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ABSTRACT Group activity recognition is a significant and challenging task in computer vision. The solution
of group activity prediction can be classified with traditional hand-crafted features, RGB video features, and
skeleton data-based deep learning architectures, such as Graph Convolutional Networks (GCNs), Recurrent
Neural Networks (RNNs), and Long Short-Term Memory (LSTMs). However, they rarely explore pose
information and rarely use relational networks to reason about group activity behavior. In this work,
we leverage minimal prior knowledge about the skeleton information to reason about the interactions from
group activity. The objective is to obtain discriminative representations and filter out some ambiguous actions
to enhance the performance of group activity recognition. Our contribution is a proposed Attention Relation
Network (ARN) that fuses the attentionmechanisms and joint vector sequences into the relation network. The
skeleton joints vector sequences are previously unexplored pose information and assign greater significance
attributed to individuals who are more relevant for distinguishing the group activity behavior. First, our
model focuses on the specified edge-level information (encompassing both edge and edge motion data)
within the skeleton dataset, considering directionality, to analyze the spatiotemporal aspects of the action.
Second, recognizing the inherent motion directionality, we establish diverse directions for skeleton edges and
extract distinct motion features (including translation and rotation information) aligned with these various
orientations, thereby augmenting the utilization of motion attributes related to the action.We also introduce a
representation of human motion achieved by combining relational networks and examining their integrated
characteristics. Extensive experiments were tested in the Hockey and UT-interaction datasets to evaluate
our method, obtaining competitive performance to the state-of-the-art. Results demonstrate the modeling
potential of a skeleton-based method for group activity recognition.

INDEX TERMS Group activity recognition, attention mechanism, relational network, skeleton joint director
sequences.

I. INTRODUCTION
Group activity recognition is a burgeoning area of interest
among researchers in computer vision, given its vast array
of potential applications, including but not limited to human-
computer interaction, security monitoring. References [1]
and [2], sports posture correction. Reference [3], automatic
driving [4], elderly person fall detection [5], medical and
healthcare [6], smart cities [7], and so on. With the advance-
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ment of deep learning technology, prior researchers have
extensively investigated group behavior recognition, mainly
focusing on RGB videos and skeletal data-based approaches.
These efforts have yielded numerous outstanding research
outcomes [8], [9], [10], [11]. However, recognizing human
behaviors amidst the complexities of visual scenes remains
challenging.

Given that the human skeleton in the video is pri-
marily depicted as a sequence of joint coordinate lists
obtained through pose estimator data. Reference [12], the
skeleton sequence can solely capture action information.
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It only encompasses pose details, excluding background
interference, such as background alterations and illumination
changes [13]. As a result, many activity recognition algo-
rithms based on Convolutional Neural Networks (CNNs),
RNNs, LSTM, and GCNs [14], [15], [16], and even more
derivative algorithms are springing up, such as TA-CNN [17]
and ST-GCN [9], and so on. Typically, these solutions entail
manually designed features and a classification technique
that theoretically incorporates the interdependencies among
various body parts. Subsequently, they generated a rigid
architecture heavily reliant on presumed prior knowledge of
the human skeleton structure.

Substantial existing works address various issues of human
skeletal joints in action recognition applications. For instance,
Abdullahi and Chamnongthai [18], [19] improved attributes
extracted from 3D skeletal videos acquired via a LeapMotion
controller are employed as a state transition pattern input to a
classifier for sign word classification, demonstrating state-of-
the-art performance on human action recognition for skeletal
3D data sets.

Additionally, existing algorithms integrate human gesture
information with neural network models or spatial and tem-
poral data fusion to better achieve group activity recognition.
These approaches have demonstrated remarkable achieve-
ments in terms of enhanced performance and accuracy.
However, these solutions seldom leverage the information
concerning the interplay between individual poses and the
interconnection between the postures of two individuals
engaged in interactions. Besides, most existing approaches
primarily concentrate on modeling information at the joint
level, neglecting the skeleton edge size and direction infor-
mation. However, combining these edge attributes, such as
the directionality of human motion, to portray the motion
variations information of the action plays a crucial role in
action recognition. From amodeling perspective, considering
the direction of the human body movement and the size of
the skeleton is more natural and logically sound. Not viewing
them may lead to suboptimal results.

In this work, we proposed an Attention Relational Net-
work (ARN). Starting from the input layer, the direction
of the human body’s movement individually pairs up the
joints of both individuals. Subsequently, fuse the skeleton
joint and temporal streams into independent relation mod-
ules. Then, the pair-wise inferred individual’s relationships
in the final stage of human interaction recognition. The
overview of ARN is summarized in Figure 1. The solution
is to improve the performance of group activity recognition
based on Interaction Relational Network (IRN) but con-
sider more cues of inter-individuals and intra- individuals,
such as the individual’s inward and outward motion edge
attributes. In the initial phase, re-structuring the poses across
the video with inward vector sequences and outward vector
sequences as input. The features representing the joints as
independent objects as the IRN [20] did, comprising the
coordinates from multiple frames for the joint and temporal
streams separately. Then, we pair-wise inferred individual

relationships in the final stage of the attention relational
network.

FIGURE 1. Overview of the proposed attention relational network (ARN)
architecture.

We propose two relationship mappings for our specific
designing modeling problem: an inward vector sequence of
inter-person mapping, which pairs joints from one body with
joints from the other body, and an outward vector sequence
of intra-person mapping, where joints from the same body.
Remarkably, the Relation Modules within the same relation-
ship mapping share weights, enabling them to learn about the
prevailing relations between joints and discern those pivotal
for interaction recognition, all based on the provided data.

Subsequently, the descriptions generated by all the Rela-
tionModules are pooled and directed to a module responsible
for interpreting this arrangement of relations and perform-
ing appropriate classification. Moreover, we have devised
various fusion techniques to combine the two defined types
of relationships. By leveraging both forms of information,
we achieve enhanced recognition accuracy. Our research
underscores the significance of selecting an appropriate
fusion architecture and initializing it with suitable models
before commencing training.

We validate our approach through experiments on a tra-
ditional human interaction recognition dataset: The hockey
[21] and UT-interaction [22] datasets. Our proposed solution
demonstrates competitive performance to the state-of-the-art
on these mutual action datasets.

Our contribution can be briefly summarized as follows:
1. We propose a novel solution to skeleton-based group

activity recognition, combining the individual motion edge
attributes, treating individual body parts derived from
pose information as independent objects, and establishing
pair-wise relationships between them.

2. We assess and devise effective fusion methods
for diverse relationships, harnessing their complementary
aspects to enhance overall performance. Extensive experi-
ments were evaluated on The Hockey and UT-interactions
datasets, which obtained promising performance.
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3. We further enhance the relational network formulation
and expand design ideas for group activity recognition. Fol-
lowing the attention mechanism, our solution enables it to
autonomously augment its input with pertinent information
extracted from the input pair.

Recent developments in skeleton-based Group Activity
Recognition have highlighted the effectiveness of [23] as
a potent feature extraction method, surpassing RGB frame-
works in terms of efficiency and robustness. However, the
potential loss of crucial cues, such as contextual informa-
tion, when utilizing skeleton data can hinder the distinction
of ambiguous actions, resulting in misclassification. Prior
research in group activity recognition predominantly relied
on RGB videos [8] and diverse feature sets, overlooking an
essential aspect: the motion relationships [24] between inter-
acting body parts. Understanding these motion relationships
is imperative for comprehensive group activity recognition.
Notably, incorporating joint size and motion direction infor-
mation through additional channels or fusion techniques can
significantly enhance the network’s ability to capture indi-
vidual characteristics, discriminate between activities, and
generalize across diverse group dynamics, ultimately leading
to improved performance and more accurate group activity
recognition. The contributions collectively form the novel
Attention Relational Network architecture, which is simple
yet highly effective and efficient. By conducting extensive
validation on substantial datasets, we attain state-of-the-art
performance, demonstrating the resilience and effectiveness
of the proposed solution.

In this novel endeavor, we introduce an enhanced archi-
tecture for relationship fusion, capitalizing on higher-level
inferred connections. Another significant addition in this
manuscript involves the integration of the Attention mech-
anism into our framework, facilitating temporal relational
reasoning and the capacity to reason across the entire inter-
action sequence. To comprehensively evaluate our proposed
approach, we conducted experiments on two additional
datasets with demanding characteristics: UT-Interaction,
where pose estimation was required, and Hockey dataset,
featuring numerous diverse classes. Lastly, in this recent
research, we conducted a more comprehensive qualitative
analysis, utilizing confusion matrices and a bar chart to assess
performance across interaction classes.

To the best of our knowledge, this work first attempts to
study the effectiveness of skeleton joint vector sequences
with the ARN for group activity recognition. Our paper is
structured as follows. Part. 2 reviews the related work of the
topic. Part. 3 presents the overview of the interaction rela-
tional network. Part. 4 elaborates on the experiment datasets,
details, results, and ablation studies. Finally, Part 5 contains
a conclusion, discussion, and future work.

II. RELATED WORK
A. SKELETON-BASED GROUP ACTIVITY RECOGNITION
The primary objective of skeleton-based group activity recog-
nition is to classify action categories utilizing 3D coordinate

data of the human body. With the development of deep
learning and neural networks, current group activity recog-
nition methods mainly include RNN. References [25] and
[26], CNN [27], [28], and GCN-based models [29], [30],
[31], [32]. Among these methods, RNN [14] has proven
effective in handling time series data by establishing recursive
connections and enabling feature extraction and classification
after converting the skeleton sequence into a one-dimensional
time series. To enhance the temporal context learning abil-
ity, improvements in standard RNNs have emerged, such
as LSTM [18], [33], [34], [35], [36] and Gated Recur-
rent Unit (GRU) [34]. However, RNNs suffer from poor
spatial modeling ability, difficulties dealing with long-term
dependencies, and issues with exploding or vanishing gradi-
ents, leading to unsatisfactory recognition accuracy. On the
other hand, CNNs excel in spatial feature extraction but
are primarily used for image-based tasks. While successful,
CNN-based methods encounter challenges like high compu-
tational requirements and parameter count. To fully utilize
the topological graph structure of the human skeleton and
capture spatial dependency between joints, GCNs [37] were
introduced. Li et al. [38] proposes a Graph Diffusion Con-
volutional Network(GDCN) approach that integrates graph
diffusion and GCNs for enhanced two-person action recog-
nition. Yan et al. [9] proposed the ST-GCN architectures to
represent the skeleton sequence as a spatial-temporal graph,
enabling comprehensive capture of human behavior’s spatial-
temporal change relationship and achieving unprecedented
recognition accuracy. However, those methods rarely explore
pose information and rarely use relational networks to reason
about group activity behavior. They disregard the magnitude
and orientation details of the skeletal edges, crucial for action
recognition, potentially leading to suboptimal outcomes in
these methodologies. Furthermore, integrating the directional
aspects of human motion to depict variations in action
dynamics, a more intrinsic and rational approach to model-
ing action sequences, remains largely overlooked in current
methodologies.

B. RELATION NETWORK
The architecture of the Relational Network was initially
designed by Santoro et al. [39]. The network’s ability to
reason about the relationships between entities and their prop-
erties is crucial for achieving generally intelligent behavior
[40]. The network solves the problems for neural networks
to generally intelligent behavior. The authors evaluated that
it covers not only distinct purposes, question-answering, and
physical modeling but also different types of input data, such
as visual, textual, and spatial state-based [20] information.
Which through three tasks: First, they experimented with
the CLEVR dataset to achieve visible question answering
(QA) super-human performance; Second, test-based question
answering through the bAbI suit; Finally, complex reasoning
about dynamic physical systems. Some previous researchers
expanded the RNs to Video QA. Such as Hierarchical
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Relation Attention (HRA) [41] joins attention modules, and
Ibrahim and Mori [42] proposed a hierarchical relational
network for group activity recognition.

Benefit from the ability of the Relation Networks to handle
relational reasoning, reduce overall network complexity, and
gain a general power to reason about the relations between
entities and their properties, the RNs are receiving increasing
attention from researchers. Perez et al. [43] The proposed
Interaction Relation Network(IRN) for mutual action recog-
nition uses pose information for Human Interaction Recog-
nition. Most importantly, it is the first model that extends
the RNs for reasoning domain and application. Besides, for
group activity recognition, to directly reason about the person
interactions, Perez et al. [44] designed Group Interaction
Relational Network(GIRN). The authors leverage the skele-
ton information, including joint relations that were previously
not considered, to learn the interactions between the individu-
als and obtain competitive performance results. However, not
only are those solutions usually designed to be complex, but
they also rarely explore pose information and rarely use rela-
tional networks to reason about group activity behavior. They
disregard the magnitude and orientation details of the skeletal
edges, crucial for action recognition, potentially leading to
suboptimal outcomes in these methodologies.

To our knowledge, no study is available on motion direc-
tion and joint size fusion with Attention Relation Networks.
Figure 2 shows the ARN architecture for skeleton-based
group activity recognition. Our contribution is to leverage
minimal prior knowledge about the skeleton information to
reason about the interactions from group activity.

III. OVERVIEW OF THE INTERACTION RELATIONAL
NETWORK
The Interaction Relational Network(IRN) proposed by Perez
et al. [20], [43], which adapted to action recognition for
processing directly the joints’ information. They drive the
relation network to identify how to relate the body parts of
the individuals interacting. To better understand the IRN, let’s
look at the Relation Network(RN) [39].
The Relation Network proposed by Santoro et al. [39], its

simplest form is the following equation below:

RN (O) = f8(
∑

i,j
gθ (Oi,Oj)) (1)

Equation (1) lets O be a set of objects where each ith object
is represented by an arbitrary Rm vector, containing its prop-
erties. The function g, with learnable parameters θ , serves as
the Relational Module, modeling relationships between input
object pairs.Meanwhile, function f, with trainable parameters
ϕ, performs reasoning based on the combined relationships
inferred by gθ .
The RN architecture is a versatile formulation for vari-

ous data types, enabling easy modifications to incorporate
extra input information and relationship types as long as
objects are paired with shared weights. Perez et al. [20], [43]
inspired by RN architecture, they derived three relationships:

Inter-person Relationships, Intra-person Relationships, and
Fusing Relations—corresponding to equations (2), (3), and
(4), respectively.

IRN inter (P1,P2)

= f∅

∑
i,k

gθ

(
j1i , j

2
k

)
⊕

∑
i,k

gθ

(
j2i , j

1
k

) (2)

In theory, f∅ and gθ can represent Multi-Layer Percep-
trons (MLPs) characterized by trainable parameters ϕ and θ ,
respectively. Notably, it ⊕ can encompass various pooling
operations, including summation, maximization, averaging,
or concatenation [43]. However, based on our experimental
findings, we have opted to employ the averaging operation
due to its superior performance.

IRN intra (P1,P2) = f∅′ (
N∑
i=1

N∑
K=i+1

g2(j1i , j
1
k )

⌢
∑N

i=1

∑N

K=i+1
g2

(
j2i , j

2
k

)
(3)

Given that the intra-personal relationships among the joints
can yield valuable information, we introduce an alternative
architecture in which the joints of each individual are paired
with the corresponding joints from the same individual.
In this scenario, bidirectional pairing is unnecessary, as the
paired joints originate from the same individual. Our prelim-
inary experiments have shown that such bidirectional pairing
can introduce unnecessary redundancy into our model and,
in some instances, may even contribute to overfitting. The
aggregated output from each individual is concatenated (⌢)
before being processed through function f, characterized by
its trainable parameters ∅.

IRN inter+intra (P1,P2)

= f
∅

′′ (
∑
i,k

gθ

(
j1i , j

2
k

)
⊕

∑
i,k

gθ

(
j2i , j

1
k

) N∑
i=1

N∑
K=i+1

g2

(
j1i , j

1
k

)

⌢
∑N

i=1

∑N

K=i+1
g2

(
j2i , j

2
k

)
) (4)

Conclusively, we propose an architecture that amalgamates
both categories of relationships within a unified function f
(parametrically defined by ∅), achieved through concate-
nating the pooled information from each function g, each
governed by its distinct parameters θ and 2.

Initially, Perez et al. [20], [43] extract information from
each joint separately (jn) across frames. Subsequently, the
set of joints from both individuals (Pn) serves as input to
our architectures, IRN inter and IRN intra. Each architecture
models different relationships among the joints and can inde-
pendently predict the action. Additionally, the models can be
fused as IRN inter+intra, leveraging both relationship types for
improved prediction accuracy.
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FIGURE 2. Illustration of the ARN architecture for skeleton-based group activity recognition. First, in the input layer, human body joints move inward and
outward, and vector direction sequences were pre-extracted. Then, the direction of the human body’s movement individually pairs up the joints of both
individuals. Subsequently, fuse the skeleton joint and temporal streams into independent relation modules with an attention mechanism. Furthermore,
the pair-wise inferred individual’s relationships in the final stage of human activity recognition.

IV. ATTENTION RELATIONAL NETWORK
A. REBUILT EDGE-LEVEL INFORMATION
Given that the skeletal edges, formed by contiguous joints
of the human physique, adhere to the anatomical framework
of the human form, employing directional edge-level data
to portray the spatio-temporal attributes of the action holds
greater validity. Figure 3 shows that we leverage the inward
and outward direction sequences to rebuild the skeleton
edge-level information to represent activity motion features.

FIGURE 3. Illustration of the human body 15 skeleton joints with
direction. The center joint is the red one. (a) human body skeleton joints
with an inward direction, the arrow pointing to the center joint, and
(b) human body skeleton joints with an outward dir ection, the arrow
pointing to opposite the center joint.

B. GENERATE MOTION DIRECTION INFORMATION
Since the human body motion is closely related to the edge
vector itself, in this paper, we define the angle between pose
before (Figure 4 (a)) and pose after (Figure 4 (b)) two edges

in Euclidean n-space [45] as An(a, b), can be simple drive the
following equation [46], [47]:

An (a, b) = cos−1
(

a • b
∥a∥∥b∥

)
(5)

where a is the pose before the human bodymoves edge vector,
and b is the pose after the human body moves edge vector.

FIGURE 4. Illustration of skeleton motion information in different
directions. (a) pose before the human move, remarked blue color, and
(b) pose after the human move, remarked red color.

Also, we define the joint moved distance as Dn, the
equation is defined as follows:

Dn
(
Jm, J ′

m
)

=

√
(J1 − J ′1)2 + (J2 − J ′2)2 + . . . + (Jm − J ′

m)2 (6)

where Jm is one of the skeleton joints, which pose move
before, and J ′

m is the same joint move after.
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C. ATTENTION MECHANISM
While engaging in the same group activity, each individual
may assume distinct roles during execution [44]. Some joints
can be more crucial or discriminatory in determining the
specific activity. Hence, instead of naively averaging the
relations from all players.We applied an attentionmechanism
[48] to our architecture to assign greater weight to potentially
significant individuals. This approach enhances the model’s
ability to focus on key contributors within the group activity
recognition process.

V. EXRIMENTS
A. DATASETS
1) THE HOCKEY PENALTY DATASET
Reference [21] includes five Slashing, Holding, Tripping,
Hooking, and No Penalty classes, with 76, 80, and 98 clips,
respectively. The multi-person videos in this study depict
intricate interactions between players within a non-laboratory
recording setup. This dataset consists of multi-person videos
capturing complex player interactions in a real-world record-
ing setup. Collected from National Hockey League (NHL)
broadcasts, it comprises three classes: No Penalty, Tripping,
and Slashing, with 98, 80, and 76 videos, respectively. The
clips are two to six seconds long, recorded at 30 fps, and pre-
sented in actual speed or slow-motion replays. Each penalty is
entirely encompassed within the clip’s duration, with the clip
starting before and ending after the penalty. The dataset poses
challenges like view variation, camera motion, occlusions,
blurry frames, and complex interactions. It offers ground-
truth pose annotations for all players in each clip, including
14 body key points and two hockey stick endpoints [49].

2) UT-INTERACTION DATASET
Reference [22] is a six-type, two-person interactions human
action dataset. The six classes of interactions comprise
10 non-periodic atomic-level actions, such as Shaking hands,
pointing, hugging, pushing, kicking, and punching are
included. The dataset consists of 10 atomic actions, including
stretch arm, withdraw arm, stretch leg, lower leg, and shift
forward of left and right directions, forming the interactions.
It comprises 10 sets, each featuring videos of different pairs
of individuals engaged in all six interactions. Sets 1 to 4 show
two interacting persons, while sets 5 to 8 involve interacting
persons and pedestrians. Sets 9 and 10 depict several inter-
acting persons performing activities simultaneously. Each
set presents distinct backgrounds, scales, and illuminations.
Across the dataset, 6 participants executed activities under
10 different clothing conditions, resulting in 60 interactions
and over 180 atomic actions.

B. IMPLEMENTATION DETAILS
1) INPUT LAYERS
This work uses the Hockey and UT-interactions datasets as
data sources. We used the skeleton information extracted
by the OpenPose [50] tool. Then, we generated them to

our project’s sequences format to facilitate the next phase,
classifying them as inward and outward vectors, respectively.

2) MLPS CONFIGURATION
For the MLPs configuration, we have fine-tuned the hyper-
parameters described here during initial tests. In this work,
we built the ARN as an MLP, with the first three layers
having 1000 units each and the least with 500. Meanwhile,
f8 contains a dropout layer for the input, with a dropout rate
of 0.10 for ARN inter and 0.25 for ARN intra and ARN inter+intra.
Then, five fully connected layers with 100, 150, 200, 500, and
200 units are connected to a Softmax layer to perform the
video classification. Moreover, training was carried out with
the Adam optimizer, a learning rate setting 1e-4, and weight
initialization using a truncated normal distribution with a zero
mean and 0.045 standard deviations.

TABLE 1. Our result compares with previous methods on the hockey
dataset.

3) MODELING
During the modeling phase, we also trained and randomly
switched the input order between the joints of the people to
help with generalization, which was significantly beneficial
for the ARN intra architecture to avoid bias on the order of
the concatenated feature generated after the g2. The settings
for ARN inter+intra parameters θ and 2 are adjusted and based
on the weights obtained previously by training ARN inter and
ARN intra respectively. Meanwhile, the parameter ϕ is initial-
ized at random.

4) JOINTS AND FRAMES SAMPLING
For the Hockey dataset, we sampled only 15 of them, analo-
gous to what is provided by the UT-interactions data. For the
Hockey dataset, since the videos are shorter and the frame rate
is lower (15 FPS), we used the central 10 consecutive frames
as a sampling for our input feature. For the UT-interactions
dataset, we first sample half of the frames alternately, then
sample the central 32 frames. Our input now has a wider
temporal range. Since they are likely to include the more
pertinent elements of the encounter, we have opted to sample
the center frames.

5) OUTPUT LAYERS
In the output CSV file, we list the results of the training
model, including the accuracy, precision, recall values, etc.
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TABLE 2. Result from our methods on the UT-interaction dataset. Experiments were conducted on sub-datasets UT-1 and UT-2 to evaluate the network
performance and average accuracy.

FIGURE 5. Confusion matrices for UT-interaction dataset with methods:(a) ARNinter , (b) ARNintra, (c) ARN(inter+intra).

This layer makes observing experimental outcomes and sta-
tistical information more accessible for us.

C. EXPERIMENTAL RESULTS
To evaluate our proposed methodology with the accuracy
matric, we first report our best results on the Hockey dataset,
shown in Table 1. Here, we compared previous work results
to our completed method.

In this experiment, our baseline architectures,ARN inter and
ARN intra, achieved accuracies of 92.14% and 95.36%, respec-
tively, demonstrating the successful mapping of various
relationships in the skeleton-based group activity recog-
nition problem. Attempting to fuse the two models by
simply averaging their scores proved ineffective, yielding
lower performance than only ARN inter . Conversely, our
approach of integrating the models into a single architecture

(ARN inter+intra) exhibited better correlation among distinct
types of relationships, resulting in a slight performance
improvement.

Comparing our best results for the Hockey dataset in
Table 1 with those of previous works, it becomes evident that
our approach, ARN inter+intra has achieved markedly superior
accuracy compared to the previous methods. It is crucial
to emphasize that our approach currently relies on a fixed
number of sampled frames. Specifically, we utilized only
10 frames for the SBU dataset. In contrast, most other meth-
ods can use all frames within the videos, thus incorporating
more information than our proposed solution.

Table 2 presents the results of our experiments on the UT-
interactions dataset. In contrast to the previous approaches,
our ARN inter architecture exhibited superior performance
compared to previous methods, with a notable difference of
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1-3% higher accuracy. Nevertheless, the fusion of architec-
tures remains advantageous, and the ARN inter+intra fusion
architecture achieves equivalent performance. Moreover, our
approach outperforms previous studies on the UT-2 dataset.
It demonstrates that our solution possesses certain advan-
tages.

D. ABLATION STUDY
In this section, we evaluate the performance of our algorithms
from a quantitative analysis perspective for a more compre-
hensive performance analysis of our method and to visually
identify variations in results between our implementations
with the UT-dataset, we present the ARN inter , ARN intra, and
ARN inter+intra confusion matrices in Figure 5, respectively.
The figure contains the confusion matrices for all ARN

architectures. Focusing first on the three-confusion matrix,
consistent confusion, including Handing Shaking, Hugging,
kicking, Pointing, Punching, and Pushing, can be seen for the
same type of activities. Notably, the two relationship models
exhibit confusion in distinct interaction cases. For instance,
the ‘‘Inter’’ (ARN inter ) model displays confusion between
‘‘Pushing’’ and ‘‘Handing Shaking,’’ whereas the ‘‘Intra’’
ARN intra model does not. This confusion is significantly
reduced when both models are combined in ‘‘Inter+Intra.’’
(ARN inter+intra). Moreover, interaction classes that were pre-
viously confused by both models, such as ‘‘Pushing’’ and
‘‘Shaking Hands,’’ are nearly entirely distinguishable from
‘‘Inter+Intra.’’ This qualitative analysis indicates the effi-
cacy of our proposed architecture in preserving the strengths
of both relationship models and harnessing their comple-
mentary attributes to differentiate even more challenging
cases.

VI. CONCLUSION, DISCUSSION, AND FUTURE WORK
A. CONCLUSION
In this work, we proposed a novel Attention Relational
Network (ARN) architecture for skeleton-based group activ-
ity recognition. We demonstrated its substantial value for
two-person activity recognition, leveraging pose informa-
tion to analyze the relationships among different body parts
during the actions. Our proposed solution achieved promis-
ing performance on the conventional interaction dataset
UT-interactions, and it also outperformed other approaches
on the Hockey dataset subset involving mutual activities
exclusively.

B. DISCUSSION
Table 2 shows that our method performs equivalent to the
state-of-the-art (SOTA) on the UT-interactions dataset and
achieves SOTA results on the subset UT-2. Perez et al. [43]
presents 98.27% and 96.65% accuracy on datasets UT-1 and
UT-2, respectively. What’s more, the average accuracy is up
to 97.47%. In this paper, we demonstrated how to adapt the
skeleton-based Attention Relation Network for interaction
recognition from group activity. Specifically, our proposed

method fuses the attention mechanisms and joint vector
sequences into the relation network. The skeleton joints
vector sequences are previously unexplored pose informa-
tion and assign greater significance attributed to individuals
who are more relevant for distinguishing the group activ-
ity behavior. Evaluate the Hockey dataset, Askari et al.
[21] reports 93.93% accuracy using RNN equipped with
a time-varying attention mechanism, our baseline architec-
tures, ARN inter and ARN intra, achieved accuracies of 92.14%
and 95.36% respectively, demonstrating the successful map-
ping of various relationships in the skeleton-based group
activity recognition problem. Then, we attempted to fuse the
two models by simply averaging their scores, but proved
ineffective, yielding lower performance than only ARN inter .
Conversely, our approach of integrating the models into a
single architecture (ARN inter+intra) exhibited better correla-
tion among distinct types of relationships, with an outcome
of 94.12% accuracy a slight performance improvement.

C. FUTURE WORK
We will extend our achievements, providing the ARN with
higher-level information, such as features derived from an
LSTM or Graph Convolutional Network (GCN) approach,
which may yield improved results. Our method still has room
to improve by emphasizing commonality over individuation
for group activity recognition.
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