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ABSTRACT Object detection in drone-captured scenarios, which can be considered as a task of detecting
dense small objects, is still a challenge. Drones navigate at different altitudes, causing significant changes in
the size of the detected objects and posing a challenge to the model. Additionally, it is necessary to improve
the ability of the object detection model to rapidly detect small dense objects. To address these issues,
we propose YOLOAL, a model that emphasizes the location information of the objects. It incorporates
a new attention mechanism called the Convolution and Coordinate Attention Module (CCAM) into its
design. This mechanism performs better than traditional ones in dense small object scenes because it adds
coordinates that help identify attention regions in such scenarios. Furthermore, our model uses a new loss
function combined with the Efficient IoU (EIoU) and Alpha-IoU methods that achieve better results than
the traditional approaches. The proposed model achieved state-of-the-art performance on the VisDrone and
DOTA datasets. YOLOAL reaches an AP50 (average accuracy when Intersection over Union threshold
is 0.5) of 63.6% and an mAP (average of 10 IoU thresholds, ranging from 0.5 to 0.95) of 40.8% at a real-time
speed of 0.27 seconds on the VisDrone dataset, and the mAP on the DOTA dataset even reaches 39% on an

NVIDIA A4000.

INDEX TERMS Drone, small dense objects detection, attention mechanism, loss function.

I. INTRODUCTION

Object detection is a fundamental topic in the field of
machine vision, which has been extensively researched for
many years. Real-time and accurate object detection can
provide effective support. In recent years, object detection
has been widely used in, such as object tracking, scene
understanding, and behavior recognition. With the emergence
of deep learning techniques, object detection algorithms
based on hand-crafted features that have become outdated.
Alex proposed the famous convolutional neural network
(CNN) AlexNet [1] in 2012, and since then, deep learning
and CNN have gradually become popular and widely used.
In general, recent deep learning models for object detection
can be divided into two categories: one-stage detection
models such as SSD [2] and YOLO [3], and two-stage
detection models including R-CNN [4], Fast R-CNN [5], and
Faster R-CNN [6].
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Two-stage detection models have higher accuracy but
lower real-time performance. This is because they extract
regions of interest (ROI) from the images. Moreover, they
perform bounding box (BBox) regression and classification
within these ROIs. On the other hand, one-stage detection
models do not require this step, as they perform localization
and classification in a single stage. Consequently, the
one-stage detection models have lower accuracy but higher
detection speeds than two-stage detection models. Because
real-time detection is important, YOLOV7, a one-stage object
detection model, is chosen as the backbone for object
detection.

In recent years, significant progress has been made in
object detection research. However, small object detection
for drone-captured images is still a difficult task in computer
vision. Although numerous object detection algorithms have
been proposed each year, deep learning has shown significant
advancements. Nevertheless, existing object detection algo-
rithms are primarily designed and trained for natural images,
and their performance in dense small object scenarios still
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requires improvement. We acknowledge that drone-captured
images have unique characteristics compared with natural
image datasets such as MS COCO [7]. First, the size
of the photographed object varies significantly owing to
the differences in the horizontal height of the drone. The
same object may exist simultaneously as small, medium,
and large objects when shot at different heights. This
will undoubtedly affects the acquisition and identification
of object features. Second, the sparsity of objects cap-
tured by drones varies significantly, and small objects
are an important part of the dataset. For example, small
objects make up more than 60% of VisDrone’s training
dataset.

Existing real-time object detection algorithms are based
on YOLO [8], [9], [10] and FCOS [11], which rely on
GPU for fast object detection. YOLO series algorithms
are frequently utilized as real-time detection algorithms in
one-stage detection models [8]. The detection speed of
the YOLO series algorithms is fast, while their accuracy
gradually increases with the improvement of the algorithms.
The most recent update of the YOLO series is YOLOVS [9].
However, the experiment showed that YOLOV7 [8] is less
computationally intensive than it. Therefore, YOLOvV7 [§]
is selected as the backbone for detecting objects in drone
capture scenarios. Our algorithm surpassed YOLOvS [9] in
terms of the accuracy.

To focus on the object location for detection on drone
imagery, an object detection model, YOLOAL is proposed in
this article. Our design focuses on obtaining the object loca-
tion information to improve the accuracy and detection speed
of object detection. First, an attention module is introduced
to obtain the features of object in the channel and spatial
dimensions. The attention mechanism allows the network
to pay more attention to the object in the drone imagery
and achieve good results. In addition, the degree of overlap,
center point distance, and weight and height of the anchors
between the object BBox and predicted BBox are consid-
ered in the model training process. Furthermore, we use
Alpha-IoU to improve the BBox’s regression accuracy.
It adaptively up weights the loss and gradient of high IoU
objects.

The contribution of this work is listed as follows:

(1) An improved object detection model, YOLOAL, is pro-
posed for drone imagery detection. This model incorporates
attention modules in the neck of the architecture and utilizes
improved loss functions. ItA improves the ability to detect
objects by emphasizing the location information.

(2) To address the challenge of detecting dense small
objects, we introduce a new attention module called CCAM.
This module leverages the coordinate information to accu-
rately localize objects in high-density scenarios.

(3) To balance the difficulty of object detection and
increase detection speed, we use EloU as the loss func-
tion. Then, Alpha-IoU is induced to filter out a more
accurate bounding box and increase the loss function
flexibility.
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Il. RELATED WORK

A. OBJECT DETECTION

CNN-based object detection models can be categorized
into one-stage object detection models and two-stage object
detection models based on the presence of regions of interest
(ROI) for classification. We can distinguish between an
anchor-based object detection model and an anchor-free
object detection model without an anchor box based on
whether anchor boxes are generated. Although there are many
distinguishing types, the CNN-based object detection model
can be broadly divided into two parts: the backbone and
prediction head. In addition, researchers in recent years have
usually inserted some layers between the two parts, and
people usually refer to this part as the neck of the detector.
This is usually called the neck of the detector.

Backbone: The backbone can obtain the feature infor-
mation of the images. Popular backbones include VGG
[12], ResNet [13], EfficientNet [14], and CSPDarknet53
[15], which have demonstrated powerful feature acquisition
capabilities.

Neck & Head: Once the backbone extracts the picture
feature information, the neck reprocesses and rationally uses
the feature maps at different stages. This enables a better
capture and processing of these maps. The head is then
responsible for determining both the category of the detected
objects and their location.

B. SMALL OBJECT DETECTION

There are still many problems to be solved in the use of
drones. Antonio Silva [16] use edge servers to merge a global
map, including all simultaneous localization and mapping
updates, to provide a consistent map that is effectively
updated for the drone. Small object detection is one of the
most difficult problems in drone imagery detection.

Small object detection methods are widely used in the
fields of autonomous driving, drone capture, and video
recognition. Although important, existing object detection
algorithms still need improvement to achieve satisfactory
results. Small object detection has to overcome the following
difficulties: (1) small objects cover a small area, which makes
it difficult to obtain information and features; (2) small
objects are easily overlapped by medium and large objects;
(3) small objects are susceptible to background interference.

There are commonly used methods for detecting small
objects such as improving the clarity of the image or intro-
ducing feature pyramids into the object detection network
[2], [17]. DMNet [18] uses a density map-guided cropping
strategy to remove areas without objects, balancing the
impact of the background on object recognition. ClusDet
[19] unifies object clustering and detection in an end-to-end
framework by sequentially identifying clustered regions and
detecting objects within those areas. TPH-YOLOVS [20] uses
a convolutional block attention module [21] (CBAM) in the
model and significantly improves its accuracy. YOLO-ACN
[22] uses the improved attention mechanism and CloU to
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improve the detection accuracy of the MS COCO [7] dataset.
These methods inspired us in this study.

Two-stage detection models are commonly utilized for
detecting small objects because of their ability to achieve
higher accuracy. However, our objective is to enhance both
the detection accuracy and speed.

C. ATTENTION MECHANISM

The attention mechanism imitates the human visual system’s
ability to identify important areas in complex scenes. It has
been widely used in machine vision tasks over the past
few years and plays a crucial role in improving the object
detection accuracy. One such attention module is SE [23],
also known as squeeze and excitation. The ‘““squeeze’ step
involves using global average pooling on the channel of
obtained features and aggregating local information to obtain
global information. The ‘excitation” step includes fully
connected layers and activation functions that learn the
nonlinear relationship between channels.

The SE attention module uses global average pooling
to compress data, and it has been shown that the result
using average pooling has an accuracy improvement (0.31%)
compared with using max pooling in the ImageNet [24]
dataset. Although some attention modules, such as SImAM
[25], CBAM [21], and CCNet [26] use other methods for
data processing, there are still many attention modules such
as ECA [27] and coordinate [28], which are influenced by SE.
They use the same data compression method as SE.

To enhance the detection accuracy of drone-captured
images, CCAM is proposed in object feature processing.
After the data are processed through the channel attention
module, we use two one-dimensional coding processes and
introduce the coordinate concept into the CCAM. Finally, our
attention module achieves better results than recent attention
modules.

D. LOSS FUNCTION

The loss function is a crucial component of the object detec-
tion model. Nevertheless, it is often overlooked. Although
not as well known as the attention mechanism, researching
and selecting an appropriate loss function will undoubtedly
enhance the object detection ability.

Currently, the famous and commonly used loss functions
include Intersection over Union [29] (IoU), Generalized
IoU [30] (GIoU), Complete IoU [31] (CloU), Distance-IoU
[31] (DIoU), SCYLLA-IoU [32] (SIoU), Efficient IoU [33]
(EIoU), etc. As the most classical loss function, IoU has the
characteristics of scale invariance, symmetry, and triangular
invariance. However, when the two bounding boxes do not
intersect, the IoU value directly becomes zero, which cannot
reflect the distance between the two bounding boxes. GIoU
calculates the minimum closed area of the two bounding
boxes and calculates the proportion of the closed area
to which neither bounding box belongs before calculating
IoU. Finally, it subtracts this proportion from the IoU to
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obtain the GloU. However, when the two bounding boxes
intersect, the convergence is slower in the horizontal and
vertical directions. Considering the principle of IoU and
the shortcomings of GloU, DIoU improves the convergence
speed by regressing the Euclidean distance between the
centroids of two bounding boxes.

lIl. PROPOSED METHOD

A. BASE STRUCTURE

Designers must consider several factors when designing
an efficient and stable object detection network. These
include the number of layers of the architecture, number
of parameters, amount of computation, and computational
density. CSPVoVNet [34] considers the number of elements
in the convolutional layer output tensors and analyzes
gradient paths that allow the weights of different layers to
learn more different features. After considering the problem
of how to design efficient networks, ELAN [35] concludes
that controlling the longest and shortest gradients is crucial.
Ultimately, we select ELAN’s stacked computational blocks
as the base structure. The structure of ELAN is shown in
Figure 1, and that of YOLOAL is shown in Figure 2.

B. CONVOLUTION AND COORDINATE ATTENTION
MODULE
Our attention module comprises two components: a channel
attention module and coordinate attention module. The fea-
ture map undergoes sequential processing through the
channel and coordinate attention modules, resulting in the
inference of separate attention maps along two dimensions.
Despite its effectiveness, the CCAM is a lightweight module
that does not impose a significant computational burden.
Three CCAM modules are used on the neck of the detection
model.

Further details on both components- the channel and
coordinate attention modules - are provided below.

1) CHANNEL ATTENTION MODULE

The channel attention module focuses on ‘“‘what” the
object is, and channel attention maps can be generated by
analyzing the relationship between image channels. The
architecture of the channel attention module is shown in
Figure 3. We compress the features of the object to make
the computation more efficient and to reduce the number
of parameters. Many attention mechanisms, such as SE
[23], ECA [27] and coordinate [28], use average pooling to
compress and aggregate the spatial information. However,
this method weakens the boundaries between small objects
and their backgrounds in drone-captured images. Instead,
average pooling and max pooling are combined to compress
the image information.

To generate the channel features, we compress the image
information using global average pooling and max pooling.
Subsequently, these two feature maps are introduced into a
multilayer perceptron (MLP) network with hidden layers to
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FIGURE 1. The structure of ELAN. CBS block is combined with convolution, batch normalization layer and SiLU activation function, which
can enhance learning capability. What's more, ELAN optimizes the gradient length of the network by using the stack structure.
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FIGURE 2. The architecture of the YOLOAL. “ELANS” lacks the final CBS structure compared to ELAN. “MP-CBS” uses max

pooling before the CBS block.

generate a channel feature map. The hidden layer activation
size of the MLP is set to (C/r*1*1), where C is the number
of channels and r is the reduction ratio, which is fixed at
16. LeakyReLU [36] is used as the activation function in the
MLP. The formula for LeakyReLU is as follows:

x>0

x<0

x’

LeakyReLU(x) = 1

ax,
where we set o to 0.01.

The LeakyReLU activation function adds a small linear
component to the negative inputs, which helps to address
the vanishing gradient problem. LeakyReLU ranges from
negative infinity to positive infinity. Moreover, the additional
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computational cost for it is very small. The MLP processed
feature information is activated by the sigmoid function after
summation. The channel attention module is computed as
follows:

Fe(f) = S(MLP(MaxPool(f))

+ MLP(AvgPool(f))) 2)
f is the input feature, F () denotes the feature map of
channel attention. S(-) is the sigmoid activation function.
MLP(-) means multilayer perceptron network. MaxPool(-)
and AvgPool(-) are global max pooling and global average
pooling, respectively.
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FIGURE 3. The overview of the channel attention module. “MaxPool” and “AvgPool” mean global max pooling and global
average pooling. “S” means that the action involves summing up the processing results and then activating them with a

sigmoid function.
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FIGURE 4. The overview of the spatial attention module. “MaxPool” and “AvgPool” mean max pooling and average pooling along the channel axis. “X
AvgPool” and “Y AvgPool” mean 1D horizontal average pooling and 1D vertical average pooling, respectively.

2) COORDINATE ATTENTION MODULE

The coordinate attention module focuses on “where” the
object is, and spatial attention maps can be generated by
analyzing the coordinate relationship. The architecture of the
coordinate attention module is shown in Figure 4. We place
it serially after the channel attention module in tandem, and
it can accurately identifies both the class and location of the
objects.

To obtain object location information, coordinates are
introduced into the module to capture long-distance rela-
tionships and information interactions in space using precise
location data. We obtain two 2D maps that are compressed
by max pooling and average pooling along the channel
axis. By processing the input feature to reduce the influence
of channel feature, the spatial weight can be calculated
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better. Specifically, we perform 1D average pooling in both
the horizontal and vertical directions and then combine
them for batch normalization and standardized processing.
After sigmoid activation, the feature maps are merged
and normalized according to the horizontal and vertical
directions, yielding the corresponding coordinate weights.
Finally, we obtain a coordinate attention feature map by
multiplying these weights with the input feature.

The attention module considers the shortcomings of the
single feature compression method, using max pooling and
average pooling in parallel. In contrast to the traditional com-
pression method for generating a single feature vector, the
processed feature map aggregates features along two spatial
directions to produce a pair of feature maps. Such processing
allows the attention blocks to spatially capture long-range
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interactions and retain precise location information oriented
along one another. By combining the feature information that
has undergone max pooling and average pooling, noise can be
avoided and the loss of feature information can be reduced.

We have attempted a variety of methods to combine
the channel attention module with the coordinate attention
module. The experiment proved that the best accuracy can be
achieved by placing the coordinate attention module behind
the channel attention module. With the attention mechanism
introduced in the detection model, the network can enhance
the ability of feature expression in a specific region without
increasing the computational cost.

C. I0U LOSS FUNCTION

In recent YOLO series object detection models such as
YOLOVS5 [10], YOLOvV7 [8], and YOLOVS8 [9], CIoU [31] is
used as the regression loss function. This increases the loss of
width and height based on DIoU to make the predicted BBox
closer to the real BBox. There is some ambiguity because
the width and height loss of the CloU are relative values,
not definite values. Additionally, the CloU cannot increase or
decrease both width and height simultaneously, which slows
down the loss convergence. To address these issues, EloU
[33] minimizes the difference between the width and height of
the object BBox and predicted BBox, which results in faster
convergence and better localization results.

The loss of EIoU, which is defined as follows:

Lgou = Liou + Ldis + Lasp 3)
BByl
|BU By|
Loy is the IoU loss, existing predicted BBox B and object

BBox Bg. It is used to calculate the similarity of the two
boxes.

Liuy=1—-1I0U=1—- (4)

p? (b, b¥")
(w)? + (h)?

Lyis 1s the distance loss, it shows the distance between the
two boxes. b and b8’ represent the center points of B and Bg.
p(x,y)is the Euclidean Distance between points x and y. The
minimum enclosing box of B and By is C, w° and h€ are the
width and height, respectively.

P2 (w,w¥")  p? (h ')
Lasp = ) + ) (6)
(we) (h¢)

Lagp is the aspect loss, it can minimize the difference of the
B’s and Bg’s width and height. w and w$’ represent the widths
of the two bounding boxes, and & and 8’ represent the heights
of B and Bg;.

Alpha-IoU [37] is used to increase the accuracy of the loss
function. This method accelerates the gradient of IoU objects
for high IoU objects, which facilitates the later training phase
when alpha>1. Simultaneously, the effect on low IoU objects
is minimal. Unlike using only traditional loss functions,
this approach enhances robustness and helps stabilize model
training in the early stages when the gradient is large.

&)

dis =
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The loss of the new loss function is as follows:

LioUu-o = Liou + Ldis—a + Lasp—a @)

2 t o
p? (b, b*)
Lis-a=|—5— 8
‘ ((wc>2 + (hf)z) ®
02 (w, wgt) “ p2 (h, hg’) ¢
Las —o = 9
b ( e ) T\ e ®

Lgis—o¢ and Lyg, o represent bringing alpha into the
calculation of the corresponding loss function.

IV. EXPERIMENTAL ANALYSIS

A. DATASET

To verify the validity of the proposed method, we apply
it to two publicly accessible datasets: VisDrone [38] and
DOTA [39].

(1)VisDrone: The VisDrone [38] dataset, which includes
6471 training images, 548 validation images, and 3190 test
images. The test set is divided into a test-dev with
1610 images and a test-challenge with 1580 images. As labels
are not provided for the test-challenge set, we only test our
models on the validation and test-dev datasets. There are
10 types of objects in this dataset, which are obtained using
drones. Images were obtained from 14 different cities in
China. They are very different in terms of the environment
(urban and rural areas), objects (such as pedestrians, vehicles,
and bicycles), and density (sparse and crowded scenes),
with the difference and representativeness of drone-captured
scenarios.

(2)DOTA: The DOTA [39] dataset consists of 2806 aerial
images collected from multiple sensors/platforms, such as
Google Earth, across several cities. These aerial images have
varying pixel sizes ranging from 800*800 to 4000%*4000,
contain objects of different scales, orientations, and shapes.
Following ClusDet [19] and AdaZoom [40], we select images
of objects such as planes, vehicles, ships, and helicopters.

B. EXPERIMENTAL DETAILS

We conducted our experiments on a single NVIDIA A4000,
implementing the object detection network using PyTorch
1.8.1 and Ubuntu 18.04. To evaluate the evaluation method
in MS COCO [7], mAP (average of all 10 IoU thresholds,
ranging from 0.5 to 0.95) and AP50 (average accuracy when
IoU threshold is 0.5) are used to indicate object detection
accuracy. Giga floating point of operations (GFLOPs) is
utilized to assess the computational cost, and frames per
second (FPS) can show the operational efficiency of these
models.

Some results from the referenced literature were obtained
from the validation dataset, and we also observed a strong cor-
relation between the results of object detection experiments
in the validation dataset and the test dataset. To ensure the
consistency of the data results, we used the validation and
test-dev dataset results for the comparison and experiments.
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Training phase: The training batch size is 2. There are
differences in the resolutions of different images on the
VisDrone and DOTA datasets. To facilitate the training phase,
we compressed and normalized the image pixels of different
sizes and set them to 1024 and 1536, which were consistent
with the input sizes of the detector. The initial learning rate
was set to 0.01, and the final OneCycleLR learning rate was
the same during the model training on both datasets. Because
the VisDrone dataset was relatively small, we only trained
the model for 100 epochs, whereas the DOTA dataset training
iterations were set to 200. Moreover, mosaic and mix-up data
augmentation methods were used in the training phase.

Test phase: The input sizes of the detectors are kept
consistent with those of the training phase, that is, both
1024 and 1536. The threshold values of the standard
non-maximum suppression (NMS) were set to 0.65 across all
datasets tested.

C. EFFECT OF CCAM

Attention mechanisms are crucial in machine vision tasks,
and researchers have been looking for ways to improve them
over the years. SE [23] is still widely used as a well known
attention module. However, SE attention only considers
compressing channel information and ignores the importance
of positional information, which is important for obtaining
object structures in vision tasks. Later work, such as CBAM
[21], attempts to exploit positional information by reducing
the tensor’s channel dimensionality and using convolution to
compute spatial attention. But, convolution can only capture
local relationships and cannot obtain the overall information
relationship for vision tasks. Coordinate attention [28] was
proposed by Hou et al. In contrast to transforming the feature
tensor into a feature vector after 2D average pooling, the
coordinate attention mechanism aggregates the features in
two directions. This helps to preserve the spatial position
correlation of the objects. Coordinate attention obtains
direction and position sensitive information to capture object
feature information, but its processing of channel information
is too simple and still needs to be optimized and improved.
SimAM [25] optimizes the energy function to calculate the
importance of each neuron. To infer the 3D attention weights
for the feature maps, we derived a fast analytical solution for
the energy function without increasing the original network
parameters. We attempted to add different attention modules
to the baseline, and the experimental results are shown in
Table 1.

It can be seen from the experimental results for VisDrone.
By adding the attention module to the neck of the object
detection model, we can get an improvement in the object
detection accuracy, and different attention algorithms achieve
different improvements. As shown in Table 1, CCAM
achieves 36.1% and 59.4% for mAP and AP50, respectively,
which are better than those of other attention modules.
Compared to the baseline, CCAM was approximately 0.8%
higher on AP50 and 0.6% higher on mAP. CCAM1 and
CCAM2 are two different arrangements of the attention
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TABLE 1. Comparison of performance for different attention modules on
the VisDrone validation dataset with an image size of 1024.

Methods AP50(%) mAP(%)
Baseline 58.6 35.5
+SE [23] 59.3 36.0
+CBAM [21] 59.1 36.0
+Coordinate attention [28]  59.3 359
+SimAM [25] 58.9 35.7
+CCAMI1(Ours) 58.8 35.7
+CCAM2(Ours) 58.7 35.5
+CCAM(Ours) 59.4 36.1

modules. In CCAMI1, the coordinate attention module was
placed before the channel attention module, whereas in
CCAM?2, the channel attention module was placed parallel
to the coordinate attention module. Sequential generation in
attention maps is more effective than parallel generation for
inferring accurate attention maps. Additionally, the order of
these modules can affect detection efficiency and accuracy.
Therefore, the selection of an appropriate order can further
improve overall accuracy.

D. EFFECT OF LOSS FUNCTION

The method for calculating the loss function is constantly
being improved. Our goal is to use a more suitable loss
function for object detection algorithms in drone-captured
images, which will help address the issue of imbalanced
difficulty levels in object detections. Currently, the most
commonly used loss function in the YOLO series object
detection algorithm is CIoU [31]. However, it suffers from
the problem that the ratio of the prediction BBox width and
height is inversely proportional, and both cannot be increased
or decreased at the same time. By replacing CloU with
EloU as the loss function of the object detection model,
higher detection accuracy can be obtained in the VisDrone
dataset. Compared with CloU, EloU yields approximately
0.9% higher on AP50(59.5) and 0.9% higher on mAP(36.2).

In addition, Alpha-IoU [37] is combined with CloU and
EloU, and the object detection accuracy obtained for different
alpha values are different. The experimental results are shown
in Figure 5 and Figure 6.

When the alpha value is set to 1, it is equivalent to using
the EloU and CloU as the loss function for object detection.
The results show that when the alpha value increases, the
mAP obtained is higher than when using EloU and CloU
alone. Specifically, an alpha value of 2 yielded the highest
result with mAP at 36.7% and AP50 at 59.6%, which were
0.5% and 0.1% higher, respectively, than those obtained using
EloU alone on VisDrone. If the value of alpha continues to
increase beyond this point, both the mAP and AP50 gradually
decrease. When the alpha was 7, there was a more obvious
downward trend. The results of EIOU and Alpha 2 are the
highest for VisDrone and DOTA. Regardless of the value
of the alpha setting, EIoU obtains better object detection
accuracy than CIoU. We believe that when we set the alpha to
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FIGURE 5. The AP50 and mAP of the experiment using Alpha-loU with CloU and EloU on VisDrone. We can see that the object
detection accuracy is highest when EloU is used, and the value of alpha is 2.
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FIGURE 6. The AP50 and mAP of the experiment using Alpha-loU with CloU and EloU on DOTA.

a finer size, such as at 0.1 intervals, we can achieve a higher
detection accuracy.

E. COMPARISONS WITH THE STATE-OF-THE-ART

We detected the VisDrone dataset using the YOLO series
object detection algorithm, and the detection results are listed
in Table 2.

From the data in Table 2, when training conditions are
consistent, the training accuracies of YOLOvV7 [8] and
YOLOVS [9] are much higher than that of YOLOVS. In terms
of performance on the VisDrone test-dev dataset, YOLOAL’s
AP50 was 49.6 and mAP was 29.1, both higher than
YOLOvV7 and YOLOVS. Through GFLOPs, we can see that
the computational load of YOLOAL is only slightly higher
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TABLE 2. Comparison of performances on VisDrone test-dev for different
YOLO series models.

Methods Score threshold ~ AP50(%) mAP(%) GFLOPs
YOLOVS5 [10] 0.5 423 25.6 203.9
YOLOvV7 [8] 0.5 48.5 27.9 188.2
YOLOV8 [9] 0.5 47 28.3 257.4
YOLOAL(Ours)  0.65 49.5 29 188.3
YOLOAL(Ours) 0.5 49.6 29.1 188.3

than that of YOLOvV7, but much smaller than that of either
YOLOVS or YOLOVS.

Furthermore, we find that increasing the score threshold
leads to a decrease in detection accuracy. For instance,
setting a score threshold of 0.65 for YOLOAL results in a

128893



IEEE Access

X. Chen et al.: YOLOAL: Focusing on the Object Location for Detection on Drone Imagery

1.0
B —— pedestrian 0.745
—— people 0.640
= —— bicycle 0.492
—— car 0.909
0.8 —— van 0.637
—— truck 0.598
tricycle 0.534
—— awning-tricycle 0.299
bus 0.779
0.61 —— motor 0.729
_é = 3|l classes 0.636 MAP@0.5
E
a
0.4+
0.2
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

FIGURE 7. The precision-recall curve of YOLOAL on the VisDrone dataset. Precision is the proportion
of the positive data in data that is predicted to be positive, and recall is the proportion of the

positive data in data that can be predicted correctly.

TABLE 3. Comparison of performances on VisDrone validation for
different detection models. The size of the images is 1536. Results for
state-of-the-art (SOTA) are taken from the publications. We also report
the inference time per image.

Methods AP50(%) mAP(%) s/img(GPU)
CRENet [41] 54.3 33.7 0.901
DMNet [18] 47.6 28.2 -
CascadeNet [42] 58.02 30.12 -
MPFPN [43] 54.38 29.05 -
ClusDet [19] 56.2 324 0.773
SAIC-FPN [44] 62.97 35.69 2.568
MSCC-YOLOVS [45] - 36.1 -
DSDE-Net [46] 34.8 21.1 -
ROSD [47] 58.21 34.57 -
YOLOAL(Ours) 63.6 40.8 0.27

slight reduction (0.1) in AP50 and mAP compared to using
a threshold value of 0.5. Although the test results were
different, the ability of the model to perform object detection
remained unchanged. To ensure the rigor of the experiment,
the score threshold for the subsequent experiments is set to
0.65.

To evaluate the performance of the proposed model on
VisDrone, we compared our approach with the state-of-
the-art approaches. The detailed experimental results are
presented in Table 3.

CRENet [41] avoids anchor settings and cluster regions
overlapping by using coarse-level preview detection. ClusDet
[19] trains regionally generated networks using supervised
learning based on pseudo-generative annotations. SAIC-
FPN [44] uses scale-adaptive image cropping to detect
small objects with a higher resolution. These two-stage
object detection algorithms improve the accuracy of object
detection, but the processing also slows down the processing
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TABLE 4. Comparison of performances on DOTA for different detection
models. Results for SOTA are taken from the publications and the size of
images is 1024.

Methods AP50(%) mAP(%) s/img(GPU)
Faster R-CNN [6] 54.5 32.3 -

ClusDet [19] 47.1 31.4 -

AdaZoom [40] 63.5 37.8 0.599
YOLOAL (Ours) 61.2 39 0.10

speed. YOLOAL gets 63.6 in AP50 and 40.8 in mAP,
outperforming other methods in terms of accuracy while
maintaining a faster detection speed compared to other
methods. The precision-recall curve for YOLOAL is shown
in Figure 7.

YOLOAL also achieved good results on DOTA. Detailed
experimental results are presented in Table 4.

AdaZoom [40] constructs a reinforcement learning frame-
work to focus on region generation, where the scales and
aspect ratios of the generated regions are adaptive to the
scales and distribution of objects inside. This treatment helps
to improve the performance of the object detection model
and achieves good results in the AP50. At the same time,
this complicates object detection calculations and increases
the time required for detection. In comparison, YOLOAL
achieved a better result of 39% in mAP and a 1.2%
improvement compared to AdaZoom. We used a one-stage
object detection model to surpass two-stage object detection
models in terms of accuracy. At the same time, the model
detection speed was much faster than that under the same
conditions. The results validate that the proposed YOLOAL
algorithm is efficient for object detection in drone-captured
scenarios.
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TABLE 5. Comparison of performances on VisDrone validation for each category. The data obtained were the average of multiple tests. The FPS can
represent the speed of object detection, with higher values indicating that the model can detect more images per second. Some categories were
represented by the first three letters.

Methods  all(%) ped(%) peo(%) bic(%) car(%) van(%) tru(%) tri(%) awn(%) bus(%) mot(%) FPS

Model 1~ 35.5 35 24.8 19.9 64 41.5 385 28.4 15.8 53.4 33.6 19.5
Model 2  36.1 353 259 20.4 64.1 423 38.9 29.5 16.7 54.4 33.8 19.2
Model 3 36.7 353 254 20 64.7 43.8 40 30.1 17 56.3 34.1 19.8
Model 4 37 355 25.7 20.6 64.9 44.1 40 30.1 17.2 573 34.5 19.3
Model 5 39.5 39.2 28.1 24.2 66.8 46.2 429 329 19.4 58.2 37.5 11.4
Model 6 40.8 39.4 28.6 25.6 67.6 48.1 44.5 339 21 61.2 38.6 9.4

FIGURE 8. These are the visualization results of object detection. The image on the left is from YOLOv7, while the one on
the right is from YOLOAL. Pedestrians in the distance and children obscured by branches were not detected by YOLOv7.
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FIGURE 9. Graphs of training results for the VisDrone dataset.

F. ABLATION EXPERIMENTS tricycle, awning-tricycle, bus, and motor on the VisDrone
We list the mAP of six different models for each class and validation dataset. During the testing phase, the results for
compare them with each other in Table 5. To ensure the batches 1 and 32, and found no significant difference in
uniqueness and comparability of the experimental results, object detection accuracy between these two methods. When
we kept the pre-trained weights and training epochs consis- experimenting with batch 32, the FPS obtained was slightly
tent across all the models. However, we varied the model higher than that of batch 1, but the difference was negligible.
architecture and image size during training. The size of the We used the batch size 1 throughout our experiments to

training image was set as the same as the detection size. In this maintain consistency.

way, we obtained the experimental results with reference (1)Model 1 uses the input image size of 1024 and uses the

values. baseline model to train. (2) Model 2 uses the input image size
Table 5 shows the mAP of different models in different of 1024 and uses the baseline model with CCAM to train.

categories of pedestrian, people, bicycle, car, van, trunk, (3) Model 3 uses the input image size of 1024 and uses the
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baseline model with EIoU and Alpha 2 to train. (4) Model
4 uses the input image size of 1024 and uses the baseline
model with CCAM, EloU, and Alpha 2 to train. (5) Model
5 uses the input image size of 1536 and uses the baseline
model to train. (6) Model 6 uses the input image size of
1536 and uses the baseline model with CCAM, EloU, and
Alpha 2 to train.

From the comparison of the data in Table 5, we found that
the CCAM can improve the accuracy of object detection and
increase the number of model layers from 362 to 404, while
slightly reducing the FPS. Although there was a slight drop
in speed, using CCAM resulted in a noteworthy improvement
of 0.6% in accuracy when the image size was set to 1024.
Therefore, we believe that it is worth implementing.

Compared with CCAM, the improved loss function
achieves even higher detection accuracy improvement with-
out changing the number of layers in the object detection
model and slightly improves the FPS.

After combining the two methods, we observed a substan-
tial boost in object detection accuracy, but also experienced
a tiny decrease in FPS. When we increased the image size
of the training and test phases from 1024 to 1536, the object
detection accuracy significantly improved. When the image
size was 1536, our model obtained an mAP score of 40.8%,
which is a 1.3% improvement compared to the baseline.
Whether the image size is either 1024 or 1536 pixels, our
model performs better than the baseline and consistently
delivers better results across various types of objects.

Figure 8 shows the comparison results of YOLOv7 and
YOLOAL. The object confidence threshold is 0.5.

Figure 9 shows the changes in the evaluation metrics during
training. The Box is the mean of the loss function, and a
smaller value indicates that the difference between the true
BBox and prediction BBox is smaller. The values of Precision
and Recall increase as the number of epochs increases,
which means that the proposed method produces better model
parameters when optimizing the neural network. mAP@0.5 is
AP50, mAP@0.5:0.95 is mAP. These two values represent
the performance of the model for object detection. The higher
the value, the better the performance.

V. CONCLUSION

Inspired by the convolution block attention module and
loss function. In this paper, a one-stage detection model,
YOLOAL, is proposed by developing a lightweight network.
To address the challenge of identifying small objects in
drone-captured images, we design a new attention module,
CCAM, which enhances recognition ability by introducing
a coordinate mechanism into the module. To address the
issue that the width and height of CloU cannot converge
simultaneously, we use the EloU loss function combined
with Alpha-IoU, which improves the detection speed and
accuracy. The VisDrone and DOTA datasets are used to train,
validate, and test the model. The detection accuracy is 5.11%
higher than that of the classic two-stage object detection
algorithm SAIC-FPN and the speed is 9 times faster. Through
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the experiment, we can see that our YOLOAL performs well
in drone-captured scenarios.

To further improve YOLOAL, we will improve CCAM and
explore loss function enhancement methods. What’s more,
we will try to use stronger backbone to improve feature
acquisition capabilities.
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