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ABSTRACT The exponential increase in textual unstructured digital data creates significant demand
for advanced and smart stemming systems. As a preprocessing stage, stemming is applied in various
research fields such as information retrieval (IR), domain vocabulary analysis, and feature reduction in
many natural language processing (NLP). Text stemming (TS), an important step, can significantly improve
performance in such systems. Text-stemming methods developed till now could be better in their results
and can produce errors of different types leading to degraded performance of the applications in which
these are used. This work presents a systematic study with an in-depth review of selected stemming works
published from 1968 to 2023. The work presents a multidimensional review of studied stemming algo-
rithms i.e., methodology, data source, performance, and evaluation methods. For this study, we have chosen
different stemmers, which can be categorized as 1) linguistic knowledge-based, 2) statistical, 3) corpus-
based, 4) context-sensitive, and 5) hybrid stemmers. The study shows that linguistic knowledge-based
stemming techniques were widely used for highly inflected languages (such as Arabic, Hindi, and Urdu) and
have reported higher accuracy than other techniques. We compare and analyze the performance of various
state-of-the-art TS approaches, including their issues and challenges, which are summarized as research
gaps. This work also analyzes different NLP applications utilizing stemming methods. At the end, we list
the future work directions for interested researchers.

INDEX TERMS Text stemming, information retrieval (IR) systems, text classification, stemmer evaluation,
technological development, natural language processing (NLP).

I. INTRODUCTION
The use of digital data and its online and offline processing
has increased the size of textual data in multiple languages
exponentially [1]. Consequently, a large volume of data is
hosted on the web in various languages. This data is either
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organized or unorganized and requires efficient processing
for extracting useful information and insights. The organiza-
tions are now building data lake houses that can contain both
structured and unstructured data with data mining as a basic
business requirement. Similarly, specialized applications like
IR systems, data summarization applications, and question-
answering-based chatbots are also candidate applications for
efficient stemming methods [1]. Stemming is a process of
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extracting the base form of the given word by removing
its affixes. It is also recognized as a useful preprocess tool
in many NLP applications [2]. Stemming is applied in a
variety of applications such as information retrieval (IR), nat-
ural language processing (NLP), search engines, and domain
vocabulary analysis as a preprocessing stage. Relevant pro-
cessing and preprocessing tools are essential to process the
textual content for these applications. At the start of NLP
research, language processing tools were developed only for
the English language however with time other languages
received the focus of application developers and researchers,
and tools for those languages also started developing. In an
IR and NLP domain, the text pre-processing tools for anal-
ysis at the lexical, syntactic, morphological, and semantic
levels are always required including text stemming. The
researchers have proposedmultiple TS algorithms for various
national and international languages such as English, Arabic,
Urdu, Chinese, German, French, and Italian. We surveyed
papers from 1968 to 2023, but we selected the time frame
from 2016 to 2022 to show the term ‘‘stemming’’ trend in
Natural Language Processing (NLP). This is because the time
frame from 2014 to 2022 covers the most recent and up-
to-date research in the field. Google Trends data shows the
increasing popularity of stemming in nlp as depicted in Fig. 1.

FIGURE 1. Interest in ‘‘stemming in nlp’’ since 2016 according to Google
Trends (https://trends.google.com/trends).

Traditional methods for TS systems depend on linguis-
tic knowledge, making the system language-dependent and
language-specific with a high maintenance cost. On the
other hand, the language-independent stemmers require a
smaller-sized annotated dataset. Several issues associated
with language-independent stemmers may include the selec-
tion of the appropriate threshold setting and performance
dependence on selected parameters [2]. The context-sensitive
approach is another choice to develop a stemmer [1]
where stemming is performed based on query words.

Statistical stemming methods are language-independent,
cost-effective, and easily adaptable; however, these appro-
aches depend highly on annotated corpora. Large, annotated
corpora are the initial and necessary steps of the statistical
stemmers. Developing a stemmer for scarce resource lan-
guages is challenging [2].

Several state-of-the-art studies were conducted to inves-
tigate the diverse approaches of the TS systems. Most of
them are focused on stemmers pertaining to certain languages
or mainly dependent on analyzing the specific stemming
approaches. Various survey studies [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15] did not con-
sider performance influence factors, issues, and challenges
to develop TS systems. Also, those studies were not dis-
cussed and analyzed using various TS evaluation parameters
and mechanisms. In contrast to existing surveys, this paper
highlights the status of past and recent advancements in TS
approaches. The critical survey is presented in this article to
help the research community in developing an effective solu-
tion to TS systems. For this reason, we have categorized the
existing TS approaches into five categories: linguistic knowl-
edge, statistically based, corpus-based, context-sensitive, and
hybrid-based approaches.We analyze themerits and demerits
of each approach in detail. In this review article, we have
also identified several issues and challenges. We examined
the factors that influence the performance of the TS process.
So, these critical points must be considered when proposing
a new TS solution.

A. CONTRIBUTION
Here is the list of main contributions of this research:

1. It provides a comprehensive overview of stemming
techniques in a variety of language families. The detailed
functionality of text-stemming methods is present and high-
lights their distinctive features. Performance analysis of the
studies is provided as summarized tables to emphasize the
features, benefits, and weaknesses of various TS techniques.

2. It analyzes and compares the performance evaluation
metrics used in various languages’ stemming methods. This
comparison has considered the effects of dataset size, the
nature of the data, and the choice of performance metrics.
The merits and demerits of each evaluation metric are also
discussed in detail.

3. It Identifies the issues and challenges faced in the design
of text stemming algorithm including the factors that influ-
ence the performance of TS. We also point out various open
questions related to language-independent stemming such as
learning rules, learning semantic relations from the corpus,
tuning statistical parameters, and using direct and indirect
evaluation mechanisms.

4. Table 1 shows the research queries for research in the TS
process.

The remaining paper is organized as follows. Section II
describes TS systems and their usage as a preprocessing
step in various NLP applications. A discussion of the related
literature work is given in section III. In Section IV, the major
text-stemming techniques are divided into four categories,
and each category is critically analyzed and highlights the
strengths and weaknesses of each text stemming technique.
Section V portrays the performance comparison and analysis
of text stemming evaluationmechanism. SectionVI examines
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TABLE 1. The summary of research questions.

the various factors of text stemming that affect the perfor-
mance of a stemmer. Section VII lists the various issues and
challenges of TS and proposes the future research directions.
Finally, concluding remarks are given in section VIII.

II. BACKGROUND
Text stemming is a morphological process to reduce a word to
its standard form known as the root, by striping the attached
affixes (prefixes, or/and suffixes, infixes) [2]. A root is a
concrete word that is no longer divided into meaningful mor-
phemes. For instance, in Fig. 2, we have presented various
word forms of the root word ‘‘consider’’. A perfect stem-
mer must condense all such variant words of the root word.
Usually, a stemmer may commit three types of errors: under-
stemming, over-stemming, and mis-stemming [16]. When a
part of the attached affix (prefix and/or suffix) is removed
instead of a complete affix (prefix and/or suffix), that is
known as an Under-stemming error. The over-stemming error
occurs when some part of the query word is cut off along with
the whole affix. The miss-stemming refers to the mistakenly
chopping off the actual part of the input word.

FIGURE 2. Example of variant word forms of ‘‘consider’’.

Many researchers utilized the TS algorithms as a pre-
processing step in many texts/document analysis systems
along with NLP systems to enhance the effectiveness of their
systems. Here is the non-exhaustive list of TS uses in various
applications.

A. INFORMATION RETRIEVAL (IR)
The TS aims to resolve the core issue of IR systems known
as the vocabulary mismatch issue [17]. This issue arises when
a query word does not match the various word forms found
in the user query relevant documents. As an example, all the
words shown in Fig. 3 would not be retrieved, because none of
themmatch the user’s query. Hence, the vocabularymismatch
problem is significantly reduced.

FIGURE 3. An example of vocabulary mismatch problem in IR systems.

Considering Fig. 3 example, the stemmer has reduced the
query word ‘‘enjoyment’’ to ‘‘enjoy’’. In fact, all the words
first are stemmed then are matched with query word ‘‘enjoy’’.
In this way, all six words match with the user query. Ref-
erence [18] demonstrated that this TS process improved the
effectiveness of IR systems.

B. MACHINE TRANSLATION SYSTEMS
An automated translation process that translates the
text/speech from a source language to the target language
forms the basis of machine translation (MT) systems. Studies
like [19], used the stemming algorithm as a pre-processing
step in English to the Indian language translation system.
It proved the suffix separation can improve the performance
of MT systems. Reference [20] indicated the use of stemmer
to improve the performance of the Serbian to English MT
system.

C. TEXT SUMMARIZATION SYSTEM
Text summarization systems read a large corpus of text and
attempt to summarize the given text. As an example, the
work in [21] validated the use of stemmer for the Arabic text
summarization system resulting in improved performance.

D. SENTIMENT ANALYSIS SYSTEMS
These systems play an important role in analyzing social
media text. Works like [2] have used TS, word removal,
and tokenization as preprocessing tools in the sentiment
analysis system [22]. Reference [23] Studied the sentiment
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analysis systems and concluded that the tokenization, TS and
stop words removal improve the performance of the system.
Another work [24] evaluated the Arabic stemmer and con-
cluded that the stemming helps improve sentiment analysis
systems’ performance.

E. NAMED ENTITY RECOGNITION (NER)
It is a challenging task for information retrieval systems.
A preliminary step of the NER system involves tokenization,
stop word removal, and stemming [25]. The study [26] shows
that the stemming can reduce the vocabulary size, which
eventually reduces the computation cost and increases the
performance of the system.

F. QUESTION ANSWERING SYSTEMS (QAS)
Automatic recognition of questions and generating their
answers is another challenging task. The authors in [27]
demonstrated the use of morphological analyzers, such as
stemmer, to increase the recall of the retrieval in QAS
systems.

G. TEXT CLASSIFICATION AND CLUSTERING
Reference [28] experimentally verified that stemming is
also helpful in text classification systems. Authors in [29]
Evidenced the text-stemming process is used to enhance
the effectiveness of the text classification system. More-
over, stemming improved the performance of clustering
algorithms [30].

H. PART OF SPEECH (POS) TAGGING
In some languages, new words are concatenating morphemes
like in agglutinative languages (Turkish, Hungarian, Korean,
and Japanese). Agglutinative languages possess a multitude
of morphological forms originating from a single word,
leading to the emergence of the out-of-vocabulary (OOV)
problem. This occurs due to the vast array of possible word
variations within the language. To obtain the root of such
words, the use of POS improves the performance of the NLP
systems [31].

I. AUTOMATIC SPEECH RECOGNITION (ASR)
Many morphological changes are observed in speech data,
increasing the vocabulary size exponentially and making the
task challenging. In [32] researchers exhibited the positive
influence of an ASR system and [33] confirmed that the
stemming reduces the variant forms of words and improves
the performance of an ASR system.

Stemming is used in a wide range of NLP applications such
as text mining [9], word embedding [34], spell checkers [2],
and tracing software engineering artifacts [35]. It is also
used to extract various features and reduce the dimension
of the feature vector to improve the system’s performance.
A comparative overview of the reviewed work is presented
in Table 2.

TABLE 2. Summary of existing survey papers on TS.

A comprehensive evaluation and comparison of TS per-
formance evaluation metrics is provided in [14]. In another
work, Jabbar et al. [2] provided a detailed analysis of
Urdu text-stemming algorithms. A comparative study is
made by Kanan et al. [15] about the Arabic stemmer of
Khoja, p-stemmer, and light10 stemmer. A multi-language
(Arabic, Persian, and Urdu) stemming study is made by
Jabbar et al. [3] to analyze different stemming methods and
their applications in NLP.

1. Mustafa et al. [4] discuss the Arabic morphology and
compare the Root-Based Stemmer, Light-Based Stemmer,
Statistical Stemmer, Tagging Stemmer, and Artificial Intel-
ligence based to Stemming approaches.

Here is a short list of selected studies that review the
prominent stemming methods in different languages:

1. Singh and Gupta [5]: provide the systematic analy-
sis of language-specific and independent stemming
techniques.

2. Singh and Gupta [6]: The authors reviewed the appli-
cations of text stemming by comparing statistical and
linguistic stemmers.

3. Dahab, Ibrahim, and Al-Mutawa [7]: examined Arabic
stemmers, discussed their limitations, and demon-
strated their usage in NLP applications.

4. Reference [9] studied the Persian stemmers and clas-
sified them into structural, statistical, and lookup table
stemmers.

5. Moral et al. [10] mainly discussed the English stemmer
and their usage in information retrieval.

6. Otair [11] compared the commonly used light stem-
mers in terms of affixes lists, and algorithms, and
evaluated their performance in information retrieval
applications.

7. Gupta and Lehal [12] surveyed common stemming
techniques for Indian languages.

8. Anjali, Jivani, and Anjali [13] discussed the advantages
and disadvantages of truncating, statistical, and corpus-
based stammers.
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III. RELATED WORK
Research literature shows that several surveys have been
conducted to investigate TS techniques. This section briefly
describes some recent approaches mainly focusing on Urdu.
The authors in [2] have demonstrated a comparative analysis
of Urdu text-stemming algorithms. Reference [3] presented
a comprehensive review of multiple stemmers of Urdu,
Persian, and Arabic languages. In this work, the authors
described the advantages and drawbacks of every stem-
mer. Kanan et al. [15] compared the performance of the
P-Stemmer, Light10 Stemmer, and Khoja Stemmer [84]
on Arabic news articles. Mustafa et al. [4] reviewed the
Arabic stemmer and discussed the challenges of the Ara-
bic TS system. Singh and Vishal Gupta [5] surveyed various
languages-dependent and language-independent stemmers,
however mainly discussed unsupervised stemming meth-
ods. Singh and Vishal Gupta [6] reviewed the various
stemming techniques included in the statistical and hybrid
stemming techniques. The usage of stemmer in different
NLP applications and issues about statistical approaches was
also discussed. Many Arabic language stemmers are sur-
veyed, and the comparative analysis was presented in [11].
Moghadam and Keyvanpour [9] reviewed only the Per-
sian stemmer. Moral et al. [10] Mainly focused on English
and European language stemmers. Gupta and Lehal [12]
worked on Indian languages related stemmers. Jivani [13]
surveyed the English stemmers and discussed the advantages
and disadvantages of each. Merlini and Rossini [36] pro-
vide a comprehensive comparison of several classification
and clustering techniques, namely the Naive Bayes Multi-
nomial, Decision Tree, Support Vector Machines, k-Nearest
Neighbors Classification, and the Random Forest algorithm.
The decision tree model is implemented using the J48
algorithm, based on the C4.5 algorithm, and employed in
conjunction with the WEKA platform. On the other hand,
the Bayesian approach utilizes the NaiveBayesMultinomial
classifier model for classification purposes. The k-nearest
neighbors’ technique is implemented using the IBk algorithm
provided by WEKA. The training of a support vector clas-
sifier in WEKA is facilitated by implementing the SMO
(Sequential Minimal Optimization) algorithm. WEKA pro-
vides an implementation of the Random Forest algorithm,
which is a variant of the k-means clustering algorithm. This
implementation in WEKA enables the utilization of Ran-
dom Forest for clustering tasks, offering a powerful tool
for analyzing and grouping data points based on their sim-
ilarity. Atwan et al. [37] examined the impact of Arabic
text stemming on three frequently employed classification
algorithms: K-nearest neighbor, Naïve Bayes, and decision
tree. They implemented these algorithms to evaluate their
efficacy in handling Arabic text, both with and without incor-
porating a lightweight stemmer during the preprocessing
stage. The authors addressing the limitations of commonly
used classifiers such as K-nearest neighbor (KNN), Naïve
Bayes (NB), and decision tree (DT) in the context of text
classification (TC). One major weakness of these classifier

algorithms is their limited performance when dealing with
many features. Comparison of distinguishing characteristics
of prior studies are depicted in Table 3.

TABLE 3. Comparison of features of prior studies.
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TABLE 3. (Continued.) Comparison of features of prior studies.

IV. CLASSIFICATION OF TEXT STEMMING TECHNIQUES
TS techniques are classified into five main streams: lin-
guistic knowledge-based methods, statistical-based, corpus-
based, context-sensitive, and hybrid approaches. As the name
implies linguistic knowledge-based methods use linguistic
knowledge of relevant language for stemming. In statistical
methods, various statistical techniques such as probability
and N-gram frequency are used to build a stemmer. The cor-
pus is used for corpus-basedmethods to determine the various
features such as a lexicon similarity measure between words.
In context-sensitive methods, first, the context of the query
word is determined through context matrix/POS tagging then
appropriate stemming rules are applied. Hybrid stemming
approaches combine multiple techniques or methodologies
from different categories to achieve more accurate and robust

stemming results. These approaches may utilize a combina-
tion of linguistic knowledge-based, statistical, corpus-based,
and context-sensitive methods to enhance the effectiveness of
the stemming process. A visual example is shown in Fig. 4.
These approaches are described in detail in the subsequent
sections.

FIGURE 4. Taxonomy for state-of-the-art text stemming approaches.

A. LINGUISTIC KNOWLEDGE-BASED APPROACHES
In these approaches, the root is extracted using lexical and
syntactic rules, and most of the stemmers are based on
these methods [38]. Patel and Patel [19] built a linguis-
tic knowledge-based stemmer for the Gujarati language.
Alnaied et al. [39] design a linguistic rule-based stemmer for
the Arabic IR system. Koirala and Aman Shakya [40] devel-
oped a rule-based stemmer for the Nepali language which
functions in four steps. The first step was concerned with
normalization and in 2nd and 3rd steps, the suffix is trun-
cated using a suffix list. In the fourth step, the prefix is
removed. Kassim et al. [41] and Kassim [41] designed two
linguistic-based stemmers for texts in the Malay language.
Azman et al. [42] constructed the tree structure, in which
the center of the tree depicts the root verb and child nodes
show its variant forms. Kaur and Preetpal Kaur Buttar [34]
developed the 3,135 Punjabi root verbs and suffix removal
rules. In this stemmer, firstly, the query word is searched in
the Punjabi root words list and if found then it is returned
as the root word. If the query word is not found in the
Punjabi root verbs collection, then suffix removal rules are
applied to obtain the stem. Atwan et al. [35] presented a lin-
guistic knowledge-based stemmer for the Arabic language
and proved that the proposed stemmer enhances the perfor-
mance of the Arabic IR system. Bessou and Touahria [43]
performed three sequences of steps to retrieve the stem of
a given word. Normalization is applied to the query word
as the first step and then different Arabic patterns are used
from the look-up dictionary as the lexical analysis step. In the
third step, an indexing phase is performed by the stem.
Ali et al. [44] proposed an Urdu stemmer using a predefined
prefix and a suffix exception list which is used to trim the
prefixes and suffixes. The infixes are removed using infix
rules. An example of an infix deletion rule is, if the Urdu
words’ length is five and it starts with [alif], then all [alif]
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are removed such as [newspaper] stems to [news].
Saeed et al. [45] proposed Reber stemmer for Kurdish Sorani
text that operates in two steps. The first step deals with pre-
fixes using predefined the prefix-list to remove the prefixes
iteratively up to three letters’ prefixes then the shorter string
is resumed as a stem, as in Table 4 ‘‘ ’’ is the shortest
thus returned as a stem.

TABLE 4. Example of prefix handling rules.

In the second step specific suffixes are deleted in each
iteration and from the obtained string after each iteration
passed to the next iteration as an input, and the shortest string
‘‘ ’’ is an acclaimed stem as depicted in Table 5.

TABLE 5. Example of suffix handling rule.

Suryani et al. [39] presented rules-based Sundanese Stem-
mer (RBSS) that starts with the left-side affix deletion in a
sequence. This method first removes left-side affixes, then
middle-side infix/ allomorph is removed, and finally, right-
side suffixes are truncated to derive the stem as shown
in Table 6.

Jabbar et al. [46] developed a few resources for Urdu text
stemming. Ali et al. [47] developed the Urdu stemmer with a
four-stage operation. Those four stages function in a linear
fashion. In the first stage, the prefixes are stripped using
predefined prefix removal rules. The second stage handles
the infixes with a predefined infix handling template. The
third stage removes the suffixes from the query word such as

[Institutes] reduced to and passed to the fourth stage,
in which the letter [hy] is appended at the end of and the
resulting stem is [Institute]. Abainia et al. [48] designed
an Arabic stemmer that retrieves the stem from a query word
in six steps. The 1st, 3rd, and 6th steps perform stemming
on Arabic verbs while steps 2, 4, and 5 trim the affix from
the Arabic noun. To avoid under and over-stemming errors,

TABLE 6. Illustration of procedure to remove affixes.

the authors have considered the word length along with the
attached affix length to remove the affixes.

For instance, the Arabic word [their book] in which
[their] is a suffix that satisfies the condition. For example,
if the length of a word is greater than two and the suffix
length is two, then the suffix is removed. In the case of
the word [understanding] in which, the [their] suffix
did not meet the condition. So, the word [understanding]
remained unchanged. The first step concerns normalization
in which some Arabic characters are replaced with others as
[Alif MaqSura] replaced with [yaa] and some common

Arabic conjunction characters are removed. The second step
determines the prefixes and removes them. The third step
deals with suffixes, if a true suffix is found then the stem is
derived using appropriate rules. The fourth step transforms
the plural to singular by deleting the affixes (infixes/suffixes)
such as [swarms] stem to [swarm]. Step five trans-
forms the feminine to the masculine form of query words.
Finally, step six deletes the verb suffix such as [I will
do] stem to [de did]. Selvaramalakshmi et al.’s designed
stemmer [49] first tokenize the query word as first five letters
as Pgrams and the last seven characters considered Sgram.
Then Pgrams arematchedwith a prefix-list iteratively, in each
iteration a later is removed and the remaining letters are
matched with a prefix-list. After this Sgram is also matched
with a predefined suffix list, and truncates the suffix letter
one by one until matched with the predefined suffix list
as shown in Table 7 in which the stem of ‘‘drinkable’’ is
retrieved when Sgram ‘‘able’’ is matched with the predefined
suffix.

Kassim et al. [41] developed a stemmer for the Malay
language that recognized infix using a pattern if the pattern
did not match then it looked up in the stem-word dictionary
and relevant stem retrieve. To remove the prefix, suffix, and
confix, first match the query word with derivative dictionary
entries, if found, then its corresponding stem is returned,
otherwise affixation stemming rules are applied and extract
the stem as in the example given in Table 8.
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TABLE 7. Example of the tokenization process.

TABLE 8. Sample of affix recognition and deletion rules.

Aldabbas et al. [50] presented an Arabic stemmer that
constructs the regular expression based on the already defined
prefix and suffix removal patterns. Finally, query and stem
words are compared, and a stem is extracted if both have
the same meaning. The affixes are eliminated by a regular
expression, and then the dictionary’s definition of both query
word and stem inMicrosoft word dictionary is checked, if the
meaning of both is same, then it is extracted as a stem.

TABLE 9. Example of produce stem by CS arguments.

TABLE 10. DS arguments case to obtain the stem.

Karanikolas [51] presented a set of consecutive triplet
word stems and the translation is provided as the stemmer.
The stemmer removes the longest suffix using pre-construct
suffix lists and the suggestion is obtained on the produced
stem from the human expert, however, if the expert did not
declare the decision, then the stemmer’s result is accepted.
The example of the produced stem along with arguments
is mentioned in Table 9, in which the argument Common

Stem (CS)means stemmer producesmore than one stem from
the set of the words though this set of the words has CS
arguments. In Table 11 the stemmer gives a common stem, but
it is a different stem as mentioned in the arguments column
Different Stem (DS).

TABLE 11. Example of rules description with instances.

Sulaiman et al. [52] developed a TS algorithm for Malay
text which comprises mainly two stages: in the first stage
the affixes (prefixes and/or suffixes) are eliminated using
predefined rules like the example given in Table 10 and the
in second stage Spelling Error Detector Rules (SEDR) are
applied to the prior extracted stem.

Kasthuri and Kumar [53] defined stemmer for the Tamil
language that first removed the prefixes using prefix-list
and record, such as [which period] stem to,

[period] second it eliminates the suffixes by prede-
fined list of suffixes, for instance, [birds] stem
to [bird]. Third, if the query word is an adjective and
tense, then it is replaced equal verb. Fourth, if a stem is not
found, a possible suffix is generated and added to the rules
list. In step five steps one to four are repeated until the stem
is found. Karaa, [54] addressed the following six deficiencies
of the Porter stemmer [38] to build an English rule-based
stemmer.

• Porter stemmer [38] does not handle the irregular forms
of verbs such as ‘‘bought’’.

• Verbs ending with ‘s’ are ignored, for instance, focus.
• When a word has a vowel letter, then Porter stem-
mer [38] replaces the ending ‘y’ with ‘i’ but does not
conflate the English word ‘try’, ‘tries’, and ’ tried’.

• Verbs ending in a double consonant make errors, for
instance, ‘‘ebbed’’ is wrongly stemmed to ‘‘eb’’, the
actual stem is ‘ebb’

• It did not handle the present/ past participle derivations,
for example, ‘studiedly’ stem to ‘studiedli’

• Porter stemmer [38] has ignored several suffixes, for
instance, ‘‘‘est’, ‘ist’, ‘tary’, ‘tor’, ‘sor’, ‘sory’, ‘nor’,
‘ship’,’acy’, ‘ee’’’.

The stemmer proposed by Karaa, [55] functions in five steps,
and specific suffixes are handled in each step. The inflectional
and derivational morphologies are handled in the first two
steps. Further, suffixes are removed, and recoding rules are
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applied to obtain stem in step 3 and step 4 respectively.
Finally, the irregular form of a verb is reduced in the last
step. Mishra and Prakash [56] defined the stemmer which
combines the brute force and suffix removal approaches. The
algorithmfirst checks the queryword in the stem-word dictio-
nary and returns its corresponding stem, if found. Otherwise,
the stemmer moves to the second step, in which the suffix is
stripped using a suffix list and extracts the stem. El-Beltagy
and Ahmed Rafea [57] presented stemmer for the Arabic lan-
guage. The researcher developed single letter affixes (prefix
and suffix) and compound affixes (prefix and suffix) lists.
First, the stemmer truncated the single letter prefix, then the
compound prefix is removed. Lastly, the infixes are handled
by predefined patterns. An example of such a transforming
pattern is given in Table 12.

TABLE 12. Rules description with example words.

Savoy [58] developed aggressive and light stemmers for
the Hungarian language, using the affix striping technique,
and evaluated them on the CLEF document collection, the
results show that the aggressive stemmer performs better
than the light stemmer. The performance of Lovin et al. [59]
stemmer is promising due to the non-iterative nature of the
algorithm. However, it is complicated because of the large
suffixes list i.e., 1200 suffixes. Porter [38] proposed a stem-
mer that removes all the suffixes iteratively. Jabbar et al. [60]
devised a set of rules to handle infixes, reducing Mohmil
words, and incorporating multi-level suffixes. Additionally,
they constructed rules for identifying affixes and deriving
the stem using prefixes and suffixes rules. By evaluating the
proposed approach against the state-of-the-art stemmer, the
authors achieved an impressive accuracy of 94.92%.

B. STATISTICAL-BASED APPROACHES
In statistical approaches, the linguistic knowledge of the
underlying language as well as knowledge about training
data sets are not required. In the N-gram method, a con-
tinuous word is divided into different N-characters, and a
frequently occurring sub-word is extracted as a stem. In the
HMM-based approach, a word is constructed using Finite
Automata, in which some probability function determines the
output of each transition. Usually, some initial state represents
the stem and the final states denote the suffix.

Sadia et al. [61] used an N-gram-based technique and
tested on Bangla language. Pande et al. [62] also used
an N-gram technique to develop a stemmer and fre-
quency of the N-gram to determine the stem’s possibility.
Dadashkarimi et al. [63] proposed a statistical stemmer to
extract the root from the inflectional and derivational forms
of the word. The method learns the linguistic pattern from the
huge collection of web pages using Minimum Edit Distance
(MED) algorithms and Parts of Speech (POS) tagger. Every
rule assigned a score using a profanity function in Eq. 1.

P (R) = P
(
W ′

/
W

)
(1)

where, P (R) refer the probability of pair of wordsW ′ and W.
Brychcín and Konopík [64] presented another statistical

stemmer, which works in two stages. In the first stage,
different word clusters of datasets were designed and the
training data from various clusters were constructed based
on the longest matching prefix. Then, various features such
as suffix and N-gram probability, length of the word, and
global statistics were extracted from the prior created clusters.
The maximum entropy was classified using these features
to take out the stem. Ferilli et al. [65] used the Kronecker
function for similarity measure that produces one in case
of an equal string, otherwise zero, and grouping the words
based on high and low prefix likeness. The threshold value
is used to disjoint two groups by computing the average
of all similarities. Finally, the longest subsequence common
to all its elements is returned as a stem. Pande et al. [66]
used 4-gram as an initial prediction for the stem. The given
word is tokenized 4-gram, 5-gram, 6-gram up to word length.
Having a minimum frequency N-gram is returned as a stem.
Husain, [67] proposed a stemmer that splits the given words
into N-grams as a pair of (stem | suffix) and generates the
possible stem and suffix list as given below:

word = {(stem1 | suffix1) , (stem2 | suffix2)

, . . . (stemn | suffin)}

For a word ‘‘ages’’, the equation could be written as:

ages = (NULL|ages), (a|ges), (ag|es),

(age|s), (ages|NULL)}.

Finally, the generated suffix is clipped on the highest fre-
quency and using the longest string. Pandey and Siddiqui [68]
used the ‘‘split all’’ method in the Hindi language. Ahmed
and Andreas Nürnberger [69] used the N-gram technique to
tokenize the query word into the possible stem, then measure
the similarity by ‘‘edit distance’’ measure, to group related
words.

Al-Shalabi [70] developed a successor variety of Arabic
stemmer that determines the stem and affix (prefix and/or suf-
fix) boundary. The threshold and entropy values are used to
segment the query word into the stem and affix (prefix and/or
suffix). The ‘‘cut off’’ method with a suitable threshold value
gave 80 % accuracy which is better than the entropy method
which achieved 75% correctness. Bacchin et al. [71] proposed
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a probabilistic model to retrieve the stem, it generated all the
possible substrings as prefixes and suffixes from the query
words then the highest probability prefix was chosen as a
stem. It operates in two steps, the first is global and the other
is local. In the global step, some basic linguistic knowledge
is inferred from the dataset using Eq. 2 and Eq. 3. Splitting
corresponds to a stem, and a derivation is determined by Eq. 4.

Pr (xi) =

∑N

j=1
Pr (xi|yiPr (yj) i = 1, . . . ,N (2)

Pr (yi) =

∑N

i=1
Pr (yj|xiPr (x i) j = 1, . . . ,N (3)

In which xi and yj are prefix and suffix respectively with index
i and j. Equation 4 is used to find the most probable split ω∗

of z

ω∗
= argmaxPr (ω) ωϵ� (z) (4)

Mayfield and McNamee [72] presented a statistical base
English stemmer using single N-gram methods and
Melucci and Orio [71] presented a statistical base stemmer
using Hidden Markov Models (HMM).

C. CORPUS-BASED APPROACHES
These approaches used mathematical computations such as
Co-occurrence, Maximum Entropy Method (MEM), and dif-
ferent graph-based techniques to expose latent similarities
between words in the training corpus. In this method, the
different distance measuring techniques are applied, and then
built various classes using clustering techniques. Finally, the
centroid of classes is determined. Several researchers utilized
the corpus-based approaches to develop a stemmer, which is
detailed described below paragraph.

Singh and Alotaibi [73] divided the words among clusters
using the lexical and co-occurrence similarity along with the
Potential suffix pair frequency. Lexical similarity is measured
by Eq. 5 and co-occurrence is calculated by Eq. 6.

lexicalsimilarity(w1,w2) =
p
n

∑n′

i=1
(0.5)i × si (5)

where p is the length of the common prefix, n is the number
of letters in w1 and w2, the smaller string pad to null.
si compare the letters in both strings if both have identical

letters then the si = 1 otherwise 0.

co− occurencesimilarity =
2 × df (w1,w2)

df (w1) + df (w2)
(6)

where, df (w1,w2) is the co-occurrence frequency of words.
df (w1) frequency of w1 and df (w2) frequency of w2.
Alotaibi and Vishal Gupta [73] proposed a three-step

language-independent stemmer, the first step is concerned
with measuring lexical and structural distance by Jaccard
distance (see Eq. 7) between unique Uni-gram words and
finding the least distance between pairs of objects by Eq. 8.
In step two a complete linkage algorithm is used to group
words whose distance is computed in the prior step, finally,

in step three, the importance of each variant of a query term
is computed by Eq. 9.

D (w1 − w2) = 1−
|X ∩ Y |

|X ∪ Y |
(7)

Here, X and Y represent the sets of unique Unigrams of the
words w1 and w2 respectively.

D (C1,C2) = maxx∈c1.y∈c2D (x, y) (8)

D (C1,C2) refer to the maximum distance between clusterC1
and C2

The weight of the variability of a query term as

W (t.q) =

∑n

i=1

df (qi)
N

(PMI (t,qi) , 0) (9)

In which (see eq. 10) Pointwise Mutual Information (PMI)
scores, refer to the co-occurrence of two words in the corpus.

PMI (t, qi) = log2
P (t, qi)
P (t)P(qi)

(10)

W (t.q) showed the weighted sum of the PMI scores between
a target word t and a set of query words q.

Singh and Vishal Gupta published another method of stem-
ming [74] which functions in two phases: In the first phase,
various classes are constructed based on common prefixes of
three letters and determine the distance between two strings
using Jaro-Winkler distance (Eq.11). In second phase the
method minimizes the prior calculated distance to threshold
value using Eq.12 and average linkage is used to group the
morphologically similar words.

Jaro− Sim (w1,w2) = 8 =

(
c
l1

+
c
l2

+
c− t
c

)
(11)

where matching letters should not be farther than⌊
max(l1,l2)

2

⌋
− 1.

Where,
c refers the number of matching letters in two words.
l1 is the length of the first word.
l2 is the length of the second word.
t refers the number of matching letters that appear in

different orders. Then, divide this number by two.

Davg
(
Ci,Cj

)
=

1

|Ci| ×
∣∣Cj∣∣

∑
xϵCi,yϵCj

d (x, y) (12)

where:
D = distance between clusters Ci and Cj
Ci = the cluster with index i
Cj = the cluster with index j
| Ci | = length of cluster Ci
| Cj | = length of cluster Cj
Boukhalfa et al. [75] developed a graph-based Arabic

stemmer, in which each letter is represented in a connected
graph along with the main characteristics of the letters.
Paik, et al. [76] proposed a corpus-based stemmer that com-
prises three main steps: it first groups words based on
similarity, and then using co-occurrence measure between
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groups it constructs the prior step and finally query depends
on implying the semantic relationship. Its mathematical for-
mula is given in Eq. 13.

RC (a, b) =
− log (Prob (df (a, b) = m))

−log(Prob (df (a, b) = MIN (n1, n1)))
(13)

In which, n1 and n2 documents contain the words a
and b respectively, whereas m documents contain both
words. Paik & Paik and Parui [77] presented a corpus-based
stemmer that functions in three steps: in the first step,
k-equivalence classes are constructed by the potential suffix
and common prefix. The potential suffix is the generated
suffix from the corpus, which has a higher frequency than
a certain cutoff threshold value and the common prefix
becomes the root of the class. In step two the strengths of
the prior developed classes are calculated as Eq. 14.

strength (R) =
size of the potential − class (R)

size of the generated − class (R)
(14)

A common prefix-based root may have more than one valid
root. In step three, the potential root is determined by the
strength and then cut off threshold. Reference [78] presented
a corpus-based stemmer that functions in two steps. In the
first step, the stemmer produces the 3-gram of the query
words to build clusters. In the second step, developed clusters
are refined using Dice Distance (Eq. 15).

Sab =
2Cab

Ca + Cb
(15)

where,
a and b are two words and Sab is the Dice measure.
The words are clustered in large equal classes using the

value of the Dice Similarity measure and the Complete Link-
age Clustering Algorithm (CLA). Three different values of
threshold have been practiced i.e., t = 0.5, t = 0.6, t = 0.7.

Then the co-occurrence of each word in a similar class
is determined by the Expected Mutual Information Mea-
sure (EMIM) called EM (Eq. 16), in which a and b are
two terms and En (a, b) represents the expected number of
co-occurrences of term a and b. Using the EM score the
Optimal Partition Algorithm (OPA) is applied for clustering.

EM (a, b) = max
(
nab − En (a, b)

na − nb
, 0

)
(16)

Zitouni et al. [78] also experimented with combining both the
Dice measure and the Expected Mutual Information Measure
(EMIM) similarity measure such as Eq. 17.

SEM =
Sab + EM (a, b)

2
(17)

Majumder et al. [79] calculate the string similarity using
Eq. 18.

D1 (X,Y) =

∑N

i=0

1
2i
Pi (18)

where, Pi is 0 if there is a match in the ith position of X and Y .
Otherwise Pi is 1.

Using the prior distances Complete-linkage clustering con-
struct and center words returned as a stem word.

Korenius et al. [80] utilized four hierarchical clustering
methods i.e. The single linkage, group average linkage, com-
plete linkage, and Ward’s clustering methods to develop
stemmer for Finish language. The author proved that lemma-
tization performs better than stemmer in clustered Finish
documents.

D. CONTEXT-SENSITIVE APPROACHES
Context is sensed before the query is sent to the search
engine, which minimizes the unwanted query scope expan-
sions. Accordingly, it reduces the time and space complexity.
Maximizing the semantic similarity between the query word
and the retrieved term improves the precision [81]. Bölücü
and Can [31] presents a joint PoS tagging and stemming
model that integrates two Hidden Markov Models. It is tested
in English, Turkish, Finnish, Hungarian, and Basque lan-
guages. Basu et al. [82] stemmer functioned into two phases:
in the first phase, using the string similarity technique various
variant forms of query word are generated, then in phase two
using word2vec approaches to retrieve the stem according to
the context.

Mezzi et al. [83] proposed a Semantically Enriched
Context-Aware Stemming (SECAS) algorithm that incorpo-
rates the dictionary and rule-based stemmer features. The first
phase contains the Wordnet database that is used to produce
the stem according to the Parts of Speech (POS), and the
second phase is rule-based and is used for Context-Aware
Stemming (CAS) [84] with additional preprocessing steps to
produce the stem. After the results obtained from the prior
phases, are compared and SECAS algorithm retrieves the
most relevant stem. Bölücü and Burcu Can [31] used the
Bayesian model along with HiddenMarkovModels (HMMs)
for POS tagging and stemming jointly for the Turkish lan-
guage. Boukhari and Omri [85] proposed a context-sensitive
English stemmer that compromises six steps: in step one,
compound words related suffixes are removed, and steps two
and three are related to extraction of the context of the query
word. Various forms of the input word appear in a context
and all forms are reduced to the same stem. For example,
the words that appear in a context are ‘chair’, ‘chairs’, and
‘chairman’, stem to ‘’chair. Step four deletes the suffix using
a suffix list. In step five the elimination of redundant letters is
performed. Final, transforming rules were applied in step 6 to
retrieve the stem.

Agbele et al. [84] proposed a Context-Aware Stemming
(CAS) algorithm for the English language, which removes the
suffixes iteratively, after every iteration addition or deletion,
and/or substitution is performed to retrieve the semantically
correct stem, for instance, the English word ‘filing’ stem to
‘fil’ after removing the ‘ing’ suffix, and the ending of the
derived stem ‘fil’ contains consonant vowel consonant (CVC)
pattern, so the ‘e’ is appended at the end of the derived stem.
Adam et al. [86] presented stemmer which first tokenizes the
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query text and tags the POS, then the suffix is removed using
a predefined list of suffixes according to parts of speech. Al-
Shammari and Lin [87] proposed a context-sensitive stemmer
for the Arabic language. This method first recognizes the
nouns and verbs from the input text and then applies the
light stemmer [88] on the noun and Khoja and Garside [89]
root-based stemmer on the verbs. Sarkar andBandyopadhyay.
Reference [90] presented a stemmer for the Bengali language,
which performs the parts of speech tagging of the query
word then according to suffix removal rules, suffixes are
removed. Lovins [59] proposed a context-sensitive, longest-
match stemming algorithm for the English language. It is the
first popular and effective English stemmer mentioned in the
literature. Lovins [59] stemmer has two steps, one is the basic
stemming procedure in which the suffix is removed based
on sixty rules. The second step is the recoding procedure in
which different adjustments are performed on the obtained
stem, to convert it into a valid word.

E. HYBRID APPROACHES
When more than one stemming method are combined for
stemming purpose, the new approach is known as the hybrid
method. Numerous hybrid algorithms have been proposed in
the literature. Some of them are reviewed below:

The authors in [91] combined the dictionary lookup
and rule-based approaches. Jabbar et al. [16] proposed a
multi-step Urdu stemmer that works in two phases: In the first
phase, compound words are extracted from the text fragment
using punctuation marks as well as stop words as a delimiter,
for instance, the Urdu sentence [he/she is
educated], after removing the punctuation marks and stop
words, compound word [educated] is retrieved and
the suffix is removed , the extracted stem is [edu-
cation]. In phase two, unigram words that require recoding
(substitution, deletion, and/or addition) are used to strip off
the suffixes such as the suffix is replaced by for example,
the Urdu word [worship] stems to [worshipper].
The circumfixes (both prefix and suffix), prefix and suffix
are treated such as [unpleasantness] stems to
[pleasant] by removing the prefix and suffix . If the
query word contains only a prefix or suffix, then apply the
appropriate rules to derive the stem as the Urdu word [with
pen] in which is a prefix and [pen] is a stem. After this
infix is traced using a predefined pattern and is truncated to
get the stem, for instance, [orders] stem to [order].
In the last, if the stem is not derived in the prior steps,
the table lookup the relevant stem, otherwise original word
is returned. Mahalingam, [92] presented a stemmer named
Bruteporter: A hybrid stemmer for the English language, that
used Wordnet, and Modified Porter [38] Algorithm. First,
the modified Porter [38] rules are applied to the query word,
if no match is found then Wordnet is used to derive the stem.
Amin et al. [93] proposed a stemmer that consists of rule-base
and string similarity approaches. In these stemming methods,
the first rules are applied to retrieve the stem, if no stem is

retrieved then the string is matched with database entries, and
a database string with the highest similarity is taken as the
possible stem.

Taghi-Zadeh et al. [94] proposed a statistical stemmer that
mainly consists of two stages. Stage one is concerned with
building the affix list automatically from the training corpus
and the second stage is related to extracting the stem from the
query word. In the first stage candidate affixes are generated
using tri data structure, in which the root is empty. Fig. 5
depicts the tri data structure for three words ‘awed’, ‘axed’,
and’ aced’ and an inverted tree is shown in Fig. 6, in which
common suffixes from the query word are taken. Every path
in the inverted tree suggested an affix and stem, ‘Cut-point’
indicates the node fromwhere the affix and stem are separated
from each other. Several strategies are described in which the
maximum score strategy is adopted. The description of this
strategy is given below.

icutpoint = argmax Score (ix) x ∈ [1...,k]

(i1, i2, ...,iK ) is a cut point in the path.
Suffixes generated in this step are doubted so to confirm,

these affixes are passed to the affix candidate filtering process
in which K-mean clustering is used to distinguish the valid
and invalid affix, k = 2). After this, the valid affix is
transformed into a regular expression form.

In the second stage, the query word is searched in a dic-
tionary according to the POS, and the relevance of POS
stemming rules is applied. Another choice is based on pre-
defined pattern matching to derive the stem.

Selvaramalakshmi et al. [49] presented another stem-
ming method that functions in three stages either linear or
nonlinear. The first step prunes the affixes (prefixes and
suffixes) using the predefined prefix and suffix list after this
extracted stem is compared with WordNet and documented
multiple matching in the form of Multisets (Mi). SSize fil-
tration Eq. 19 determined the similarity of two strings if the
value of SSize is equal to a predefined threshold. If the pair{
Mi,Mj

}
satisfies the condition

∣∣Mj
∣∣ ≥ γ ∗ |Mi| then it is

passed to the filter, if not, then pruned.

SSize =

∑n
i=1 |Mi| × γ

Total No.of sets
(19)

The second step is concernedwith the positional filtration that
is calculated by the Jaccard Equation (Eq. 19). The third step
is to reverse the pair

{
Mj,Mi

}
to retrieve the value ofMj,

Mateen et al. [108]
developed a hybrid stemmer for the Punjabi language,

incorporating rule-based and table-lookup approaches. First
table lookup technique is used to obtain the stem, if the
stem is not found, then a rule-based approach is applied
to derive the stem. Momenipour and Keyvanpour [95] pro-
posed a stemmer for the Persian language that first checks
the given word in the stem-word dictionary, if found then
its corresponding word is returned as the stem, otherwise,
HMM is used to determine the possible affix (prefix and
suffix) and are removed. Sitaula, [96] defined the Nepali
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FIGURE 5. Example of a trie data structure.

FIGURE 6. An inverted trie examples.

stemmer using the traditional rule-based approach with an
edit distance measure to keep the threshold value 0.5.
Saharia et al. [90] incorporate the rule-based approach with
HMM to develop a stemmer for Indian-resourced poor
languages that include Assamese, Bengali, Bishnupriya
Manipuri, and Bodo. Majgaonker and Siddiqui [68] used the
rule-based technique and N-gram techniques to develop a
stemmer for the Marathi language. Through N-gram auto-
matically extracted the suffix from the training corpus, and
manually suffix list built-in rule-based approach.

F. COMPARISON OF STEMMING TECHNIQUES
This section describes, compares, and summarizes the recent
advances in stemming techniques. Table 13 highlights the
strengths and weaknesses of the current stemming methods.

TABLE 13. Strengths and weakness of text-stemming approaches.

G. EVALUATION METRICS
In the literature, several stemming performance evalua-
tion methods have been carried out to check the strength
of a stemmer for finding the correct stem. Jabbar et al. [89]
imparted the analyses of present TS evaluation methods.
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TABLE 13. (Continued.) Strengths and weakness of text-stemming
approaches.

Some of the popular evaluation mechanisms have been inves-
tigated in this section.

1) CONFLATION BASED EVALUATION
Paice [90] proposed a few attributes to measure the per-
formance of a stemmer which include the over-stemming
index (OI), under-stemming index (UI), the stemming
weight (SW), and an error rate relative to truncation (ERRT).
According to Paice [90], the stemming weight SW =

OI/(UI) indicates the strength of the stemmer. Lovins [59]
Porter [38] and Paice/Husk [97] stemmers are evaluated
and it is found that Paice/Husk stemmers are the strongest
and Porter is the weakest among experimented stemmers.
Frakes and Fox [98] presented Modified Hamming Dis-
tance statistics to evaluate stemmers. They experimented with
Lovens, Paice, Porter, and S-removal methods and claimed
that Paice/Husk stemmer is stronger than Lovins, and Lovins
is stronger than porter. Sirsat et al. [99] also proposed some
metrics to measure the performance of a stemmer: Index
compression factor (ICF), Word Stemmed Factor (WSF),
Correctly Stemmed words Factor (CSWF), and Average
Words Conflation Factor (AWCF). They experimented with
the Lovins Stemmer, Porter1 Stemmer, Porter2 Stemmer,
and Paice Husk Stemmer on a data set of 1858 words. The
porter2 algorithm is an improved version of the Porter base

version [50] stemmer, which is available at.1 The highest ICF
is 64.63 obtained by the Lovins [55] and Porter1 achieved
the lowest ICF which is 51.88. The AWCF score of 19.26,
the highest among others. AWCF can be calculated using the
following formula.

NWC = S− CW

where NWC is the number of distinct words counted after
conflation, S is the number of distinct stems and CW is the
number of correct words which are not stemmed. If CSW
is the number of correctly stemmed words, then AWCF is
calculated as follows:

AWCF =
CSW − NWC

CSW
∗100

The AWCF score obtained by Lovins and Porter1 stemmer
is negative which shows that a greater number of words
were wrongly stemmed than correctly stemmed words [99].
Lovins [55] stemmer is more aggressive than others as WSF
obtained is highest 73.35, but CSWF is 27.80 is lowest. The
highest CSWF was 34.76 achieved by Porter2.

2) INFORMATION RETRIEVAL (IR) BASED EVALUATION
When IR systems utilize the stemming as a preprocess-
ing step, the performance of the stemmer is measured by
Precision, Recall, F-measure, Average precision (AvP), and
mean average precision (MAP), however, these are extremely
reliant on other processes of IR systems. Can et al. [65]
proved that stemming can improve the performance of IR
systems and in this context, the authors have used the Turk-
ish IR system as an example to achieve 38% performance
improvement.

3) TEXT CLASSIFICATION-BASED EVALUATION
Stemming is used as a preprocessing step in feature extraction
for text classification systems [94], [95] which are briefly
explained below:

K-Nearest Neighbor (K-NN) classifier: This algorithm
compares the test and training datasets by considering both
the value of K and the similarity measure. Subsequently,
it arranges the data in descending order. This type of classifier
is commonly referred to as a lazy classifier [100].
Naïve Baye Classifier: Naïve Bayesian Classifier is a

probabilistic classifier that assumes that the features used for
classification are conditionally independent. This algorithm
computes different statistical parameters like Mean (µ) and
Variance (σ ) for each class given in the dataset. Usually, low
variance shows the better performance of the system [97].
Support Vector Machine (SVM) Classifier: SVM is a

linear, non-probabilistic, and supervised learning classifier
that constructs a linear hyper-plane that splits the data into
two i.e. positive and negative classes. The SVM deals with
high-dimensional data, without falling into over-fitting prob-
lems. The main function of SVM is to divide the instances
into two groups with maximum margin.

1http://snowball.tartarus.org/algorithms/english/stemmer.html
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Maximum Entropy (MaxEnt) Classifier: It is a proba-
bilistic exponential classification that is frequently utilized
in language processing programs such as sentiment analysis.
Almuzaini & Azmi [100] used aMaximum Entropy classifier
to assess the performance of the proposed stemmer for the
Kannada language.

TABLE 14. Performance comparison of rule-based stemmers.

V. PERFORMANCE COMPARISON AND
CRITICAL ANALYSIS
This section focuses on comparative analysis of claimed
results, used data sets and evaluation mechanisms among
different TS systems. A critical analysis was also performed
to highlight the major issues in the current TS algorithms.
Generally, linguistic knowledge-based stemmers perform
well because they follow linguistic rules and are evaluated
mostly using the gold standard evaluation method as depicted
from Table 14. On the other hand, statistical stemmer tests
on large data sets and, usually, evaluated in the IR system as

shown in Table 15. Corpus-based stemmer is also evaluated
in IR systems and using large dataset size as mentioned
in Table 16. Context-sensitive stemmers are tested on the
large size of data and evaluated by precision and recall as
mentioned in Table 17. Table 18 compares the claimed accu-
racy, evaluation mechanisms, and data sets of the hybrid
stemmers. Mostly, the hybrid stemmers were evaluated by the
manual method.

FIGURE 7. Overview of used evaluation methods by linguistic
knowledge-based stemmers.

Mostly, the linguistic knowledge-based stemmers are eval-
uated by a manual means as depicted in Fig. 7. To analysis
the used evaluation datasets, the authors defined the following
criteria for large, medium, and small data sets.

• Large: if the number of Words greater than or equal to
20000

• Medium: when the number of words is between
5000 and 20000.

• Small: Number of words less than 5000
Fig. 8 shows that 52% of linguistic knowledge-based stem-
mers are evaluated on large datasets, 35% on medium, and
13% on small datasets. Mezzi et al. [83] claimed the highest
accuracy 99% on English text as mentioned in Table 12.
The performance of a stemmer may vary from language to
language because every language has its grammatical struc-
ture. Such as For the Arabic language highest performance is
97.34 achieved by [42]. Obtained results may also vary if the
evaluation dataset size is increased. Hence, the state-of-the-
art current stemming algorithms are developed through small
training datasets, so those approaches are not applicable in a
wide prospective. As a result, a huge dataset is required to
obtain high accuracy.

Table 15 shows that the language-independent stemmers
are generally evaluated in more than one language such
as [64] tested the stemmer in Czech, Slovak, Polish, Hun-
garian, Spanish, and English language. Ferilli et al. [65]
tested the stemmer on English, Italian, French, and Latin
text. Statistical stemmers, evaluated in the context of IR
systems such as Dadashkarimi et al. [63] stemmer are shown
in Table 15. Statistical stemmer’s performancemay vary from
language to language as mentioned in Table 15, for example,
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FIGURE 8. Overview of evaluation dataset used by linguistic
knowledge-based stemmers.

TABLE 15. Performance comparison of statistical stemmer.

a stemmer has achieved 92.63% accuracy for the Italian
language whereas it achieved 89.54 for the French language.
From Table 15, most statistical stemmer evaluated on a large
dataset.

Corpus-based stemmers are also tested for multiple lan-
guages (see Table 16) such as Singh and Vishal Gupta [109]
tested their stemmer for English, Marathi, Hungarian, and
Bengali languages. This type of stemmer is evaluated in the
IR systems. The performance may vary from language to
language for instance, [76] obtained the highest MAP in
Marathi 0.451 and the lowest in English 0.270.

Table 16 shows all the corpus-based stemmer tested on
large dataset.

TABLE 16. Performance comparison of corpus-based stemmers.

It is shown in Table 17, some context-sensitive stem-
mers are tested for more than one language such as [31]
proposed stemmer which is tested on Turkish, Hungarian,
Finnish, Basque, and English. On the other hand, some eval-
uated only one language for instance [82] tested on English,
Al-Shammari et al. [87] tested on Arabic, and Sarkar and
Bandyopadhyay [90] on Bengali language. The highest per-
formance is 96.7% obtained by Adam et al. [86] on Greek
text. Mostly context sensitive stemmers are tested on large
datasets as shown in Table 17.
Generally, hybrid stemmers are language-specific and are

tested on a specific language as shown in Table 18. [91]
tested the stemmer in the Marathi language. Jabbar et al. [16]
designed a stemmer that obtained a 96.26% F-score.

The different stemming algorithms are quite similar in their
objectives, but none of them give 100% output. As mentioned
in Fig. 9 linguistic knowledge-based approach is widely used.
Rule-based algorithms provide the highest accuracy 99 %
among all the existing algorithms as shown in Table 14.
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TABLE 17. Performance comparison of context sensitive stemmers.

There is neither a standard dataset nor standard evaluation
methods. The evaluation comparison of the TS algorithms
shows that TS is still one of the most challenging tasks.

VI. PERFORMANCE OF A TEXT STEMMER
Several factors affect the performance of the TS systems
such as types of language, domain, and types of affixes
to be handled. Some languages are resource-poor, conse-
quently making the TS task challenging. As the types of
affixes increase the complexity of the system is also increased
because more rules are coined to identify the affix types.

A. LANGUAGE-SPECIFIC FACTOR
A language can be either concatenative or non-conatenative
languages. Specific rules are utilized to determine the stems
in concatenative languages, while in non-conatenative lan-
guages, affixes and stems are intertwined. Non-concatenative
morphology, which typifies Semitic languages like Arabic,
and Hebrew, in which words are formed in the form of vocalic
and consonantal patterns [113]. Developing a stemming sys-
tem task becomes harder as the morphology and grammar.
Orthography and character encoding of the goal language
become more multifaceted, generally, it is the inflection of
the language. For example, Italian languages are morpho-
logically richer, having more possible verb inflections than
English, the Russian language is also more complex and
includes a neutral gender, and Arabic is even more complex,
for broken plural, dual count plural, and more than two plural
and it has also infixed. In the German language, a verb may
have 144 forms with multiple derivational inflections [114].

TABLE 18. Performance comparison of hybrid stemmers.

FIGURE 9. Comparison of types of TS approaches.

In the Urdu language, 57 variant forms can be generated from
a single Urdu word [115].

The English language is considered a weakly inflective
language [116]. So, it is a very easy step to obtain a stem
because of only suffix removal [38]. In contrast, in the
Indonesian language a wide range of affixes as prefixes,
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suffixes, confixes, and suffixes. The Arabic language also
has multiple affixes [116]. Types of affixes may vary from
language to language, usually, a language has a prefix and
suffix affixes, but some languages havemany types of affixes,
such as Sundanese is a rich morphological language that has
at least 54 main affix types [103]. To ensure efficient retrieval
all these forms should be conflated to the same stem.

B. DOMAIN AND DATA DEPENDENCY FACTOR
Normally, a stemmer is designed to process general texts,
but table lookup/brute force approaches and corpus-based
approaches render domain-specific content. Though the
table lookup/brute force approach is accurate however it
is restricted to the words listed in the table making stem-
mer domain specific. In the corpus-based approach, word
frequency and/or various co-occurrence statistics are used
instead of the grammatical andmorphological set of rules that
make it domain-specific.

The size and type of training and test dataset directly
influence the performance of the corpus-based and statis-
tical stemmer. Linguistic knowledge-based stemmer is less
affected by types of documents used in rules development
than the other types of stemmers. Moral et al. [10] related
the performance of the stemmer to the size of the test data
set. Moghadam andKeyvanpour [9] claimed that the obtained
results may vary with the increase in the size of the dataset.

C. TASK FACTOR
Some stemmers are developed for specific NLP appli-
cations such as [73] constructed stemmer for IR sys-
tems, Boukhalfa et al. [75] stemmer developed for the
improvement of the accuracy of plagiarism detection, and
Ali et al. [47] developed stemmer for text classifications.
The performance of a stemmer may vary from one NLP
application to another. Linguistic knowledge-based stemmer
performs better in IR systems and text classification. Context-
sensitive stemmers outperform IR systems as compared to
other types of stemmers.

VII. CURRENT ISSUES AND CHALLENGES
A plethora of research has already been carried out in stem-
ming. However, still, there is a requirement to develop better
algorithms for general and specific stemming. There are
specific aspects that make stemmer design more challeng-
ing such as recognizing proper nouns, stemming compound
words, exception handling, homographs recognizing, annota-
tion of the dataset, processing complexity, and computational
complexity. These issues should be considered carefully dur-
ing the development of the TS system. The following text
provides more details about such issues.

Conflation is a reverse process of grammatical rules and
almost every grammar rule has some exception, for instance,
in English ‘‘ed’’ is used as a suffix in most cases, but in
some cases, it is an actual part of the word such as the
English word ‘‘red’’. In the Portuguese language suffix,

‘‘âo’’ denotes augmentative, however not all words having
the suffix ‘‘âo’’ are augmentative [117].
All the natural languages contain homographs which

means the words with the same spelling may change mean-
ing according to the context, consequently, the root is also
different. Homographs are presented in European languages
as well as in Indo-European language families [118] and
create obstacles to retrieving the relevant root word. French
languages are Slavic languages, which are rich in homo-
graphs. Proper nouns reduce the performance of many NLP
applications [34]. Proper nouns should not be stemmed [119],
however, if these are stemmed by the algorithm, reduce
the performance of the stemmer. Reference [120] demon-
strated that decompounding German words could signifi-
cantly improve the performance of IR systems. A compound
word may contain a hard space, a hyphen, or be solid.
A hyphen is a strong clue for identifying compound words
in most European languages such as in French [porte-clefs/
key ring].

Almost all TS approaches increase the processing cost.
Many rules in knowledge-base and preprocessing of the large
corpus in statistical (n-gram) and corpus-based systems are
examples of increased processing. In the case of a knowledge
base system, a large amount of knowledge is required to
develop rules. So, the developer needs to optimize the pro-
cessing complexity. There is a tradeoff between the accuracy
and execution time of a stemmer [121]. Usually, expensive
mathematical calculations are performed to extract various
features, in corpus-based and statistical approaches, which
increase the overall complexity of the text-stemming system.

Generally, gazetteers and annotated corpus are used to
develop and evaluate the performance of a stemmer. Sim-
ilarly, Named Entity Recognition (NER) systems, POS
Tagger,Morphological Analyzer, andword segmentation sys-
tems also play a prominent role in designing a TS system.
Some languages are classified as resource-poor, for instance,
Mongolian, Indonesian, Hindi, Urdu, Sindhi, Punjabi, Pashto,
and Bengali, hence, making the TS for such languages is
more challenging. The labeled/ annotated data are essential
to design and test stemmers. However, labeling the data set
is a difficult and time-consuming task and requires domain
experts to correctly annotate it.

Considering the available stemming methods, it is a
complex question to select the right method for the appli-
cation under consideration. A few parameters need to be
analyzed before selecting the right stemmer which may
include the nature of language, size of data, and the
nature of the problems being investigated. As an example,
for a resource-poor and complex language, the linguis-
tic knowledge-based approach is a good choice, or hybrid
approaches can produce good results. Existing statistical and
corpus-based stemmers consider only suffixes and ignore
the prefixes and infixes. So, it is required to extract more
features that can handle the prefixes and infixes too. Further,
a language-independent and auto-feature extraction mecha-
nism is required to develop a high-performing TS system.
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Besides all these, the TS evaluation method and test data
collection are major factors that can change the obtained
accuracy.

Usually, TS systems are applied or designed according
to NLP applications. There is a requirement to design an
evaluation mechanism that can work universally. Some direct
evaluation methods use the compression index factor, under
stemming errors stemming errors, etc. Mostly linguistic
knowledge-based stemmers are evaluated on a small dataset,
hence there is the need to test design methods on large
datasets.

VIII. CONCLUSION
This article presents a comprehensive review of linguis-
tic knowledge-based, statistical, corpus-based, and hybrid
stemmers. Moreover, it carries out an extensive comparative
analysis of the above-mentioned approaches. It is observed
that the linguistic knowledge-based stemming technique is
widely used for highly inflected languages (such as Ara-
bic, Hindi, and Urdu) and has reported more accuracy
than the other techniques. Likewise, exception handling and
homograph recognition are challenging tasks for linguistic
knowledge-based stemmers. Similarly, semantic meaning-
extraction, affix stripping rules self-construction, and auto
parameter tuning are major issues for unsupervised stemming
techniques. The selection of the TS evaluation method is still
an open question. While analyzing the existing techniques,
it is found that the manual evaluation methods for a stem-
mer performance exhibit dissimilar behavior while testing on
small and large datasets. As described earlier, the researchers
must consider certain factors affecting the performance of
text stemmers (such as language dependency, domain, and
data dependency, and task factors) while designing and devel-
oping a stemmer.

Consequently, we recommend that the researchers use dif-
ferent machine learning algorithms to acquire the semantic
meaning of the query word and striping part. Due to the
varied and heterogeneous nature and size of the datasets
and knowledge bases, selecting the appropriate stemming
technique is tedious. It requires deep investigation by the
research community. In the future, we aim to utilize TS as an
intelligent agent to extract semantic stem from a user query
without requiring an explicit request.
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