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ABSTRACT The actual underwater environmental noise is often spatial colored, which results in severe
degradation of the performance of the underwater direction of arrival (DOA) estimation method based on
the assumption of white noise. In the presence of Gaussian colored noise, a high-resolution DOA estimation
method using a fourth-order cumulant for quickly eliminating redundancy is adopted in this paper. Firstly,
a selection matrix is constructed, and the redundant data in the fourth-order cumulants are reduced in the
way of descending order. Secondly, the fourth-order cumulants matrix is transformed into a vectorized form,
and the selection matrix is further constructed to eliminate redundant data in the vectorization process, and
a single observation vector model with better performance is obtained. Finally, the sparse representation
method is used for DOA estimation. The simulation results demonstrate that compared with the traditional
fourth-order cumulant methods, this method has a stronger ability to suppress colored noise, and can provide
higher resolution and higher estimation accuracy under the conditions of few snapshots and low signal-to-
noise ratio. The experiment verifies that thismethod can be applied toDOAestimation of underwater acoustic
array signals.

INDEX TERMS Colored noise, underwater acoustic targets, direction of arrival estimation, fourth-order
cumulant, sparse representation.

I. INTRODUCTION
In ocean acoustic research, underwater direction of arrival
(DOA) estimation has been a hot topic for scholars [1], [2],
[3], [4]. In the current study, most of the algorithms are
effective only in the white noise environment of the array
element noise, however, the actual underwater environment is
affected by the noise of distant ships, wind noise, biological
sounding, etc., the background noise is often colored, and the
performance of the DOA estimation methods applicable to
white noise will be seriously degraded [5], [6], [7], [8], [9].

In recent years, the theory of compressive sensing (CS)
has been developed, and sparse signal reconstruction (SSR)
techniques are gradually used in the field of array signal
processing [10], [11], [12]. Many scholars proposed the
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L1-paradigm classmethod [13], [14], which realizes theDOA
estimation by discretizing the null domain and solving it
using the L1-paradigm constrained model, and the advantage
of this classmethod is that the computational complexity does
not increase with the increase of the number of snapshots, and
it has a high resolution of the measurement direction. Yang et
al. proposed the off-grid sparse Bayesian inference (OGSBI)
algorithm [15], which not only ensures that the proposed
solution is the global optimal solution, but also has a high
computational efficiency and realizes high-accuracy off-grid
DOA estimation under coarse grid conditions.

The above algorithms are all based on the assumption of
Gaussian white noise, and scholars at home and abroad have
proposed many methods for the problem of DOA estima-
tion in the context of colored noise. In 1995, the scholar
B. Porat combined the fourth-order cumulant and rotation-
ally invariant subspace estimation of signal parameter via
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rotational invariance techniques (ESPRIT) direction finding
algorithm [16], replacing the traditional covariance matrix
with the fourth-order cumulant matrix, and suppressing the
colored noise by using the fourth-order cumulant. After that,
S. J. Wu et al. proposed a reduced-order MUSIC-like array
extension method [17], which extends the array aperture,
but the computation is still large. H. Y. Song et al. from
Harbin Engineering University proposed a high-resolution
method based on orthogonal joint diagonalization of groups
of higher-order cumulant matrices for hydroacoustic target
orientation estimation [18], which is also applicable under
coherent source conditions, but requires the construction of
multiple higher-order cumulant matrices, which is computa-
tionally intensive. S. N. Han et al. proposed a fourth-order
cumulant sparse representation method by singular value
decomposition of the fourth-order cumulant matrix of the
array received data and solving it by using the paradigm
theory, which has a limited estimation accuracy when the
signal-to-noise ratio is low [19]. Liu et al. proposed a sparse
representation of non-redundant cumulants [20], which effec-
tively suppresses the correlated colored noise and reduces the
complexity of the sparse solution. Literature [21] utilizes a
parametric approach to jointly estimate the DOA and noise
parameters, but the structural properties of the noise covari-
ance matrix need to be known. Literature [22] combines
the covariance matrix difference method with an off-grid
DOA method to obtain a high estimation accuracy, but at the
expense of the array aperture, mirror artifacts occur.

In this paper, we propose a novel method that combines
fourth-order cumulation and sparse representation to improve
DOA estimation accuracy in the presence of Gaussian colored
noise. The fourth-order accumulation and sparse representa-
tion are combined to filter out Gaussian colored noise and
extend the array aperture by calculating the fourth-order
accumulation of the array received signal, which reduces
the computational complexity and further extends the array
aperture by removing the redundant data twice, improves the
resolution of the target and obtains a higher array gain. The
orientation estimation accuracy is improved with the help
of the sparsity of the signal in the airspace. The method
is applied to hydroacoustic target orientation estimation
and effectively suppresses colored noise, extends the array
aperture, and improves target resolution and accuracy in
hydroacoustic target orientation estimation.

The paper is structured as follows: Section I outlines the
challenges posed by colored noise in real underwater environ-
ments and describes several algorithms proposed to address
this problem internationally. Section II introduces the signal
reception model used in this study. Section III describes our
proposed DOA algorithm centered on sparse representation
and elaborates on the theory behind fourth-order accumu-
lation and sparse representation. Section IV simulates and
analyzes a comparison between the similar MUSIC-like
algorithm, the OGSBI algorithm, and the algorithm proposed
in this paper. The section also details the sources of the

experimental data collected during the sea trials, which were
used to validate the performance of the algorithms. The
conclusions are given in Section V.

II. DOA ESTIMATION MODE
A M-element uniform hydrophone array with array element
spacing d is used for hydroacoustic signal localization. Under
the plane wave assumption [23], the signals from K far-
field sources are incident on the hydrophone array in wave
direction θ , θ=[θ1, θ2, · · · , θK ]T . The model schematic is
shown in Figure. 1, and at the moment t, the observation
model received by the array can be expressed as

y(t) = A(θ)x(t) + e(t), t = 1, 2, · · · ,T , (1)

where y(t) = [y1(t), y2(t), · · · , yM (t)]T is the array received
signal, x(t)=[x1(t), x2(t), · · · , xK (t)]T is the source signal
vector, e(t) = [e1(t), e2(t), · · · , eM (t)]T is the noise vec-
tor, T denotes the number of snapshots, θ denotes the
set of incidence directions of the K signals, and A(θ ) =

[a(θ1), a(θ2), · · · , a(θK )] is the array flow matrix. Where
a(θk ) = [1, νθk , · · · , νM−1

θk
], νθk = e−j2πd/λ sin(θk ), λ is the

wavelength of the signals, am(θk ) contains the delay informa-
tion of the kth signal received by the first array sensor.
Then the DOA estimation model in the case of multiple

observation vectors can be expressed as

Y = A(θ)X + E, (2)

where Y = [y(1), y(2), · · · , y(T )] is the received signal
matrix, X = [x(1), x(2), · · · , x(T )] is the source signal
amplitude matrix, and E = [e(1), e(2), · · · , e(T )] is the noise
matrix.

FIGURE 1. Schematic diagram of signal arrival at array element.

III. DOA ALGORITHM FOR SPARSE REPRESENTATION
The algorithm of the paper is based on the problem of DOA
estimation in the context of Gaussian colored noise. Initially,
sparse representation is considered, and the fourth-order
cumulants of the observed signals are transformed to elim-
inate redundancy and reduce dimensionality through the
creation of a selection matrix. Secondly, the fourth-order
cumulant matrix is transformed into a vectorized form,
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FIGURE 2. Flowchart of the DOA algorithm using fourth-order cumulant
to eliminate redundancy.

and a selection matrix is assembled to eliminate redun-
dant data in the vectorization process, resulting in a
superior, single-observation vector model. finally, the
algorithm creates a sparse representationmodel, which solves
the L-1 paradigm sparse constraint optimization problem,
enabling the calculation of DOA estimations. The overall
flow of the algorithm is shown in Figure. 2.

A. FOURTH-ORDER CUMULATIVE QUANTITY
Theoretically fourth-order cumulants can completely sup-
press Gaussian colored noise and to some extent other colored
noise as well [24], [25]. When the incident signal source is
non-Gaussian and the noise is Gaussian colored noise, the
fourth-order cumulant matrix of the received data from the
shallow-sea acoustic field array is

C4y(i, j, n, l) = cum(yi, yj, y∗n, y
∗
l )

= E[yiyjy∗ny
∗
l ] − E[yiy∗n]E[yjy

∗
l ]

− E[yiy∗l ]E[yjy
∗
n] − E[yi, yj]E[y∗ny

∗
l ], (3)

where (·)∗ denotes the covariance. The fourth-order cumu-
lant C4y has M4 elements, and the range of the variables
in (3) is 1 ≤ i, j, n, l ≤ M , and these elements are put into
the M2

× M2 covariance matrix C. The {(i − 1)M + j, (n −

1)M + l} th element of matrix C corresponds to C4y(i, j, n, l)

and matrix C can be expressed as

C = E{(Y ⊗ Y∗)(Y ⊗ Y∗)H}

− E{Y ⊗ Y∗
}E{(Y ⊗ Y∗)H}

− E{YYH
} ⊗ E{(YYH)∗}, (4)

where ⊗ denotes the Kronecker product. The fourth order
cumulant matrix of the signal is

Cx = E{(X ⊗ X∗)(X ⊗ X∗)H}

− E{X ⊗ X∗
}E{(X ⊗ X∗)H}

− E{XXH
} ⊗ E{(XXH)∗}, (5)

where the fourth-order cumulantCx of the signal is aK 2
×K 2

dimensional matrix, and its {(i − 1)K + j, (n − 1)K + l}th
element can be expressed as cum(xi, xj, x∗

n , x
∗
l ), ∀i, j, n, l ∈

{1, 2, · · · ,K }. According to the nature of the fourth-order
cumulant, the Gaussian noise term is filtered out, which can
be obtained as

C = (A(θ ) ⊗ A(θ )∗)Cx(A(θ ) ⊗ A(θ )∗)H. (6)

Based on the nature of the fourth-order cumulants, the
following relation can be derived:

Cx = cum(xi, xj, x∗
n , x

∗
l ) =

{
̸= 0, i = j = n = l
= 0, else.

(7)

From (7), we can see that only K elements in Cx are
nonzero, and these elements are located on the diagonal
of Cx , i.e., (i − 1)K + i(i = 1, · · · ,K )th element of the
diagonal of C is nonzero. The fourth-order cumulantmatrix of
the signal can be reduced to a diagonal matrix by removing
all the elements of the matrix Cx that are zero-valued and
downgrading the matrix Cx . The order of the matrix can be
reduced from K 2

× K 2 to K × K , which gives

C̄x=diag(γx1 , γx2 , · · · , γxK ), (8)

where γsk = cum(xi, xj, x∗
n , x

∗
l ) = Cx((i − 1)K + i, (i − 1)

K + i).
The fourth-order cumulative quantity of the new array

received data obtained after the dimensionality reduction
of (6) is

C = (A(θ ) ⊙ A(θ )∗)C̄x(A(θ ) ⊙ A(θ )∗)H

= B̄(θ)C̄xB̄
H
(θ ), (9)

where ⊙ denotes the Khatri-Rao product and defines

B̄(θ ) = [b̄(θ1),b̄(θ2), · · · , b̄(θK )]

= [a(θ1) ⊗ a∗(θ1),a(θ2) ⊗ a∗(θ2), · · · , a(θK ) ⊗ a∗(θK )],
(10)

where b̄(θk ) is the extended array orientation vector.
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FIGURE 3. Schematic diagram of array element expansion.

B. FOURTH-ORDER CUMULATIVE DE-REDUNDANCY
There are M actual array elements in the homogeneous
hydrophone array, and the fourth-order cumulative volume
approach can be seen from (10), which produces a large num-
ber of virtual array elements, in which a large number of array
elements overlap, and the effective number of array elements
is extended to 2M−1, and since the array aperture is extended
from (M − 1)d to 2(M − 1)d , the discriminative power can
be improved, which is conducive to the discrimination of
acoustic source targets with similar orientation. The physical
significance is shown in Figure 3.
Therefore, the constructed fourth-order cumulant matrix

has a large number of redundant terms and high computa-
tional complexity. In this regard, aM2

×(2M−1) dimensional
transformation matrix Q is constructed to remove the redun-
dancy with the following expression:

Q = [QT1 ,QT2 , · · · ,QTM ]T , (11)

where

Qm =


[0M×(M−1), IM ], m=1
[0M×(M−m), IM ,0M×(m−1)], 2 ≤ m ≤ M − 1
[IM ,0M×(M−1)], m = M ,

(12)

where IM is an M-dimensional unit array, then there is a
correspondence b̄(θk ) = Qb(θk ), such that the new array
manifold guidance vector satisfies the conjugate symmetry
structure as follows:

b(θk ) = [e−j2π (M−1)d/λ sin(θk ), e−j2π (M−2)d/λ sin(θk ),

· · · , 1, · · · , ej2π (M−1)d/λ sin(θk )]. (13)

Define the (2M − 1) × (2M − 1) dimensional matrix as
G = QTQ = diag(1, 2, · · · ,M −1,M ,M −1, · · · , 1),it can
be known that G is a non-singular diagonal matrix, the use
of the matrix G,Q for linear transformation, we can get the
de-redundant transformed fourth-order cumulant matrix R4
as

R4 = G−1QTCQG−1

= G−1QT (B̄(θ)C̄xB̄
H
(θ ))QG−1

= G−1QT (QB(θ ))C̄x(QB(θ ))HQG−1

= B(θ )C̄xB(θ )H. (14)

As a consequence, the array manifold matrix is obtained as
B(θ) = [b(θ1), b(θ2), · · · , b(θK )], and the dimensions of its
rows are reduced fromM2 to 2M−1, which reduces the com-
putational complexity to a larger extent. The matrix R4 not
only utilizes all the information, but also eliminates redundant
data, and the advantages of the extended array aperture are
maintained. Next, to obtain an observation model with bet-
ter performance, the de-redundant transformed fourth-order
cumulant R4 is vectorized to obtain a single-observation vec-
tor model as follows:

Z̃ = vec(R4)=vec(B(θ)C̄xBH(θ ))

= (B∗(θ ) ⊙ B(θ))0, (15)

where vec(·) denotes the vectorization operator, 0 =

vec(diag(C̄x)). If B∗(θ )⊙B(θ ) is used as the new array man-
ifold matrix, the solution is still computationally intensive.
There is still redundant data in this observation vector, and
similarly, a (2M − 1)2 × (4M − 3) dimensional selection
matrix Q̄ is constructed to downscale 0 twice. The construc-
tion is similar to that of Q in (11), which can be expressed as
Q̄=[Q̄

T
1 , Q̄

T
2 , · · · , Q̄

T
2M−1], defining

¯G = Q̄T Q̄, and similarly,
we have

B∗(θ ) ⊙ B(θ ) = Q̄D(θ), (16)

where D(θ) = [d(θ1), d(θ2), · · · , d(θK )] is the new array
manifold matrix after dimensionality reduction and its cor-
responding orientation vector is

d(θk ) = [e−j2π (2M−2)d/λ sin(θk ), e−j2π(2M−3)d/λ sin(θk ), · · · ,

1, · · · , ej2π (2M−2)d/λ sin(θk )]. (17)

Substituting (16) into (15), the single-vector observation
model is Z̃ = Q̄D(θ)0, and left-multiplying Ḡ

−1
Q̄
T

to
remove redundancy, we obtain the final vector observation
model:

Ẑ = Ḡ
−1
Q̄
T
Q̄D(θ)0 = D(θ)0. (18)

Equation (18) is the new observation model after the sec-
ond dimensionality reduction,D(θ) is the new array manifold
matrix, the dimension of its rows is reduced from M2 to
4M − 3, and the effective number of array elements is
extended to 4M − 3, the array aperture has been further
extended, the resolving power has been further improved,
and the overlapping redundant terms are removed, which
reduces the computational volume and improves the model
performance at the same time.

C. SPARSE REPRESENTATION SOLVING
Assuming θ̃ = {θ̃1, θ̃2, · · · , θ̃N } is a fixed sampling grid point
that can divide the spatial domain, N denotes the number
of grids, and the general condition satisfies N ≫ M , with-
out loss of generality, such that θ̃ is uniformly distributed.
Using the method of constructing D(θ ) in Section III-B to
construct the overcomplete dictionary, the array manifold
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matrix of the whole spatial domain can be denoted as D̃(θ̃) =

[d̃(θ̃1), d̃(θ̃2), · · · , d̃(θ̃N )], and then (18) can be expressed as

Z = D̃(θ̃ )0̃, (19)

where 0̃ is a K-sparse vector, and the corresponding element
is non-zero if and only if θ̃k ∈ {θ1, θ2, · · · , θK }. The analysis
shows that if we can find 0̃, the DOA orientation of the
target signal can be estimated by the position of the non-zero
elements, so the DOA estimation problem is transformed into
an l0 paradigm optimization problem as follows:

min
∥∥∥Z− D̃(θ̃ )0̃

∥∥∥
2
+ λ

∥∥∥0̃

∥∥∥
0
, (20)

where ∥·∥0 and ∥·∥2 denote the l0 and l2 paradigms, respec-
tively, and λ denotes the regularization factor, whose value
is related to the noise energy. The analysis shows that the
problem is a minimum l0 paradigm problem, solving the
minimum l0 paradigm is a Non-deterministic Polynomial
problem, and the value of the solution is extremely unstable.
According to the constrained isometric property, the l0
parameter of the non-convex optimization can be replaced by
the l1 parameter and transformed into the l1-parameter sparse
constrained optimization problem as follows:

min
∥∥∥Z− D̃(θ̃ )0̃

∥∥∥
2
+ λ

∥∥∥0̃

∥∥∥
1
, (21)

where ∥·∥1 denotes the l1 paradigm. Equation (21) is solved
using the paradigm convex optimization method to obtain the
sparse vector 0̃ and thus the orientation estimates of the K
sources from the grid positions of the non-zero elements.

IV. SIMULATION AND EXPERIMENTAL ANALYSIS
A. SIMULATION TEST
The fourth-order cumulants are used in the case of Gaussian
colored noise for hydroacoustic target DOA estimation using
the sparse representation in this paper. The Gaussian colored
noise is generated by an Auto-Regressive (AR) filter. In this
paper, the colored noise is generated by using a second-order
AR filter with filter coefficients of [1,−0.2, −0.1]. Figure 4
shows the power spectrum density function plot of the gener-
ated section of Gaussian colored noise. From the figure, it can
be seen that its power spectrum is not flat and thus is colored
noise. The simulation verifies that the higher-order cumula-
tive volume can extend the array aperture, and can effectively
estimate the sound source larger than the number of array
elements, using the standard uniform linear hydrophone array
with array element spacing of d = λ/2 and the number of
array elements of M = 5. The six linear FM signal sources
are used, i.e., K = 6, and the frequency bands are 90-110 Hz,
280-320 Hz, 480-520 Hz, 680-720 Hz, 880-920 Hz, 1 080-
1 120 Hz, the sampling frequency is 100 kHz and the true
orientation is [−40◦

− 20◦
− 10◦ 5◦30◦50◦]. The number

of snapshots is T = 1000, and the input SNR of the array
element is SNR = 10 dB. The spatial angle is classified
as [−π/2, π/2], the angular interval r = 1◦ and the reg-
ularisation factor is 1. A comparison of the spatial spectral
estimation effect obtained by the method in this paper is

FIGURE 4. Diagram of Gaussian colored noise power spectral density.

FIGURE 5. Spatial spectrum estimation after array element expansion.

shown in Figure 5. From the figure, it can be seen that
in the case that the number of sources is larger than the
number of array elements, both the MUSIC-like algorithm
and the algorithm in this paper can estimate the orientation
of the sources, which is because the fourth-order cumulative
volume produces the virtual array elements, which effectively
expands the aperture of the array, and therefore can effectively
estimate the sources larger than the number of array elements.

Consider two linear FM sources with frequency bands
of 90-110 Hz and 280-320 Hz, source incidence directions
of −10.2◦ and 25.7◦, number of snapshots of 1,000, array
element input signal-to-noise ratio of SNR = 0 dB, number
of array elements of M = 6, all other conditions remain
unchanged, and increase the off-grid sparse Bayesian deriva-
tion algorithm for comparison, Figure 6 shows the DOA
spatial spectra of MUSIC-like algorithm under the condition
of the same parameters in a single pass, OGSBI algorithm
and the DOA space spectra of this paper’s algorithm. As can
be seen in Figure 6, the method in this paper can effectively
discriminate the two-target signal angles and has a narrower
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main flapwidth, and the estimation results of theMUSIC-like
algorithm are −10◦and 25◦. The OGSBI algorithm can over-
come the off-grid error to a certain extent, has the largest
estimation error of −8.9354◦ and 26◦, which is because the
algorithm cannot effectively suppress the colored noise. And
the estimation results of this paper’s algorithm are −10◦

and 26◦, obviously, this estimation result of this paper’s
algorithm has a smaller error and is closer to the real orien-
tation. In Figure 6, it is evident that the proposed algorithm
excels in achieving the lowest spatial power spectrum esti-
mation. This superiority is attributed to the construction of a
selection matrix and the execution of a vectorization transfor-
mation, yielding a more concise and information-rich model
for the observation vector. The construction of the selection
matrix enables the selective retention of crucial information,
thereby enhancing the efficiency and accuracy of subsequent
processing.

FIGURE 6. Comparison diagrams of spatial spectrum estimations by
MUSIC-like, OGSBI and the proposed algorithms for the same parameters
in a single pass.

Next, we compare the estimation accuracy of different
methods. Defining the root-mean-square error (RMSE) as

RMSE =

√√√√ 1
SK

S∑
s=1

K∑
k=1

(
θ̂ks − θk

)2
, (22)

where S denotes the number of Monte Carlo experiments,
K is the number of source signals, and θ̂ks denotes the
orientation estimate of the kth signal source in the sth experi-
ment.Meanwhile, the Cramer–Rao lower bound (CRLB) [26]
for the DOA estimation performance is also plotted as the
baseline.

Figure 7 shows the variation curves of DOA estimation
RMSE of the three algorithms concerning the input SNR of
the array element, considering two linear FM sources with
frequency bands of 90-110 Hz and 280-320 Hz, the incidence
directions of −10.2◦ and 25.7◦, and the input SNR of −3 dB,
−1 dB, 1 dB, 3 dB, and 5 dB, respectively, and all other

FIGURE 7. Variation curves of the root mean square error with
signal-to-noise ratio for the three algorithms.

conditions remain unchanged, and the results of each sim-
ulation are obtained from 50Monte Carlo experiments. From
Figure 7, it can be learned that the DOA estimation RMSE of
the OGSBI algorithm and theMUSIC-like algorithm are rela-
tively high, which is because the OGSBI algorithm, although
it can eliminate the off-grid error, targets white noise and can-
not suppress the colored noise well, whereas the MUSIC-like
algorithm can suppress theGaussian colored noise to a certain
extent, but the estimation accuracy is limited, especially in
the low SNR conditions, the RMSE is larger. The method
in this paper, on the other hand, has a lower RMSE and
better suppression of colored noise. The RMSE of the three
algorithms decreases as the signal-to-noise ratio of the array
element input increases, which is because the interference of
the noise decreases gradually, and the error at this timemainly
originated from the true orientation deviation from the grid.
The constancy observed in the RMSE value is attributable
to the diminished sensitivity of the proposed algorithm to
noise within a designated range of signal-to-noise ratios and
the algorithm estimates the point with the closest bearing
to the sound source each time. This characteristic underscores
the algorithm’s heightened robustness, thereby contributing
to the augmentation of reliability in orientation estimation.

To compare the effect of the number of snapshots on the
root mean square error of the DOA estimation of the three
algorithms, two signal sources are used, the incidence direc-
tions are −10.2◦ and 25.7◦, the input signal-to-noise ratio of
the array element is SNR = 0 dB, the number of snapshots T
is set from 100 to 1 000 in steps of 100, and the simulation
results are obtained from 50 Monte Carlo experiments at a
time, and the changes of the RMSE of the spatial-spectral
estimation results of the three algorithms with the number
of snapshots are shown in Figure 8, It can be analyzed that
the RMSE of the MUSIC-like and OGSBI algorithms is
higher when the number of snap counts is 100, and as the
number of snap counts increases, the root-mean-square error
of the MUSIC-like algorithm is lower than that of the OGSBI
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FIGURE 8. Variation curves of the root mean square error with the
number of snapshots for the three algorithms.

algorithm, and the impact of the number of snap counts on
the performance of the algorithms becomes smaller at this
time, while the algorithm of the present paper, due to its
use of a sparse representation model, also has a lower root-
mean-square error in the condition of fewer snap counts,
with a better DOA estimation performance than the other two
algorithms.

Comparing the ability of this paper’s algorithm to distin-
guish two sources with close azimuthal proximity under a
uniform linear array, the number of snapshots is 1,000, the
incidence directions of the two sources are −6.7◦, −0.6◦, the
input signal-to-noise ratio of the array element is SNR = 0dB,
the number of array elements is M = 5, and the single
spatial-spectral estimation maps, as well as the target local
zoom maps of the three algorithms, are shown in Figure 9 (a)
and Figure 9 (b), respectively, and as can be seen in Figure 9,
the power spectra obtained by the paper’s algorithm can
distinguish two sources with a similar orientation, while the
power spectra corresponding to the MUSIC-like algorithm
and the OGSBI algorithm cannot distinguish sources with
a similar orientation, thus verifying that the method of this
paper is better than the other two methods in terms of
resolution.

B. EXPERIMENTAL DATA TESTING
The experimental data obtained from the sea experiment
conducted in October 2014 in a sea area of the Yellow Sea
of China were used for verification. On that day, there were
passing ships near the experimental sea area, and there was
wind-forming noise, which was analyzed and verified that the
noise power spectral density fluctuated with the frequency
and did not satisfy the white noise characteristics, thus was
colored noise. Two buoys were used as observation points,
numbered O (No.1 buoy) and M (No.2 buoy). Each buoy
was equipped with three hydrophones and one transmitting
acoustic source, and depth sensors were installed on each

FIGURE 9. Comparison diagrams of the spatial spectral estimates of close
sound sources for the three algorithms. (a) Spatial spectrum estimated of
three algorithms. (b) Partial enlargement of figure (a).

hydrophone and acoustic source to obtain their accurate sea-
water depths, with a depth sensor accuracy of 0.2 percent.

The water depth of the experimental sea area is 25.5 m.
According to the depth sensor records, during the experiment,
the sound source suspended by the O buoy is at 15 m under-
water; the three hydrophones of the M buoy are arranged
horizontally at 5.4 m underwater, and the spacing of the
arrays is half-wavelength, and the distance of the two buoys
is calculated to be 4 672 m according to the GPS data on the
buoys. The transmitted signals are in the form of 4-6 kHz
broadband long pulse linear FM signal with a signal length of
893 ms and a sampling frequency of 25 kHz. the true bearing
is located at −14.1◦, and the experimental deployment at sea
is shown in Figure 10.

Figure 12 shows the DOA spatial spectrum estimation
results of processing a section of sea trial data with a snap
count of 100, the signal-to-noise ratio on the day of the
experiment is about -10 dB, and the sea trial data has been
pre-processed with certain noise reduction. It can be analyzed
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FIGURE 10. Layout of sea trial.

FIGURE 11. Top view of buoy azimuth.

FIGURE 12. Spatial spectrums obtained from the experimental data
processed by MUSIC-like algorithm, OGSBI algorithm and the proposed
algorithm in this paper.

that, in the case of 100 snapshots, the bearing estimation
result of MUSIC-like algorithm is−12◦, the estimation result
of OGSBI algorithm is −12.5001◦, and the estimation result
of this paper is −14◦, and the estimation results of the three
algorithms are all around −14.1◦, which roughly matches
with the actual deployment situation, and proves that this
paper’s algorithm can be used in the shallow sea underwater
environment.

V. CONCLUSION
For the colored noise background in underwater airspace,
this paper combines the fourth-order cumulant and sparse
representation method for DOA estimation. In this paper,
the redundant data in the fourth-order cumulant is removed
by the second-fourth-order cumulant downscaling, and the
sparse representation model is established for the solution,
which applies to the Gaussian color noise background, and
can effectively expand the array aperture. Simulation and sea
trial data test show that the method in this paper is suitable for
shallow sea environments, and compared with the traditional
fourth-order cumulant method, the method in this paper has
stronger suppression of color noise, higher resolution, and
lower root-mean-square error under the condition of fewer
number of snapshots and lower signal-to-noise ratio.
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