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ABSTRACT Anomaly detection is critical in the smart industry for preventing equipment failure, reducing
downtime, and improving safety. Internet of Things (IoT) has enabled the collection of large volumes of data
from industrial machinery, providing a rich source of information for AnomalyDetection (AD). However, the
volume and complexity of data generated by the Internet of Things ecosystemsmake it difficult for humans to
detect anomalies manually. Machine learning (ML) algorithms can automate anomaly detection in industrial
machinery by analyzing generated data. Besides, each technique has specific strengths and weaknesses based
on the data nature and its corresponding systems. However, a large portion of the existing systematic mapping
studies on AD primarily focus on addressing network and cybersecurity-related problems, with limited
attention given to the industrial sector. Additionally, the related literature do not cover the challenges involved
in using ML for AD in industrial machinery within the context of the IoT ecosystems. Therefore, this paper
presents a systematic mapping study on AD for industrial machinery using IoT devices andML algorithms to
address this gap. Our primary objective is to investigate the use of ML models for anomaly detection within
an industrial setting, particularly within IoT ecosystems. The study comprehensively evaluates 84 relevant
studies spanning from 2016 to 2023, providing an extensive review of AD research. Our findings identify
the most commonly used algorithms, preprocessing techniques, and sensor types. Additionally, this review
identifies application areas and points to future challenges and research opportunities.

INDEX TERMS Anomaly detection, IoT ecosystems, machine learning, mapping study.

I. INTRODUCTION
In recent years, many tasks previously performed by humans
have been automated through smart technologies. In the
Smart Industry or Industry 4.0, for example, these tech-
nologies have made it possible to monitor production lines
and detect potential problems before they become serious,
leading to fewer delays and increasing productivity [1], [2].
These industries are constantly present in our daily lives
and disruptions can negatively affect productivity and cause
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economical losses. Generally, these disruptions come from
various types of unexpected and non-standard behaviors that
can occur in these environments, known as anomalies [3].
In industrial machinery, anomalies can occur due to equip-
ment malfunctions, environmental conditions, and changes
in operating conditions. Therefore, detecting these anomalies
as early as possible is essential to prevent equipment failure,
reduce downtime, and minimize repair costs [3].
IoT ecosystems have enabled the collection of large

volumes of data from industrial machinery, providing a
rich source of information for anomaly detection [4]. These
ecosystems are composed of sensors and monitoring systems
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that can collect data such as temperature, pressure, vibration,
and power consumption. This data enables engineers and
specialists to monitor the health of industrial machinery
in real-time and take immediate action to diagnose and
address the underlying problem before it causes a significant
disruption to the production process. However, the volume
and complexity of data generated by IoT ecosystems make it
difficult to detect anomalies manually, increasing the number
of corrective and preventive maintenance. ML algorithms
can help automate the process of AD by analyzing the data
generated by these environments [5]. Despite the fact that
there are several ML techniques used for AD, each technique
has its strengths and weaknesses and can be used depending
on the nature of the data and the specifics of the industrial
contexts.

Most of the current systematic mapping (SM) study on
AD is in Network Anomaly Detection (NAD), considering
the cybersecurity context [6], [7], [8]. They are widely
used for fraud detection, network security breaches, and
environmental monitoring. Very few of them have focused
on AD in the industry [9], [10]. In [9], the authors
applied a systematic literature review to identify frameworks,
architectures, and tools in the area of predictive maintenance.
Similarly, Zonta et al. [10] present a survey, discussing the
current challenges and limitations in predictive maintenance
and proposing a new taxonomy to classify this research
area considering Industry 4.0. However, to the best of our
knowledge, no related work presents and discusses the
challenges in using ML for the detection of anomalies in
industrial machines using IoT.

Considering these issues and challenges described above,
and the growing acknowledgment of the necessity for AD
solutions, a systematic mapping study on the AD topic
is highly necessary. A mapping study offers appealing
advantages, when compared to other review methods, such
as a Systematic Literature Review (SLR), or a traditional
narrative review. First, an SLR generally provides a deep
dive into a particular question, often evaluating the quality
of the studies in detail, while a SM offers a broader view,
helping to understand general trends and challenges in a new
field [11]. Second, while traditional reviews are insightful,
they may lack the rigorous methodological approach of a
SM or an SLR, leading to potential biases in the covered
literature. Therefore, this paper presents a SM of AD for
industrial machinery using IoT devices and ML algorithms
conducted between October 2022 and January 2023. In this
study, 84 papers dating from 2016 to 2023 are evaluated. This
SM aims to provide a comprehensive review of AD research,
including an analysis of current methodologies, a synthesis
of evidence, an identification of applications, a discussion of
research issues, and an identification of future challenges.

This mapping study provides insights into key aspects of
AD research in the context of industrial machinery, address-
ing the following questions: (i) What type of machinery is
most commonly monitored and why? (ii) What are the types
of sensors and variables employed for detecting anomalies?

(iii) What are the types of machine learning techniques used
for anomaly detection in industrial machinery? (iv) How is
the anomaly detection method computed and evaluated? In
this way, this work can help to direct future efforts regarding
AD solutions, as well as promote a discussion about AD
studies, their implications, and challenges for the future.

The remainder of the paper is organized as follows.
Section II presents essential background concepts and exist-
ing reviews regarding the AD field. Section III introduces
the protocol used to conduct the research. Section IV
presents the findings for the established research questions.
Section V presents the open challenges. Section VI presents
the limitation of this mapping study. Finally, Section VII
presents the conclusions, the limitations, and the future work
for this study.

II. BACKGROUND AND RELATED WORK
In this section, we introduce key background concepts
relevant to the industrial context and provide an overview of
related literature while critically comparing it with our work.

A. BACKGROUND
1) INTERNET OF THINGS
IoT is commonly seen as a network for data exchange
among machines, primarily driven by consumer demands,
with a focus onmachine-to-user interactions and client-server
dynamics [12]. On the other hand, Industrial IoT (IIoT), a cru-
cial concept in Industry 4.0, centers on connecting industrial
assets, such as machinery and control systems, to business
processes and information systems. The incorporation of IoT
devices enhances productivity by enabling connections and
data exchange within production systems [13]. Furthermore,
IIoT allows cost-effective upgrades of existing industrial
infrastructure by adding sensors to older equipment [14].

When it comes to data volume, IIoT frequently
involves extensive data exchanges, facilitating machine
learning-based analysis and maintenance enhancements. For
instance, Ayvaz and Alpay [15] exemplify this approach,
utilizing a diverse array of built-in IoT sensors that transmit
a substantial volume of data via the MQTT protocol for
ML-based anomaly detection. However, it is worth noting
that IIoT applications often face constraints in terms of power
and computing resources [16]. In our manuscript, we provide
an overview and rationale regarding the types of sensors and
machinery commonly utilized in the industrial domain.

2) MACHINE LEARNING AND ANOMALY DETECTION
Machine learning is a tool used to enable computers to
perform complex tasks like prediction, diagnosis, planning,
and recognition. The success of ML relies on the availability
of high-quality data and large datasets for algorithm training,
both of which have become more readily accessible in
the industrial context following the advent of IIoT [17].
ML techniques can be classified in supervised, unsupervised,
and reinforcement learning [18]. In our study, we observe the
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application of both supervised and unsupervised approaches
to anomaly detection. However, unsupervised algorithms
present an attractive advantage by not necessitating labeled
data for training. This is particularly advantageous for
detecting faults in machinery, given that fault data tend to be
infrequent and sparse.

Figure 1 provides an overview of a practical application
of IIoT and ML within an industrial context for anomaly
detection and predictive maintenance. In this application,
IIoT devices can be considered as various sensors with
integrated local connectivity. Optionally, some of the gen-
erated data can be processed on devices close to the IIoT
sensors, known as edge processing. This can reduce the
amount of data sent to the cloud, increase the detection speed
and reduce the computational cost of anomaly detection.
However, our study indicates that many advanced anomaly
detection algorithms require substantial computational power
and, therefore, necessitate further optimization to effectively
implement edge processing. The gathered data is then
typically stored on a cloud data center and used to train AD
algorithms. Many ML algorithms require extensive training
on large datasets. Following the training process, the AD
models can be deployed either at the edge or in the cloud for
anomaly detection. Finally, real-time data can be streamed to
the cloud for analysis or processed directly on edge devices
to detect anomalies.

FIGURE 1. An overview of the application of IIoT and ML for anomaly
detection and predictive maintenance in the industry.

B. RELATED WORK
In recent years, there has been considerable interest in
AD for industrial machinery using IoT devices and ML.
However, the majority of studies have primarily focused
on network anomaly detection. To position our paper and
emphasize its contributions, we start by presenting a concise
introduction to mapping studies that concentrate on network
anomaly detection. Subsequently, we provide a summary of
previous research on surveys conducted on AD and predictive
maintenance in the industry, employing ML techniques.
Finally, we present a comparative analysis of our work in
relation to these studies, considering factors such as scope
and evaluation methods.

There is a significant body of literature comprising
systematic mapping studies that specifically concentrate on
NAD [19], [20]. Ahmed et al. [6] explore various NAD
techniques and elaborate on the use of different categories
of detection methods as solutions for this problem. The
authors also discuss the limitations of using publicly available
intrusion detection datasets and provide a comparison of
the effectiveness of presented AD techniques based on
specific criteria. In a more recent work, Eltanbouly et al. [7]
examine ML algorithms applied to NAD and analyze the
performance of the surveyed papers. The study provides an
overview of their main positive and negative characteristics,
along with numerical analyses of algorithms learned on
the same datasets. Wang et al. [8] discuss different types
of ML approaches in the context of AD, comparing their
merits within the scope of NAD. The authors also address
the key challenges faced in detecting various anomalies
in networks with varying complexities. Additionally, they
present use cases for different types of networks, considering
IoT networks, though with limited scope.

Very few mapping studies have focused on AD and
predictive maintenance in the industry. Gaddam et al. [21]
investigate AD techniques to identify sensor faults and
outliers in the IoT context, without specific emphasis
on industrial equipment. Their survey comprehensively
describes the primary sources of sensor outliers within
the IoT environment and discusses detection models that
are suitable for IoT systems. The authors further provide
a comparative analysis of these techniques, highlighting
their respective strengths and weaknesses. With a focus on
Industry 4.0, Kamat and Sugandhi [22] provide a discus-
sion about the main challenges associated with traditional
equipment maintenance strategies in the manufacturing
industry. As a way to address this problem, the study
suggests the adoption of AD in predictive maintenance as
a more suitable approach for handling the specific data
characteristics present in this environment. Additionally, the
paper briefly explores alternative approaches to AD found
in the literature and discusses publicly available datasets
relevant to the manufacturing scenario.

Dalzochio et al. [9] present important considerations
regarding the application of predictive maintenance, such as
the abundance of data, the criticality of the equipment, the
need for redundancy and the availability of failure-related
data for modeling purposes. The researchers address several
key research questions, including the challenges associated
with applying ML to predictive maintenance, commonly
employed ML techniques in this context, and the utilization
of ontologies in predictive maintenance scenarios. In terms
of ML techniques, the analyzed works were grouped into
three main categories: (i) based on artificial neural networks
(ANN); (ii) based on deep learning (DL); and (iii) based on
other ML approaches, such as k-nearest neighbors (kNN),
support vector machines (SVM), and random forest (RF).
The authors suggest that different ML models are better
suited for AD/fault classification and prognostics. While
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classification or clustering ML models can address AD and
fault classification, regression models such as autoregressive
integrated moving averages (ARIMA) are better suited
for prognostics tasks. Furthermore, the paper provides a
concise exploration of the use of ontologies in predictive
maintenance, aiming to facilitate decision-making processes.

Zonta et al. [10] present a systematic literature review
that explores initiatives related to predictive maintenance in
the context of Industry 4.0. The authors analyze 47 articles
and, as the main contribution, propose a taxonomy for
predictive maintenance in the context of Industry 4.0.
Schwendemann et al. [23] conduct a survey that specifically
explores ML techniques for predictive maintenance of bear-
ings in grinding machines. The selected works encompass
a range of approaches, including ANNs, Hidden Markov
Models (HMMs), and SVMs.

Kang et al. [24] conduct a systematic literature review that
specifically examines the applications of ML in production
lines and their components. Their analysis included 39 pri-
mary studies that predominantly concentrated on quality
control within the production lines. The most frequently
utilized dependent variables in the ML methods were
identified as Fail/Pass indicators, physical properties of
materials, and object dimensions.

With a focus on the railway industry, Davari et al. [25]
present a survey on data-driven predictive maintenance.
Within this context, they emphasize real-time AD from time-
series data and the need for automatic reasoning capabilities
to explain causality as major challenges faced by the industry.
Nor et al. [26] present an analysis with a specific focus on
explainable artificial intelligence (XAI) applied to prognos-
tics and health management (PHM) of industrial assets. The
authors adopt the preferred reporting items for systematic
reviews and meta-analyses (PRISMA) methodology in their
study. They analyzed a total of 35 selected works, with
13% of them incorporating an AD approach. It is worth
highlighting that the analyzed studies primarily feature case
studies based on real industrial data. This demonstrates the
practical application of AI models in industrial settings and
contributes to an increasing level of confidence in adopting
such models within the industry.

Our work distinguishes itself from the related literature
above for the following reasons. Firstly, AD-based predictive
maintenance is recognized as a promising area in various
broader literature reviews. Thus, our work offers a state-of-
the-art review with a focused approach on the use of ML
techniques for detecting anomalies in industrial machinery.
To the best of our knowledge, this is the first mapping
study to concentrate specifically on anomaly detection in the
industrial context. Secondly, unlike previous studies, we do
not limit our analysis to specific industrial machinery, aiming
to provide a more comprehensive perspective on existing
industrial practices. As a result, our work seeks to offer an up-
to-date review of the state-of-the-art, with a specific emphasis
on the application of machine learning methods for industrial
anomaly detection. Finally, the present work incorporates the

most recent findings from the literature, ensuring that our
review is current and reflective of the latest advancements in
the field. The points mentioned above are further elaborated
in Table 1, where our work is compared to the related
literature. The ‘‘Type’’ column denotes the methodology
of the referenced research. ‘‘Survey’’ generally implies a
more qualitative review. ‘‘SLR’’ indicates a more rigorous
and structured approach to reviewing existing literature,
whereas ‘‘SM’’ offers are. The ‘‘Research Period’’ column
indicates the time span the study covered. The ‘‘IoT’’ column
indicates the extent to which the study considered the IoT.
‘‘Yes’’ indicates the study contains significant focus on IoT
considerations, ‘‘Partial’’ implies limited inclusion of IoT in a
broader focus of the research, and ‘‘No’’ means that the study
did not focus on IoT to any meaningfull extent. Finally, the
‘‘Industrial Application’’ column indicates whether the study
has a wider and more general application within the industry,
or a narrower focus like ‘‘Beargins’’ or ‘‘Railway’’.

TABLE 1. A comparison of related works with the present study.

III. SYSTEMATIC MAPPING STUDY PROCESS
Our systematic mapping was guided by the methodology
proposed by Petersen et al. [27], which we employed to
identify articles related to the use of ML techniques for
detecting anomalies in industrial machinery with the aid of
IoT devices, as illustrated in Figure 2.

FIGURE 2. Steps of the adopted protocol.
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Step 1: Given the constantly growing volume of data
generated by industrial machinery, the use of ML models has
become increasingly significant in detecting anomalies and
enabling preventive maintenance, as opposed to corrective
maintenance. The primary objective of this SM is to
investigate the application of ML models for predicting
anomalies in industrial machinery in the context of IoT
ecosystems. Specifically, this study aims to identify the most
commonly adopted machinery, explore the types of data
and sensors utilized for AD, identify the computation and
evaluation methods used for AD, and analyze the challenges
and opportunities associated with implementing ML-based
AD systems in industrial settings. The insights gained from
this research will be critical in assessing the current state
of this field and providing guidance for future research
endeavors in this domain.
Step 2: Our SM research began by identifying key

Research Questions (RQs) aimed at exploring the current
state of AD in industrial machinery using ML algorithms and
sensors. The following RQs were adopted for this SM:

• RQ1: What type of machinery is most commonly
monitored and why?

• RQ2: What are the types of sensors and variables
employed for detecting anomalies?

• RQ3:What are the types of machine learning techniques
used for anomaly detection in industrial machinery?

• RQ4: How is the anomaly detection method computed
and evaluated?

Step 3: To compile primary research, we employed
automatic database searches utilizing a search string. The
following procedures were undertaken to elaborate the search
phrase for the automatic search [28], [29]: (i) extract phrases
from the study questions; (ii) find alternate spellings and
synonyms; (iii) validate the keywords; and IV. combine
search strings using Boolean operators (OR, AND). The
search string was ((‘‘Anomaly Detection’’ OR ‘‘Anomalous
Behavior’’) AND (‘‘IoT’’ OR ‘‘Internet of Things’’ OR ‘‘Sen-
sors’’) AND (‘‘Machine Learning’’ OR ‘‘Deep Learning’’ OR
‘‘Artificial Intelligence’’)).
Step 4: The following digital libraries were considered as

the primary sources for our research: IEEE Xplore,1 ACM
Digital Library,2 Science Direct3 and Web of Science.4

Step 5.: As numerous papers unrelated to our research
topics may be found, we have established specific inclusion
and exclusion criteria. These criteria are intended to narrow
down our search and ensure that the identified literature is
relevant to our assessment research. For the inclusion criteria,
we focused on papers published within the last ten years
that explicitly address the AD using ML and IoT sensors in
their abstracts. We excluded, on the other hand, duplicate,

1IEEExplore.ieee.org/Xplore/home.jsp
2https://dl.acm.org
3https://www.sciencedirect.com/
4https://www.webofscience.com

unavailable, or foreign-language articles, as well as editorials,
posters, tutorials, and secondary or tertiary articles.
Step 6: After applying the inclusion and exclusion criteria

and utilizing the search string in the digital libraries,
we successfully located the primary studies.
Step 7: We extracted pertinent information from the

primary studies by thoroughly reading the entire paper and
answering the RQs.
Step 8: To classify and organize the articles in accordance

with our research questions stated in Step 2, an overview of
all articles is provided in this stage (see Subsection IV-A).
Step 9: Finally, in Section IV, we present the responses we

found to the RQs posed in Step 2, which details the current
state of the literature regarding the utilization of ML and
sensors to identify anomalies in industrial machinery.

IV. RESULTS AND DISCUSSION
To provide a comprehensive understanding of AD techniques
in industrial machinery, we begin with an overview of the
primary studies conducted in this field. We then present
specific issues related to AD, such as the types of machinery
commonlymonitored, the sensors and variables employed for
detecting anomalies, the types ofML techniques used for AD,
and how the AD methods are computed and evaluated. This
approach provides a solid understanding of the techniques
and challenges involved in detecting anomalies in industrial
machinery.

A. OVERVIEW OF THE PRIMARY STUDIES
The number of studies identified by the search string in the
search sources, as well as the number of studies following
the application of the inclusion and exclusion criteria, are
presented in Table 2. Initially, 8966 articles were retrieved
from the 4 databases. After removing duplicates, the number
decreased to 8037 articles. Through the application of the
inclusion and exclusion criteria, 84 articles were selected for
thorough reading and to address the research questions. This
represents only 0.936% of all articles found during the search,
emphasizing the importance of applying rigorous selection
criteria to identify relevant studies.

TABLE 2. Search results obtained before and after applying the inclusion
and exclusion criteria.

Among the databases searched Science Direct yielded the
highest number of selected works, with 40 articles. This was
followed by Web of Science with 27, IEEE Xplore with 11,
and finally ACM DL with only 6 articles. In terms of the
proportion between the number of selected articles and the
original search, Web of Science achieved the best result
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with approximately 2.16% (27/1249) of the selected base,
followed by IEEE Xplore with 1.12% (11/979).

Based on the selected articles, Figure 3 presents the
number of primary studies in relation to the year of
publication. Although our search aimed to include articles
from 2012 onwards, the first selected study was from 2016.
Notably, no articles were selected for 2017 and 2018.
However, we observed a growing trend in the literature
regarding the detection of anomalies in industrial machinery
using sensors and ML from 2019 onwards. In 2019, 9 studies
were selected, increasing to 21 in 2020, 28 in 2021, and
reaching 39 in 2022. It is worth mentioning that even though
our search was conducted up until November 2022, some
studies have already been published in 2023, indicating that
research in this area is ongoing.

FIGURE 3. Number of primary studies by publication year.

Based on the type of publication, journals represent
the majority, comprising 80% of primary studies, while
conferences account for the remaining 20%. We can also
examine the trends in publication venues over the years (see
Figure 4). The first publication, in 2016, was presented at a
conference. By 2019, the proportion of journal publications
had increased significantly, with 55% of the publications
(5 papers) being in journals, and 45% (4 papers) in
conferences. In the subsequent years, the number of journal
publications continued to rise, with 12 papers in 2020, 18 in
2021, and 28 in 2022. This trend could be attributed to
multiple factors, including the pandemic, which prompted
researchers to shift their focus to publishing in journals rather
than presenting at conferences. Additionally, the natural
progression and development of research studies over time
may have contributed to the increase in journal publications.

Several journals have published a significant number of
works on the topic of thisMS, with SENSORS being the most
productive with 9 publications, followed by Procedia CIRP
with 5 publications. Expert Systems with Applications, IEEE
Access, Journal of Manufacturing Systems, and Mechanical
Systems and Signal Processing also had a substantial output,
each with 4 publications. All of these journals have a notably
high impact factor. It is worth mentioning that none of
the publications were presented at the same conference,

FIGURE 4. Number of primary studies by year and publishing type.

highlighting the diversity of the research presented and the
scope of the academic community.

B. WHAT TYPE OF MACHINERY IS MOST COMMONLY
MONITORED AND WHY?
To answer the above research question, we listed the
articles that clearly indicate the type of machinery under
evaluation. From this selection, we created 11 groups based
on categorical proximity and their use in the articles (e.g.,
articles that mentioned pumps also mentioned valves and
hydraulic systems. In these cases, we considered hydraulic
systems). The number of works gathered in each group is
shown in Figure 5. The machinery that did not fit into any
existing group was not used more than once, were placed in a
group called ‘‘others’’. For this analysis, studies in which the
monitored machinery could not be identified were excluded.
Based on the number of occurrences in each group, we ranked
the groups to observe the types of machinery most monitored
in the primary studies.

FIGURE 5. Number of primary studies by the type of industrial machinery.

As shown in Figure 5, the three primary types of machinery
used for anomaly detection are milling and cutting tools,
hydraulic systems, and bearings. Several studies conducted
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across these equipment groups have implemented predictive
maintenance techniques with the goal of achieving various
benefits. These benefits include reducing the amount of lost
production, improving the quality of products, minimizing
the costs associated with unexpected equipment downtime,
and increasing overall production efficiency. Furthermore,
the implementation of predictive maintenance can also lead
to an improvement in the lifespan of the machinery [30], [31],
[32], [33].

In the category of milling and cutting tools, numerous
studies concentrate on assessing the effects of wear and
tear on their surfaces. These studies are particularly relevant
for machinery such as Computer Numerical Control (CNC)
routers, milling machines, lathes, and hot rolling mills, which
frequently handle heavy-duty tasks involving cutting metal,
ceramics, and other hard materials. The nature of these tasks
makes these tools susceptible to significant wear, which is
a primary reason for continuous monitoring [30], [31], [32],
[33], [34], [35], [36], [37]. As these milling and cutting tools
wear out due to intensive usage, they can directly impact
the quality of manufactured products and even cause damage
to the machinery itself. In some cases, routine maintenance
involves replacing these worn-out parts, even when it might
still be possible to continue using them [30].
Hydraulic systems consist of several components, such

as accumulators, coolers, valves, pumps, compressors, and
more. Depending on the application, these systems can
operate either as standalone units or as part of larger systems.
For example, in aviation, hydraulic systems play a crucial
role in controlling mechanical parts of aircraft, while in
other applications, they may be integrated into cooling
systems [38]. It is important to note that some hydraulic
systems operate under high pressure and deal with toxic
or flammable fluids, emphasizing the criticality of proper
maintenance for safety. Traditionally, manual monitoring of
these hydraulic systems has been employed, relying on the
extensive knowledge and judgment of operators. However,
this approach can be subjective andmay lead to inefficiencies.
Therefore, researchers advocate for the adoption of automatic
monitoring techniques using IA models to detect anomalies
in hydraulic systems [39], [40], [41], [42].
Bearings are the third most monitored component in

industrial machinery. Due to their critical role in sup-
porting rotating parts and reducing friction, monitoring
the condition of bearings is of utmost importance to
ensure the smooth operation and longevity of various
machines and equipment [43], [44]. For instance, a recurrent
issue arises when wind turbines operate at low speeds,
subjecting the bearings to significant stress due to the
considerable weight of the turbine’s components [45].
Predicting abnormal behavior in bearing wear is essential
in such scenarios. Furthermore, in this mapping study,
several other machinery were identified, including electric
motors and industrial robots. However, milling and cutting
tools, hydraulic systems, and bearings were found to be
prevalent.

Given their extensive use in almost all industrial envi-
ronments, it is imperative for these machines to operate
smoothly and consistently even under demanding conditions
for extended periods. Consequently, predicting anomalous
behavior in industrial machinery is essential to avoid
negative impacts on productivity, as it allows for the early
detection of potential faults and the implementation of
preventive maintenance measures. It is worth highlighting
that many of the analyzed studies do not focus on evaluating
specific machinery but rather on exploring new ML and DL
approaches using datasets containing data related to various
machinery types. Nonetheless, they contribute to the overall
understanding of AD techniques and their applicability in the
context of industrial machinery.

C. WHAT ARE THE TYPES OF SENSORS AND VARIABLES
EMPLOYED FOR DETECTING ANOMALIES?
The majority of the primary studies focused on ADmodeling
and, as a result, lacked detailed technical information on the
types of sensors used for machinery monitoring. This focus
on AD over the whole system monitoring pipeline, which
includes data acquisition, processing, and information deliv-
ery, limits the depth of our analysis. Moreover, many studies
validated the proposed methodologies using well-established
datasets, such as C-MAPSS5 [46] and the NASAAmes Prog-
nostic Data Repository6 [30], [32], [47], [48]. While these
datasets serve as benchmarks for experimental purposes, it is
important to test these methodologies in real-world industrial
settings for practical applications. Despite these limitations,
the majority of the studies did reveal the variables used for
detecting AD. We have categorized these variables based on
the type of sensor used, such as vibration, electric current,
temperature, noise, pressure, among others. Table 3 lists the
studies that employed each sensor type, either individually or
in combination with each other.

Out of the 84 examined papers, 24 relied on a single type
of sensor for detecting AD. Ten of these studies exclusively
used vibration sensors [33], [43], [47], [49], [50], [51], [52],
[53], [54], [55], [56], [57], [58], [59]. Seven studies depended
solely on noise sensors [39], [40], [41], [42], [60], [61], [62],
[63]. Five papers utilized only electric current sensors [38],
[68], [69], [70], [71], while two used only temperature sensors
[83], [84]. Finally, two papers solely relied on pressure
sensors [88], [89]. This suggests that roughly 28.57% of the
selected studies focus on a single type of sensor.

While there are certain cases where a single sensor may
be sufficient, there are potential benefits in using multiple
sensor types in the field of AD [110]. As an example, multiple
sensors can be used to infer new information about the
physical system under observation. Through the combined
analysis of data from these varied sensors, one can extrapolate
novel information not directly observed. This technique is

5https://data.nasa.gov/dataset/C-MAPSS-Aircraft-Engine-Simulator-
Data/xaut-bemq

6https://www.nasa.gov/content/prognostics-center-of-excellence-data-
set-repository
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TABLE 3. Sensors used in selected works.

referred to as the ‘‘virtual sensors’’ in the literature [111].
Nevertheless, many studies employed a combination of
sensors, with five works opting to use the vibration, electric
current, temperature and pressure sensors, along with an
additional unclassified sensor type [38], [68], [69], [70], [71].
In three studies vibration, electric current and temperature
sensors are combined [15], [31], [82].
As depicted in Figure 6, the distribution of sensor types

across the primary studies reveals a clear preference for
certain sensors. Themost frequently employed sensor was the
vibration sensor, utilized in 40 studies. Temperature sensors
were the second most common, appearing in 30 studies,
closely followed by electric current sensors, which were
used in 29 studies. Pressure sensors found application
in 20 studies, while noise sensors were incorporated in
16 studies. A variety of other sensor types, accounting for
variables such as speed, torque, RPM, humidity, viscosity,
and proximity, were collectively used in 38 studies.

Despite noise sensors being the exclusive focus in seven
studies as presented earlier, they were, in fact, the least
frequently used when we consider the overall usage of

FIGURE 6. Number of primary studies by sensors type.

sensor types across all studies, with just 16 occurrences.
This suggests that a mix of sensor types is proffered to
relying solely on noise sensors or other single sensor type.
It is worth mentioning that cameras, while traditionally
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used for tasks like segmentation, edge detection, object
classification, recognition, and tracking, also serve as a viable
sensor type for AD. Yet, none of the primary studies in
our review employed cameras for this purpose. Nevertheless,
the integration of general-purpose or specialized cameras in
AD systems could provide valuable insights and broaden
the scope of detectable anomalies. For instance, the use of
event-based cameras for vibration analysis is a promising
application, as they provide superior spatio-temporal resolu-
tion in comparison to traditional sensors [112].

D. WHAT ARE THE TYPES OF MACHINE LEARNING
TECHNIQUES USED FOR ANOMALY DETECTION IN
INDUSTRIAL MACHINERY?
There are two critical stages in the development of an
effective AD technique for industrial machinery: data pre-
processing and the application of AI algorithms. Both stages
are equally important and play fundamental roles in the
ability to accurately and timely detect anomalies. In the
following subsections, we provide a detailed description of
the preprocessing techniques and algorithms used in the
selected primary studies for AD in industrial machinery.

1) PREPROCESSING TECHNIQUES
Preprocessing techniques play a crucial role in the field
of ML, helping to clean and prepare data before it is fed
into algorithms for analysis. The process of preprocessing
involves a range of techniques such as data cleaning,
normalization, feature selection, and dimensionality reduc-
tion, among others [113]. These techniques are critical
for improving the quality of data, reducing computational
complexity, and enhancing the performance of ML models.
According to the results obtained in the analysis of the
selected primary studies, it was found that approximately
67% of the studies presented some preprocessing technique
applied to the data used in the research. The techniques
involved in preprocessing could range from feature selection
to dimensionality reduction, and data transformations aimed
at enhancing the quality of the input data. This reinforces the
critical role of preprocessing in AD for industrial machinery,
as the use of appropriate techniques can significantly improve
the efficiency and accuracy of the detection process.

Figure 7 illustrates the most frequently employed pre-
processing techniques in the selected primary studies.
The most commonly adopted data preprocessing technique
was the Autoencoder, which is a powerful technique for
dimensionality reduction [114]. Autoencoders use neural
networks to learn a compressed representation of the input
data. This technique can be especially useful for nonlinear
and high-dimensional data, where traditional methods such
as Principal Component Analysis (PCA) may not be as
effective [115]. Other techniques were categorized together
because they served a similar purpose. For instance, statistical
methods such as mean, median, standard deviation, and
variance were used to measure the central tendency and

FIGURE 7. Number of primary studies by preprocessing techniques.

variability of the data and were grouped together. This group
is referred as ‘‘Statistical’’ and is ranked as the second
most commonly utilized technique for preprocessing. These
statistical methods enable researchers to gain insights into
the distribution of data, identify outliers, and detect trends or
patterns [116].

Fast Fourier Transform (FFT), another frequently used
technique, and Short-Time Fourier Transform (STFT) both
operate in the frequency domain, enabling the time-based
analysis of signals. However, FFT is better suited for
stationary signals, while STFT is more appropriate for non-
stationary signals [117]. Among the identified techniques,
FFT was the most widely used, appearing in 13 studies,
while STFT was used in 4 studies. Another highly adopted
technique for data preprocessing was PCA (Principal Com-
ponent Analysis). It identifies the most important variables
in a dataset and reduces the number of dimensions while
preserving the most significant information. By transforming
the data into a new coordinate system that maximizes the
variance of the data, PCA helps to eliminate redundant or
noisy features that may hinder the analysis [118]. Normaliza-
tion is another widely adopted preprocessing technique that
is commonly found in primary studies. Its importance lies in
transforming data into a standardized scale, allowing for the
easy comparison and analysis of data from diverse sources.
Additionally, it helps mitigate any inherent bias in the data
that may arise due to differences in units of measurement or
data collection procedures [119]. From the selected primary
studies, it was found that PCA was utilized in 10 studies, and
normalization was employed in an equal number of studies.

Another preprocessing technique that was moderately used
in the primary studies was Convolutional Neural Network
(CNN). It is a deep learning (DL) architecture that has
achieved remarkable success in image and signal processing
tasks, thanks to its ability to learn hierarchical representations
of the input data. Besides its primary application in image
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and signal processing, CNN can also be used for feature
extraction in various applications [120].
The popularity of these techniques highlights their impor-

tance in data preprocessing and analysis, as they enable
researchers to reduce the dimensionality of complex data and
extract relevant features that can improve the accuracy and
efficiency of subsequent analysis.

While less commonly used, several other preprocessing
techniques were also found in the selected studies. These
include bandpass and low-pass filters [37], [55], [57], [64],
[73], wavelet transformations [32], [57], [61], sliding window
techniques [106], [121], and others. However, it is worth
mentioning that the selection of the most appropriate prepro-
cessing techniques depends on the nature and specificity of
the data being analyzed, and researchers must consider the
advantages and limitations of each technique before making
a decision.

Additionally, some studies combined preprocessing tech-
niques to try to improve AD. For instance, a notable example
is the utilization of autoencoders in conjunction with other
preprocessing methods. Among the studies that employed
autoencoders, five studies used normalization or statistics in
conjunction with autoencoder, while four studies combined
FFT or PCA with autoencoder, as shown in Figure 8. These
results suggest that using multiple preprocessing techniques
together can be an effective way to enhance AD accuracy.

FIGURE 8. Number of primary studies by preprocessing techniques
filtered by autoencoder.

2) ALGORITHMS
Various ML-based algorithms have been employed to detect
anomalies in industrial machinery. Figure 9 presents these
algorithms grouped into different levels of categorization.
Vertical categories indicate further subdivisions, while hor-
izontal categories represent the final categorization. The
initial grouping divides the algorithms into three cate-
gories: Supervised, Unsupervised, andHeuristics. Supervised
models were divided into two categories: Classification
and Regression. Classification models were subdivided into
several types: tree-based models, ensemble models, SVM,
neural networks, distance-based models, time-series models,
and others. Regression models, in turn, were the final
categorization. The unsupervised models, on the other hand,
were divided into three final categories: outlier detection,
clustering, and density estimation. Another separate final
grouping was the Heuristic.

FIGURE 9. Algorithms categorization.

Figure 10 shows the number of primary studies that
used each final algorithm categorization. There are 12 final
categorizations in total. This includes seven groups for
classification, one for regression, three for unsupervised
learning, and one for heuristic. It is important to note
that a single study might use more than one technique.
The results of the studies demonstrate the effectiveness of
various algorithms and approaches for identifying anomalies
in industrial machinery. Heuristic-based approaches were the
most common, used in 28 studies. Neural network methods
were also widely used, found in 24 primary studies. Outlier
detection was another commonmethod for finding anomalies
in sensor data, used in 16 primary studies. On the other hand,
time-series-based and density estimate approaches were less
frequently used, with only 2 [83], [90] and 1 [69] primary
studies, respectively.

Based on the categorizations that were most prominent
in Figure 10, we are going to analyze which techniques are
frequently used in one of these categories. We start with the
methods related to neural networks. After that, we address the
techniques used for outlier detection. Finally, we analyze
the techniques used in the most common categorization,
which is Heuristic.

Figure 11 illustrates the most frequently employed neu-
ral network techniques in the primary studies related to
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FIGURE 10. Number of primary studies based on algorithms
categorization.

ML-based AD. Multilayer perceptron (MLP) was the most
widely used technique, with 11 primary studies, which
involves multiple layers of artificial neurons used to recog-
nize patterns in data. Long short-term memory (LSTM) was
the second most popular technique with five primary studies
[72], [85], [89], [105], [106], which is a type of recurrent
neural network (RNN) architecture designed to remember
past data over time. CNN was used in three primary studies
[60], [61], [62], which is a type of feed-forward neural
network that was also employed in the preprocessing step,
as mentioned previously. One-class neural network (OCNN)
was employed in three primary studies [40], [47], [51],
which is a neural network architecture specifically designed
for AD problems. Finally, Generative Adversarial Networks
(GANs) were employed in two primary studies [42], [122],
which is a type of neural network that involves two models
trained simultaneously, where one model generates samples,
and the other model evaluates their authenticity [123]. The
less frequent implementation of GANs, relative to other DL
architectures, may not be a reflection of its applicability for
anomaly detection, but rather of its relative novelty in the
field, which suggest that this approach could be explored
further.

The outlier detection category has also received significant
attention in the literature. Figure 12 shows the specific
techniques employed in this category. The most commonly
used techniques among the primary studies were One-class
support vector machine (OCSVM) with 10 studies, followed
by Isolation Forest (Iforest) and Local Outlier Factor (LOF),
with 6 studies each. OCSVM is a well-known method
for outlier detection that separates inliers from outliers by
identifying a boundary around the inliers [124]. Iforest is
a tree-based algorithm that isolates outliers by constructing
separation trees [125], [126]. LOF is a density-based method
that measures the local deviation of a data point with
respect to its neighbors [126]. Although other techniques

FIGURE 11. Number of primary studies by neural network category.

FIGURE 12. Number of primary studies by outlier detection category.

such as Histogram-based Outlier Score (HBOS), Dynamic
Time Warping (DTW), and Angle-Based Outlier Detection
(ADBOD) were also adopted, their usage was relatively lim-
ited in comparison to the previously mentioned approaches.

In the primary studies that utilized heuristics to detect
anomalies, the most prevalent approach involved setting a
threshold to identify values that significantly deviated from
normal behavior. This approach, known as rule-based AD,
is widely used in industrial applications. However, using a
fixed value or percentage to set the threshold can lead to false
positives or false negatives. To enhance detection accuracy,
this technique is typically combined with preprocessing
steps.

Figure 13 illustrates the most commonly used preprocess-
ing techniques in conjunction with this approach. Among the
various preprocessing methods, the autoencoder technique
was the most commonly utilized, with 16 instances. Several
studies have demonstrated the integration of this technique
with threshold-based rule-based AD, where the threshold is
established based on the autoencoder reconstruction error.
Other techniques such as FFT, normalization, and statistics
were also widely used to assist in diagnosis using thresh-
olds. These findings demonstrate that the heuristics-based
approach for AD is promising, but requires careful consid-
eration in selecting an appropriate preprocessing technique
and defining the threshold for each specific application.
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FIGURE 13. Number of primary studies categorized by preprocessing
techniques and filtered by the heuristic approach.

E. HOW IS THE ANOMALY DETECTION METHOD
COMPUTED AND EVALUATED?
The choice of an appropriate evaluation method is crucial
when aiming to find the optimal classifier for a given
problem, whether it involves classification, regression,
or clustering [127]. Evaluating AD models can be done using
various metrics that align with specific tasks. In our primary
studies, we identified several metrics, as shown in Figure 14.
The metric Accuracy was the most commonly used in the
analyzed studies, appearing in 36 instances. It was closely
followed by F1-score, Precision Recall, which appeared in
20, 19, and 18 studies, respectively. These metrics are derived
from the confusion matrix, a tabular representation that
summarizes the model’s performance by indicating correct
and incorrect classifications in terms of true positives, true
negatives, false positives, and false negatives.

FIGURE 14. Number of primary studies by metrics.

The Area Under the Receiver Operating Characteristic
Curve (AUC-ROC) is a widely utilized metric in binary
classification models. It represents the relationship between
the true positive rate (TPR) and the false positive rate (FPR)
at different threshold levels. Our analysis identified this
specific metric in 15 primary studies. Additionally, the TPR
and FPR metrics, which are foundational for calculating the
ROC curve, were found in 10 and 8 studies, respectively.

Consequently, it can be deduced that binary classification is
the most frequently performed and evaluated task within the
context of AD.

Other metrics employed in binary classification include
Matthews Correlation Coefficient (MCC), frequently used
metric for unbalanced classes, which combines true positive,
true negative, false positive, and false negative rates to
evaluate overall model quality, used in 3 studies [92],
[100], [122]; False alarm rate, also known as FPR, which
quantifies the proportion of negatives mistakenly classified
as positives, also used in 3 studies [32], [33], [109]; and
Kappa, which measures the level of agreement between
observers or classifiers in a classification problem, present
in 2 studies [53], [100].

In addition to classification-focused metrics, there are
also metrics that specifically target regression models. Mean
Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), Root Mean Square Error (RMSE), Mean Squared
Error (MSE), andCoefficient of Determination (R2) are a few
of these. By quantifying the discrepancy between predicted
values and actual values, these metrics seek to assess the
precision of numerical predictions and offer information
about how well the model fits the regression data. MAE,
MAPE, and RMSE were the most commonly employed
regression metrics, appearing in 3 studies each [15], [44],
[69], [77], [96]. R2 and MSE were present in 2 studies [15],
[50], [61].

Most regression-based models are commonly applied
in solving Prognostics and Health Management (PHM)
problems, as demonstrated in the works by [128], [129],
and [130]. These studies primarily focus on predicting the
remaining lifetime of systems using monitoring data as input.
An alternative approach to tackle this scenario is through
the application of a time series approach, as observed in
the works by [131] and [132]. However, this approach often
emphasizes predicting the future state of systems rather than
real-time state identification. Within this context, the Health
Indicator (HI) metric, as employed in Zhai et al. [36] and
Guo et al. [35], aims to evaluate the health status of monitored
equipment.

Metrics concerning time performance, such as training
time and prediction time, were also identified in 5 [41],
[50], [54], [62], [74] and 4 [41], [62], [67], [74] studies,
respectively. These metrics are not unique to any specific
model type but serve to assess the efficiency and duration
of model training and prediction generation. They offer
valuable insights into the scalability and practical feasibility
of implementing the model, considering computational
resources and processing time. These metrics are crucial for
optimizing resource allocation, determining model suitability
for real-time applications, and evaluating overall system
performance in time-sensitive scenarios.

Finally, it is clear that there is a lack of research in the
literature on the assessment of inference time, i.e. the time
the proposed approach takes to process the data stream and
classify it as normal or anomalous. Importantly, only 4 of
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the 84 works in this mapping report the inference time of the
proposed model. This emphasizes the necessity for additional
study to address this issue and develop a thorough grasp of
the computational needs and applicability of AD methods
in real-time. By examining prediction time alongside other
performance metrics, we can improve decision-making
processes and identify models that strike a balance between
accuracy and efficiency in time-critical domains.

V. OPEN CHALLENGES
While AD techniques for industry 4.0 are gaining attention
in recent years, several open challenges have been identified
by this SM. This section highlights these challenges and
provides insights into potential areas for future research.

A. ANOMALY DETECTION ON THE EDGE
The rise of edge computing offers promising potential
for real-time AD, particularly for IIoT sensors. However,
edge devices are constrained by limited resources, such as
processing power and memory, making complex anomaly
detection tasks challenging to execute on these devices.
To address this challenge, there is a need to develop suitably
optimized AD algorithms that can navigate the trade-off
between precision and computational resources. Multiob-
jective optimization algorithms can be used to finetune
solutions under simultaneous conflicting objectives, such as
power consumption, accuracy and inference speed [133].
Additionally, spiking neural networks and neuromorphic
computing are emerging technologies that can be used
for real-time anomaly detection with significantly lower
computational resources than traditional approaches [134].

B. USAGE OF LOW-COST AND OFF-THE-SHELF SENSORS
The adoption of IIoT devices with low-cost sensors could
facilitate a wider implementation of predictive maintenance
in the industry. However, a prominent challenge lies in the
quality and reliability of the data collected from these sensors.
Low-cost sensors may exhibit higher noise levels, lower
accuracy, and reduced stability over time compared to their
more expensive counterparts. These factors can significantly
impact the performance of AD algorithms, resulting in a
higher rate of false positives. Consequently, AD algorithms
would require additional adjustments, such as implementing
an automatic update routine to compensate for the lower
reliability and potential sensory drift over time.

C. IDENTIFICATION OF THE ANOMALY SOURCE
While AD techniques can indicate the occurrence of an
anomaly based on normal operation data alone, fault
diagnosis remains a challenging next step. Fault diagnosis
is crucial for understanding the root cause of the anomaly
and taking appropriate actions. With the emergence of XAI,
there is an increasing demand for models that not only detect
anomalies but also provide interpretable information about
their likely causes. This explanation of the potential causes
of the anomaly is even more valuable in environments where

downtime is critical, as it enables operators to make faster
decisions.

D. LACK OF FAULT DATA
In industrial settings, it is often the case that there is
an abundance of non-anomalous data, representing healthy
machinery, while the amount of anomalous data is relatively
small or even non-existent. This represents a significant
challenge when it comes to using supervised learning
approaches, as these methods heavily rely on labeled
anomalous data for training and generalization of the models.
Therefore, addressing this challenge becomes crucial. One
possible solution to tackle the lack of anomalous data is to
leverage a combination of simulation and experimental data.
By utilizing simulated scenarios and conducting controlled
experiments, it becomes possible to generate synthetic
anomalous data. This synthetic data can then be used for the
initial validation and fine-tuning of the AD algorithm in a
more controlled and manageable environment.

E. INTEGRATION WITH EXISTING INFRASTRUCTURE
One of the key challenges in AD is the integration of AD
systems with the pre-existing infrastructure in industrial
environments. Industrial systems often have well-established
data collection mechanisms and processes in place. There-
fore, it is essential for AD solutions to be compatible
with these existing systems and seamlessly integrate into
the infrastructure without causing disruptions or requiring
significant changes. The integration aspect should be a
primary consideration in research studies, and future works
should emphasize how their approaches can effectively
adapt to the already consolidated industrial environments,
ensuring smooth incorporation without major interruptions or
modifications.

F. RETRAINING OF ML MODELS
The retraining of ML models is a crucial aspect that requires
attention and careful discussion regarding its adaptability
to the evolution of industries, changes in the environment
and new data collected. Ensuring the continued effectiveness
of ML models in detecting anomalies depends on their
ability to adapt to changes that occur over time in industries.
As industries undergo operational changes, these models
need to be capable of adjusting and learning from the new
environment. Furthermore, the inclusion of newly collected
data and exposure to new failures can enable the models to
identify anomalies with greater precision.

VI. LIMITATIONS OF THE MAPPING STUDY
Risks and restrictions apply to systematic mappings like
this one [27]. In this section, we address the most frequent
restrictions encountered during the review process and
provide our solutions to overcome them.
Formulation of Research Questions: The development

of research questions is essential for directing the review
process. However, if the questions are not carefully designed
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or if they lack specificity, it is possible to mistakenly exclude
pertinent studies or ignore crucial components. By carefully
crafting and fine-tuning the research questions through
consultations with authors and outside experts, we were able
to lessen this constraint.
Searching: Despite using a thorough search method, it is

probable that some pertinent studies were missed. This can
be as a result of restrictions on the databases that were
chosen, limitations on language, or the exclusion of specific
publishing categories. We maintained the same terms in our
search strings while modifying them for each digital database
to lessen this restriction.
Misclassification or Errors in Data Extraction: These

terms allude to the potential for various reviewers to interpret
the data from research in different ways. Although we used
our judgment to categorize the studies, there is still a chance
that we did so incorrectly. Multiple author-researchers were
involved in the classification process to help alleviate this
possible problem, and any disagreements were settled by
consensus discussions.

We aim to provide a comprehensive and unbiased eval-
uation of the literature within the scope of this review,
acknowledging these limitations and employing appropriate
methodologies.

VII. CONCLUSION AND NEXT STEPS
This SM focused on the topic of AD in industrial machinery
using IoT devices and ML algorithms. The study aimed to
fill the gap in existing research by providing a comprehensive
review of current methodologies, synthesis of evidence, areas
of application, research questions and future challenges in
this domain. Through the analysis of 84 studies dating
from 2016 to 2023, several important findings emerged.
First, it was observed that the types of machinery most
commonly monitored include milling and cutting tools,
hydraulic systems, and bearings. The analysis suggests that
these types of machinery are often subjected to conditions
that can lead to anomalies, such as wear and tear in milling
and cutting tools, fluctuations in temperature and pressure in
hydraulic systems, and heat-related failures in bearings.

Second, a wide range of sensors were employed to
detect anomalies. The primary works often did not detail
specific characteristics of the sensors, but we were able
to highlight the most used sensors, such as vibration and
temperature. A combination of these sensors is observed
as a common strategy to efficiently detect and monitor
anomalies in machines. Third, several ML techniques have
been used for AD, including supervised, unsupervised and
heuristic methods. In addition to highlighting preprocessing
techniques, we were able to highlight the most used and also
those that normally worked together. Combination of these
techniques, such as FFT and autoencoders, are found to be
effective to enhance AD accuracy.

The review also identified several open challenges in the
field of AD. These challenges include detecting anomalies at
the edge using off-the-shelf and low-cost sensors, enabling

faster and cost-effective upgrades to existing infrastructure.
Additionally, beyond detection, identifying the source of
anomalies can offer valuable insights for predictive main-
tenance. Furthermore, addressing the scarcity of fault data
and retraining ML models to adapt to evolving industrial
environments are ongoing challenges in this field. In
summary, this SM clarified the state of the art of AD in
industrial machinery using IoT devices and ML. It identified
key research areas, highlighted current methodologies, and
outlined open challenges. By addressing these challenges,
we aim to contribute to the development of more accurate,
efficient, and interpretable AD systems, thereby enhancing
industrial productivity, safety, and efficiency in the era of
smart manufacturing

For future work, our intention is to develop an anomaly
detection solution based on low-cost and off-the-shelf
components for rotating machinery. Additionally, we aim
to focus on developing anomaly detection on embedded
devices, with a priority on low power consumption and local
processing of most of the data. As our research progresses,
we plan to make newly created anomaly datasets publicly
accessible, contributing to the broader research community’s
resources. Finally, future literature reviews could provide an
in depth analysis of existing industrial dataset for AD and
predictive maintenance.
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