1 = 1981.96yuan
and F3 = 3615.87kg. The hourly load profile of the FCSS is
depicted in Fig. 8. When compared to the optimal operating
scheme in case 4, the daily revenue in case 1 has decreased by
21.86%,while pollutant emissions have increased by 25.30%.

(2) Case 2
In case 2, the output curve of the PV system is shown

in Fig. 4, and the decision variables are the same as those
in case 1. The objective functions of the optimal operation
scheme in case 2 are as follows: F1 = 2306.26yuan and
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TABLE 4. GD obtained by different algorithms.
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TABLE 5. IGD obtained by different algorithms.
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FIGURE 7. The Pareto solution sets obtained by solving the EV-IES using
six different algorithms. (I)Results of MOSCO; (II) Results of ANSGA-III;
(III) Results of NSGA-III; (IV) Results of GLMO; (V) Results of t-DEA;
(VI) Results of NSGA-II.

TABLE 6. Comparisons of the spread indicator.

TABLE 7. Comparisons of the HV indicator.

F3 = 3104.53kg. When compared to the optimal operating
scheme in case 4, the daily revenue in case 2 has decreased by
10.00%, while pollutant emissions have increased by 7.58%.
The hourly load profiles of the RPS and the FCSS are illus-
trated in Fig. 9.

(3) case 3
In case 3, the decision variables encompass the SOC

change of the ESS and the EV battery of FCSS users. The
Pareto solutions are illustrated in Fig. 11. The objective
functions of the optimal operation scheme in case 3 are as

TABLE 8. Comparisons of the runtime indicator.

FIGURE 8. The power load of fast charging service station.

FIGURE 9. The power load of FCSS and regional power systems.

follows: F1 = 1981.96yuan,F2 = 833.80kWh, and F3 =

3615.87kg. When compared to the optimal operating scheme
in case 4, the daily revenue in case 3 has decreased by 17.41%,
the exchanged energy between the RPS and the EV-IES has
increased by 5.69%, and pollutant emissions have increased
by 8.69%. The hourly input/output values for ESS, RPS, and
FCSS are depicted in Fig. 10.

FIGURE 10. The output power of FCSS, ESS and regional power systems.

(3) case 4
This study designs a set of EV-IESmodels to quantitatively

analyze the hourly subsystem and RPS energy flows. Based
on the collected data for the experimental simulation, the
optimization model is solved by the MOSCO algorithm, and
the Pareto solution is obtained, as shown in Fig. 12.

Since only one safe and stable operation scheme is required
for the EV-IES. Therefore, the ETOPSIS method is applied to
determine the optimal operation scheme of the EV-IES from
the Pareto solutions. In the optimal operation scheme, the
daily revenue of the EV-IES is 2536.33 yuan, the exchanged
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FIGURE 11. MOSCO algorithm is used to solve the pareto solution set of
case3.

FIGURE 12. MOSCO algorithm is used to solve the pareto solution set of
case4.

energy between the RPS and the EV-IES is 788.91 kWh, and
the pollutant emission is 2885.87 kg. The hourly input/output
values of the ESS, the RPS, and the FCSS are shown in
Fig. 13. (I).

FIGURE 13. The output power of FCSS, ESS and regional power system.
(I)Results of ETOPSIS; (II)Results of maximum daily return.

By combining Fig. 13 and Fig. 5, it can be observed that
during off-peak hours when electricity prices are low, EV-IES
purchases electricity from the RPS and stores it in the ESS to
reduce electricity procurement costs. However, during peak
hours when electricity prices are high, priority is given to

meeting the operational needs of EV-IES. If the combined
electricity generated by PV and ESS satisfies the opera-
tional needs of EV-IES, the surplus electricity is fed back
to the RPS; otherwise, it reduces the amount of electricity
purchased during high-price peak hours. This approachmaxi-
mizes the daily revenue of EV-IES, reduces the peak-to-valley
difference in electricity demand after EVs are connected to
the grid, and minimizes the impact on the safety and stability
of the RPS. In Fig. 13, the comparison between the optimal
operational scheme and the maximum daily revenue scheme
shows that the total electricity charged fromESS to RPS in the
optimal operational scheme is less than in the maximum daily
revenue scheme, thereby satisfying the objective function of
minimizing pollutant emissions.

From Fig. 13. (I), it can be seen that the ESS is in a
discharged state during eight time periods (9, 11-12, 19-22,
24), while in the remaining time periods, the energy in the
ESS is provided by PV and RPS. During four time periods
(9, 11, 12, 22), the entire system feeds back electricity to the
RPS, and the RPS provides energy to the ESS or the FCSS
during the remaining time periods. At the same time, when
the ESS is charging, the PV output prioritizes meeting the
energy needs of the FCSS and ESS, with any surplus energy
being fed back to the RPS. When the ESS is discharging, the
optimization of PV system output meets the energy needs of
the FCSS. If there is excess energy, it is fed back to the RPS.
If the energy is insufficient to meet the FCSS requirements,
the remaining energy is provided by the RPS.

It is evident from the time periods of ESS discharge and
when EV-IES feeds back electricity to the RPS that these
periods fall within high electricity price hours, while the
ESS charging periods correspond to non-peak electricity
price hours. This helps reduce electricity procurement costs,
increase economic returns during high-price hours, and max-
imize the revenue of EV-IES.

In summary, by comparing the emissions of pollutants for
each scenario, as shown in Fig. 14, it can be observed that
case 4 has the lowest total emissions of pollutants. Addition-
ally, the daily revenue of the EV-IES is also the highest among
the four cases, with a value of 2536.33 yuan. Furthermore,
it can be seen that in the traditional case (case 1), the pollutant
emissions in each period are greater than zero, while in case 2,
pollutant emissions are zero in the 10th and 11th time periods.
In case 3, pollutant emissions are zero in the 11th and 12th
time periods, and in case 4, pollutant emissions are zero in
the 9th, 11th, 12th, and 22nd time periods. Moreover, in cases
3 and 4, pollutant emissions during the low-price electricity
periods are significantly higher than in cases 1 and 2, while
during the high-price electricity periods, pollutant emissions
in cases 3 and 4 are significantly lower than in cases 1 and 2.
This phenomenon is a result of the intervention of PV and
ESS. The PV reduces the EV-IES of purchased electricity
from the RPS, thereby increasing daily revenue, reducing pol-
lutant emissions, and decreasing energy exchange between
the RPS and the EV-IES. The ESS purchases electricity
during low-price electricity periods and sells electricity or
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reduces electricity purchases during high-price electricity
periods, further increasing daily revenue for the EV-IES.

FIGURE 14. Pollutant emissions and total pollutant emissions of the
EV-IES for each period in each case.

VI. CONCLUSION
In order to achieve energy conservation and emission reduc-
tion, the widespread adoption of EVs is considered an impor-
tant means. However, directly connecting a large number
of EVs to the grid can increase the charging load on the
RPS, which may affect the stability and safe operation of the
system. Therefore, this paper designs an EV-IES that includes
a PV system, an ESS, and an FCSS. It optimizes three objec-
tives: maximizing the daily revenue of the EV-IES, minimiz-
ing the energy exchange between the RPS and the EV-IES,
and minimizing pollutant emissions. Additionally, a MOSCO
algorithm is proposed and validated through both bench-
mark functions and model-based approaches. Furthermore,
three comparative cases are designed, and the proposed EV-
IES model increases daily revenue by 27.97% and reduces
pollutant emissions by 25.29% compared to traditional charg-
ing stations (Case 1). This study validates the feasibility of the
EV-IES model, with future work focusing on addressing ESS
battery losses.
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