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ABSTRACT This paper shows that the short-term wind power forecasts of a target farm can be significantly
improved by using ramp predictions and information from nearby farms. To do this, we first obtain
benchmark wind power forecasts from Scipher.Fx by Utopus Insights, Inc, which is owned by Vestas Wind
Systems. Second, we build a low-latency feedback error correction model that predicts the forecast error at a
given look-ahead time based on a novel ramp predictor, the last known forecast errors, and optionally, the last
known forecast errors from nearby farms. The predicted forecast error is then combined with the benchmark
wind power forecast to obtain the improved forecasts. The novel ramp predictor is constructed using the
benchmark wind power forecast and optionally, measured data over a defined time window, to improve the
less accurate wind power forecasts during ramp events. The ramp predictor also improves forecast accuracy
for longer look-ahead times by a second mechanism which we detail. The nearby farm selection algorithm is
based on two approaches: 1) Correlation analysis of historical data, and 2) Feature selection based on Shapley
additive explanations feature importance values. Our approach was tested on 17 wind farms in Europe and
the results showed that the ramp predictor can decrease the average relative normalized mean-absolute error
of 10 minutes to 6 hours look-ahead forecasts by 3.61%. Additional improvements from nearby farms can
be as high as 2.54% for some look-ahead times depending on the availability of data from upwind farms.

INDEX TERMS Wind power forecasting, feedback error correction, machine learning, XGBoost, wind
power ramp prediction, correlation analysis, nearby farm selection.

NOMENCLATURE
SYMBOLS
k Timestamp.
l Look-ahead time.
Pek,l The error in benchmark forecast power of

look-ahead time l at timestamp k .
P̂ek,l The predicted power forecast error of

look-ahead time l at timestamp k .
Pfk,l The forecast power of look-ahead time l at

timestamp k .
Pmk,l The measured power of look-ahead time l at

timestamp k .

The associate editor coordinating the review of this manuscript and

approving it for publication was Ehab Elsayed Elattar .

Pik,l The improved power forecast of look-ahead
time l at timestamp k .

Rk,l The ramp predictor of look-ahead time l at
timestamp k .

ACRONYMS/ ABBREVIATIONS
XGBoost Extreme gradient boosting.
NWP Numerical weather prediction.
SHAP Shapley additive explanations.
nMAE Normalized mean-absolute error.

I. INTRODUCTION
The variable and uncertain nature of wind and solar power
generation places a premium on the accuracy of generation
forecasts. Balancing authorities, responsible for maintaining
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the balance between load and generationwithin their territory,
may impose imbalance penalties on the owners of these
resources if the output of their plant varies too much from
their forecast [1], [2].

Accurate wind power forecasts reduce or eliminate the
imbalance penalties that wind resource owners must pay.
Greater forecast accuracy also enables the independent
system operator to enhance market efficiency and improve
the operational reliability of the bulk power system. A more
detailed account of the benefits of improved wind power
forecast accuracy can be found in [1].

Given these insights, it is evident that more accurate
wind power forecasts are essential for the future power
grid. A range of wind power forecasting methods has been
proposed in the literature [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25] and are categorized into
physical models and data-driven models. Physical models
use numerical weather prediction (NWP), which shows a
good performance for forecast horizons from several hours
up to six days [7], [8], [9], [10]. Data-driven models can
be further divided into statistical and machine learning
models. Statistical models include auto-regressive integrated
moving average, auto-regressive moving average, coupled
auto-regressive and dynamic system [11], [12], and Markov
models [7], [13], [14]. Machine learning models include
support vector machine [8], feed-forward neural networks
[8], [10], [12], [15], [16], [17], [18], [19], recurrent neural
networks such as long short-term memory networks [20],
[21], [22] and decision trees such as extreme gradient
boosting (XGBoost) [10], [23], [24], [25], [26].
One state-of-the-art wind power forecasting product is

called Scipher.Fx by Utopus Insights, Inc, New York, USA
[27], which is owned by Vestas Wind Systems, Aarhus,
Denmark. Vestas is the largest installer of wind turbines in
the world with over 100 GW capacity [28] and Scipher.Fx
provides forecasts for many of these installations as well as
those of other turbine manufacturers. This paper focuses on
improving the accuracy of Scipher.Fx by using a feedback
error correction based on a novel approach to ramp event
prediction. We also demonstrate further improvements to
forecast accuracy by including data from nearby farms. Real-
time access to low-latency data from multiple geographically
distributed sensors is key to successfully implementing our
approach.

Wefirst established benchmarkwind power forecasts using
Scipher.Fx and noted a degradation in forecast accuracy
during periods when power generation is rapidly changing,
that is, during ramp periods. A ramp period is characterized
by a large variation in wind power output observed at a wind
farm (or at a portfolio of wind farms) over a short period of
time (up to a few hours) [29]. To improve forecast accuracy
during ramp periods, we constructed a novel ramp predictor
using the benchmark wind power forecasts (Section IV).
We then demonstrate significant forecast accuracy

improvements from the ramp predictor for look-ahead times

FIGURE 1. Feedback error correction approach.

from 10 minutes to 6 hours. For look-ahead times between
10minutes and 3 hours 30minutes, much of the improvement
comes from an improved prediction of ramp events. However,
for look-ahead times between 3 hours 30 minutes and
6 hours, an additional improvement is obtained. This is
because the benchmark wind forecasts for look-ahead times
beyond 3 hours 30 minutes are obtained using only NWP
models compared to the measurement data and NWP-based
machine learning models used for look-ahead times up to and
including 3 hours 30 minutes. NWP based models results
in more accurate forecasts after a certain look-ahead time
but unfortunately, this transition point varies for different
wind farms and is computationally difficult to calculate it
for each farm. Our ramp predictor smooths the transition into
the only NWP-based forecasts by significantly improving the
accuracy of the NWP-based forecasts.

Finally, we demonstrate that forecasts at a target farm can
be further improved by using data from nearby farms that are
upwind in the prevailing wind direction. For each target farm
and forecast look-ahead times, optimum selection of nearby
farms depends on the location with respect to the target farm
and the prevailing wind speed and direction. We automate
the selection process through either a correlation analysis
of the historical data or feature selection and Shapley
additive explanations (SHAP) feature importance values
(Section V) [30].

Our feedback error correction approach, as shown in Fig. 1,
uses the last known forecast errors of the target wind farm,
a novel ramp predictor, and optionally, the last known forecast
errors from nearby farms to predict the forecast error of the
target farm for the given look-ahead time. The predicted
forecast error is then combined with the benchmark forecast
to obtain the improved forecast. Note that the ramp predictor
is constructed using the benchmark forecast; training the
benchmark model again to include the ramp predictor would
be computationally costly compared to training the feedback
error correction model.

The rest of the paper is structured as follows: Section II
describes wind power forecasting, while Section III is
devoted to the proposed feedback error correction approach.
The construction of the ramp predictor and methods for
selection of nearby farms are presented in Section IV and
Section V, respectively. Section VI explains details of the
implementation of feedback error correction and Section VII
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presents the improved forecast results. Section VIII
concludes the paper.

II. WIND POWER FORECASTING
A. BENEFITS OF IMPROVED WIND POWER FORECASTS
The economic and reliability benefits of improved wind
power forecast accuracy are discussed for various scenarios
in [1]. The benefits depend on the mix of conventional
generation resources, the existence of battery energy storage
systems, and wind penetration levels. Some of the important
findings are as follows. The cost savings from improved
forecasts are higher for systems with high penetration of
renewable energy sources, but the savings further depend on
the mix of conventional generation resources. For example,
cost savings are greater in a coal-dominated system than in
a natural gas-dominated system because of the savings from
high startup and shutdown costs. Improved wind power fore-
casts provide significant monetary benefits for both the inde-
pendent system operator and thewind farm owners depending
on the market structure and the operational practice.

B. SCIPHER.FX POWER FORECASTING SOFTWARE
Scipher.Fx is a proprietary wind forecasting SaaS (software
as a service) by Utopus Insights, Inc [27] and is used as
the benchmark in this paper. Forecasts are produced by two
distinct machine learning models. The first model, for shorter
look-ahead times, uses measurement data from a target farm
and NWP data for the target farm location as predictors. The
second model, for longer look-ahead times, uses only NWP
data as a predictor. The NWP models are better than the
measurement-basedmodels beyond a certain forecast horizon
but it is computationally difficult to exactly calculate this
transition point because it varies for different wind farms. It is
important to note that, for this work, the second model was
used for look-ahead times longer than 3 hours 30 minutes.

C. XGBOOST
One of the state-of-the-art machine learning algorithms used
for wind power forecasting is XGBoost, which is a gradient
boosting decision tree approach first proposed by Tianqi
Chen in 2015 [26]. Our feedback error correction model is
implemented using XGBoost as it is capable of providing
quality solutions without a high computational burden.

III. FEEDBACK ERROR CORRECTION
Our feedback error correction approach is illustrated in Fig. 1.
The main objective of the algorithm is to predict the error
of the benchmark forecast for a given look-ahead time. The
machine learning model for prediction of the forecast error
uses the last known forecast errors, a novel ramp predictor
(Section IV), and last known forecast errors from nearby
farms (Section V) as predictors. The predicted forecast error
is then simply added to the benchmark forecast to improve the
accuracy. This approach allows us to gain the benefits of the
ramp predictor with less computational burden compared to
having to retrain our benchmark wind power forecast model

to incorporate the ramp predictor. Another great advantage of
this ‘‘post-processing approach’’ is that it can be applied to
any given benchmark forecast, independently of its modeling
approach.

We formulate the problem as follows: The error in forecast
power Pek,l of look-ahead time l at timestamp k , is calculated
by subtracting the measured power Pmk from the forecast
power Pfk,l as shown below:

Pek,l = Pfk,l − Pmk . (1)

Note that the measured power here corresponds to the
forecast-for-time (i.e., time for which the forecast is gener-
ated) which is forecast-at-time plus the look-ahead time.

The predicted forecast error P̂ek,l is then used to obtain the

improved forecast Pik,l using:

Pik,l = Pfk,l + P̂ek,l . (2)

IV. RAMP PREDICTION
A wind energy ramp tool and metric [31] was initially
used to evaluate the performance of our benchmark forecast
during different ramp conditions. We defined a ramp event
as a change of 30% rated capacity or higher over a 3h
time window. This preliminary analysis showed that the
wind power forecasts are less accurate during ramp periods,
which led the authors to speculate that the forecast could be
improved if we could better inform the forecasting model
about probable ramp events. This section first explains
the ramp events, second discusses existing methods of
predicting ramp events, and finally presents the proposed
ramp predictor.

A. A RAMP EVENT
A ramp event is a large variation in wind power output that
is observed on a wind farm (or in a portfolio) within a short
period of time (up to a few hours), thus typically characterized
by magnitude and duration [29], [32]. A positive value for
the magnitude can correspond to an upward ramp while a
negative value is a downward ramp. A classification of a ramp
event often involves specification of a start time, direction,
magnitude and duration, but more sophisticated approaches
have been demonstrated [32], [33], [34], [35], [36].

B. BRIEF REVIEW OF RAMP PREDICTION APPROACHES
There are twomain strategies for predicting ramp-events. The
first is to detect ramps from a time series of wind power
or wind speed forecasts according to a given ramp-event
definition [37]. The second strategy is to use regression
to predict ramp-events from historical data [38], [39].
According to [38], the ramp capture rate was less than 50%
for most cases.

Given these insights, our approach to feedback error
correction does not forecast the magnitude or the time of
ramp events. Instead, a continuous variable that we call the
ramp predictor informs the feedback error controller about
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FIGURE 2. Graphical illustration of the ramp predictor.

potential ramps happening within a predefined window. This
approach has not been previously discussed in the literature.

C. PROPOSED RAMP PREDICTOR
The ramp predictor used in our approach to feedback error
correction is graphically illustrated in Fig. 2. It consists of a
series of values obtained by subtracting the last known power
value from measured and/or forecast values in a defined
time window. The mathematical formulation is as follows:
The ramp predictor for look-ahead time l at timestamp k
defined by Rk,l is constructed using the benchmark wind
power forecasts (for some look-ahead times, the last few
known measured power values are also included) over a time
window, as shown by:

Rk,l =
[
1Pk,1, . . . 1Pk,f , . . . 1Pk,F

]
, (3)

where 1Pk,f is the power difference from the measured or
forecast at f in the time window with the measured power
Pk,0 at the current timestamp k , given by:

1Pk,f = Pk,f − Pk,0. (4)

The time window brackets the look-ahead time, and the
beginning and end of the time window depend on the chosen
look-ahead time as explained in Section VI.

V. SELECTION OF NEARBY FARMS
Changes in wind power at a chosen target farm will be
correlated in time with changes at nearby farms. In particular,
changes in power at the target farm will lag similar changes
at nearby farms that are upwind of the target farm. Thus our
error correction approach uses power generation data from
nearby farms as a predictor to improve the forecast accuracy
for a target farm.

We demonstrate the value of this approach in a simple
model which uses data from nearby farms that are upwind
in the prevailing wind direction. We found that the machine
learning model, when fed all available data from all nearby
farms considered in the test portfolio, was not capable of
extracting meaningful information for forecast correction
from all the features [40]. Manual selection of nearby
farms based on prevailing wind direction and the geographic

FIGURE 3. Selection of nearby farms based on correlation values.

FIGURE 4. Correlation values for 30-minute look-ahead time forecast
error for the farm ID: F (%).

locations showed the expected correlations in forecast error
with respect to the target farm. Manual selection of time-
shifts (the differences between timestamps at a nearby farm
and a target farm) also demonstrated the expected correlations
between geographic locations on prevailing wind direction
and speed. We therefore explored and compared two methods
for automated feature selection.

A. METHOD 1: CORRELATION ANALYSIS
A correlation analysis is used to select the nearby farms for
each target farm and the corresponding time-shift of the data,
which may be different for each look-ahead time.

Our approach shown in Fig. 3 is as follows: First we create
the forecast error correlation matrices for each look-ahead
time of the target farm with different time shifts of the nearby
farms’ forecast error. The correlation is computed for each
day of the training dataset and only the median values are
shown in the matrices. Fig. 4 shows the 30-minute look-
ahead time correlation matrix for a target farm (ID: F). The
correlation values are smaller when we use forecast error
compared to if we had used measured power but the same
end result is obtained.

Second, we extract the most correlated nearby farms along
with the time-shifts of their highest correlated values (i.e.,
lags) for each look-ahead time of the target farm. To be
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TABLE 1. Selected nearby farms for the target farm ID F with the chosen
time-shifts (i.e., lags).

FIGURE 5. Selection of nearby farms based on feature selection.

selected as a nearby farm, a farm must exceed a threshold for
minimum correlation value and also fall within a certain range
of the highest correlation value of all the farms. Table 1 lists
selected lags (the correlation time-shift between each nearby
upwind farm and the target farm) for various look-ahead
times for two nearby farms that were selected based on the
correlation values displayed in Fig. 4. In order to maximize
the information from nearby farms ±1 lags have been added
to the chosen nearby farm’s optimum lag. Note that the
shorter the look-ahead time, the longer the selected optimum
lag time. This is expected, since at time of forecast, smaller
look-ahead times at the target farm correlate maximally with
conditions at the nearby farm that are farther in the past.

B. METHOD 2: FEATURE SELECTION BASED ON SHAP
FEATURE IMPORTANCE VALUES
To successfully utilize the information coming from nearby
farms, we used a well-known method for feature selection
based on feature importance using SHAP values [30]. The
method shown in Fig. 5 works as follows: For a given
portfolio with N farms and for each target farm in the
portfolio, the machine learning model using information
from all farms in the portfolio is trained using a feature
selection algorithm based on SHAP feature importance
values. The feature selection algorithm recursively eliminates
the least important features until no further improvements
in the predictions are achieved or until a minimum number

FIGURE 6. Prevailing wind direction of all the wind farms in the test
portfolio.

TABLE 2. Time windows of the ramp predictor used for different
look-ahead times.

of features (user-defined) is reached. The results from
this method determine the optimal subset of nearby farms
that actively provide predictive value to improve forecast
accuracy.

VI. IMPLEMENTATION
This section summarizes the implementation details of the
proposed approach.

A. DATA PREPARATION
The dataset used in this paper consists of available and actual
wind power time-series and meteorological data such as wind
speed for 17 wind farms in Europe over two years (from
September 1, 2019 to August 31, 2020). These farms were
selected from a portfolio of over 200 farms based primarily on
the quality and availability of data. Fig. 6 shows the prevailing
wind directions of the 17 selected wind farms.
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TABLE 3. Hyper-parameters of the XGBoost model.

B. TRAINING
The target variable of the machine learning model is forecast
error while the last known forecast errors, the ramp predictor
and the last known forecast errors from nearby farms are the
input predictors as shown in Fig. 1. PythonXGBoost library is
used for the training, which requires each input predictor to be
a column in a python dataframe. We generate one XGBoost
model for each look-ahead time. The time windows of the
ramp predictor used in this paper are summarized in Table 2.
The hyper-parameters used in this work, shown in Table 3,
are found from experimentation.

C. TESTING
During forecast-at-time, we feed in the last known forecast
errors, ramp predictor and forecast errors from nearby farms
into the trained XGBoost model to predict the target forecast
error of the given look-ahead time. This forecast error is then
additively combined with the benchmark forecast to obtain
the improved forecast.

VII. TEST RESULTS AND DISCUSSION
Applying our feedback error correction method, we find an
average relative improvement in normalized mean-absolute
error (nMAE) of 3.71% for all look-ahead times for the
17 wind farms in the test portfolio. This result was obtained
by training the algorithm once on a historical dataset spanning
one full year. As would be expected, the forecast accuracy
increased with the length of the historical dataset used for
training. Training with datasets covering periods of 6 months
yielded roughly 70% of the accuracy improvement obtained
by training with a dataset covering a full year. The results
discussed below were obtained with 1 year of historical data,
but our simulations demonstrated additional gains in forecast
accuracy with more frequent training on longer datasets.

With only the ramp predictor and forecast errors from the
target farm as predictors (Fig. 1), our trained error correc-
tion model generated forecasts with significantly improved
accuracy. Fig. 7 shows the relative improvement in nMAE for
look-ahead times from 10 minutes to 6 hours for each of the
17 wind farms in our test portfolio. The relative improvement,
averaged over all look-ahead times and all wind farms is
3.61%. (Monthly re-training with two years of historical data
increases this relative improvement in forecast accuracy to
4.03%). A large increase in this relative improvement is
observed for look-ahead models for 3 hours 30 minutes and
longer - out to at least 6 hours. As discussed in Section II-C,
these longer look-aheads are provided by machine learning
models that rely solely on NWP data. The implementation of

FIGURE 7. Relative improvement in nMAE [%] and the final forecast
accuracy for each farm in the test portfolio from using the ramp predictor.

FIGURE 8. Comparison of the overall nMAE [%] for the benchmark
forecast and the improved forecast using the ramp predictor.

the ramp predictor in our feedback error correction method
corrects the errors of the NWP-based forecast models,
resulting in a large improvement in the forecast accuracy
at 3 hours 30 minutes and longer. Note that NWP-based
forecast models provide more accurate forecasts beyond a
certain look-ahead time but unfortunately, calculating this
look-ahead time is computationally difficult as it changes
with the wind farm. The efficacy of this correction is evident
in Fig. 8, where the nMAE of the benchmark wind power
forecasts increases smoothly and gradually as the look-ahead
time increases to 3 hours 30 minutes, with a steeper increase
in nMAE with the switch to the ‘‘NWP only’’ model for
longer look-ahead times. In contrast, the corrected forecast
shows very little increase in nMAE that can be attributed to
the transition to the NWP-based forecast model.

Additional improvements in forecast accuracy were
achieved by adding the forecast errors from nearby farms
as predictors for error correction (Fig. 1). As can be seen
in Fig. 9, the information from nearby farms had a positive
impact on the forecast accuracy in most farms present in the
test portfolio, with an average relative improvement in nMAE
of 0.11%. For one farm, the positive effect was notable, with
a 2.54% relative improvement in nMAE for the look-ahead
time of 2 hours. In few instances, adding information from
nearby farms negatively impacted the forecast accuracy, with
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FIGURE 9. Additional relative improvement in nMAE [%] from adding
information from nearby farms.

FIGURE 10. Relative improvement in nMAE [%] per ramp condition: no
ramp event (left), ramp up event (middle), and ramp down event (right).

one farm experiencing a decrease in nMAE of 0.56%. The
observed positive and negative effects of adding information
from nearby farms are intrinsically related to the relative
positions of the farms in the test portfolio: target farms with
one or more upwind farms from the prevailing wind direction
will benefit from adding information from those farms, while
farms with no good upwind farms might experience accuracy
degradation.

Lastly, to quantify the improvements of the proposed
approach during several ramp conditions, the wind energy
ramp tool and metric function described in Section IV was
applied to separate the results into three categories: 1) no
ramp event, 2) ramp-up event, and 3) ramp-down event.
The same definition of ramp event was used, i.e., a 30%
change in rated capacity or higher in a 3h time window.
Fig. 10 illustrates the relative improvements in nMAE
achieved by implementing the feedback error correction
method proposed in this paper in each ramp event category.
As can be seen in Fig. 10, the application of the feedback
correction error method produces an overall positive effect
on forecast accuracy during all ramp conditions. During the
no-ramp event conditions, a significant relative improvement
in nMAE is observed for look-ahead times above 3 hours and
30 minutes. In this case, the main added value of the ramp
predictor comes from the fact that it contains the last known
measurement data at the wind farm’s site. This allows the
machine learning model to calibrate the forecasts from the
NWPmodels to the actual production levels of the wind farm,
thus considerably reducing the error of the NWP forecasts.
The applied methodology also allowed an improvement in
nMAE during ramp-up conditions, especially for shorter
look-ahead times, a direct result of the ramp predictor
allowing the model to better recognize the potential future

variations of power production and thus improve forecast
accuracy. The improvements during ramp-down events are
overall smaller and has a slight increase in nMAE for
very short look-ahead times (10 and 20 minutes ahead).
These results indicate that the ramp predictor could provide
more valuable information to detect ramp-up events than
ramp-down events.

VIII. CONCLUSION
We have presented a feedback error correction approach
to improve short-term wind power forecasts for look-ahead
times up to 6 hours using a ramp predictor and data from
nearby farms.

The results show an average 3.6% relative decrease in
nMAE for the 10 minutes to 6 hours look-ahead forecasts,
with a competitive overall accuracy of 6.6% nMAE. Most
of this improvement is due to the implementation of a
novel ramp predictor, which only uses information from the
target farm and improves the response of our feedback error
correction to the onset of ramp events, as demonstrated by
an enhanced decrease in average nMAE during ramp-up
and ramp-down events, periods with typically higher imbal-
ance penalties for stakeholders. Additional improvement in
forecast accuracy for target farms is achieved by leveraging
information from nearby farms located upwind from the
prevailing wind direction.
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