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ABSTRACT Gait recognition is a biometric identification method based on individual walking patterns.
This modality is applied in a wide range of applications, such as criminal investigations and identification
systems, since it can be performed at a long distance and requires no cooperation of interests. In general,
cameras are used for gait recognition systems, and previous studies have utilized depth information captured
by RGB-D cameras, such as Microsoft Kinect. In recent years, multi-layer LIDAR sensors, which can obtain
range images of a target at a range of over 100 m in real time, have attracted significant attention in the field
of autonomous mobile robots and self-driving vehicles. Compared with general cameras, LiDAR sensors
have rarely been used for biometrics due to the low point cloud densities captured at long distances. In this
study, we focus on improving the robustness of gait recognition using LiDAR sensors under confounding
conditions, specifically addressing the challenges posed by viewing angles and measurement distances.
First, our recognition model employs a two-scale spatial resolution to enhance immunity to varying point
cloud densities. In addition, this method learns the gait features from two invariant viewpoints (i.e., left-
side and back views) generated by estimating the walking direction. Furthermore, we propose a novel
attention block that adaptively recalibrates channel-wise weights to fuse the features from the aforementioned
resolutions and viewpoints. Comprehensive experiments conducted on our dataset demonstrate that our
model outperforms existing methods, particularly in cross-view, cross-distance challenges, and practical
scenarios.

INDEX TERMS Gait recognition, 3D point cloud, LiDAR, convolutional neural networks, attention
mechanism.

I. INTRODUCTION and retinas, gait has the following advantages: it can be easily

Gait recognition is used to identify people based on their
walking patterns. This promising biometric technology has
attracted considerable attention because, in this method,
distinct physical and behavioral characteristics are used.
Compared with other modalities, such as faces, fingerprints,
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captured at a long distance and does not require explicit
cooperation or contact with the subjects of interest. Camou-
flaging gait is difficult because of the complex gait dynamics.
Therefore, gait recognition exhibits considerable potential for
various applications such as criminal investigations and social
security.

Although RGB cameras are widely used for capturing
gait data because of their low economic cost, such cameras
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typically make the extraction of gait features difficult because
silhouettes, which are commonly used in gait recognition
tasks, may not be effective in capturing motion cues,
especially in frontal and back views. Studies have focused
on this problem by applying RGB-D cameras, such as
Microsoft Kinect, which handle additional depth information
to effectively use of dynamic textures [1], [2]. Compared
with typical RGB cameras, RGB-D cameras have unique
advantages, including robustness to various illumination
conditions, simple background subtraction, and abundant 3D
geometry. However, these RGB-D cameras exhibit severe
limitations in measurement distance and field of view, with
a maximum of approximately 10 m and 70°, respectively,
rendering their application difficult.

LiDAR sensors, which are laser-based range sensors that
can measure the surrounding geometry in a 3D point cloud
format, have attracted considerable attention in the field
of computer vision. These sensors have been applied in
mobile robots and self-driving vehicles for computer vision
tasks, such as object detection, tracking, and navigation.
Compared with RGB-D cameras, LiDAR sensors are more
robust to various lighting conditions and can measure longer
distances due to their active sensing, which is based on
short-wavelength pulsed lasers. Although radar has a long
range and is insensitive to lighting fluctuations, LiDAR
sensors are more resistant to noise and provide higher spatial
resolutions. Therefore, LIDAR-based three-dimensional (3D)
perception has become essential for autonomous driving.

Compared with general RGB cameras, LiDAR sensors
have rarely been used in biometrics. A possible cause is the
lower spatial resolution of LiDAR sensors at long distances,
which makes it difficult to capture fine-grained motions of
humans in their entirety. Given the benefits of LIDAR, such as
robustness to varying illumination conditions, high accuracy
in 3D mapping, long-range measurement capabilities beyond
those of depth cameras, and a scanning range covering 360°
in azimuth, LiDAR can be used for outdoor applications as a
biometric identifier. Furthermore, these LiDAR sensors can
be used as alternatives to RGB cameras to protect personal
information because the direct visual identity-related features
of individuals are not extracted.

We previously proposed a gait recognition method using
3D LiDAR [3] and demonstrated the potential of LiDAR
sensors for these recognition tasks. In this approach,
spatio—temporal features are modeled with depth gait shapes
and LSTMs [4]. However, in this study [3], both the mea-
surement distances and walking directions from the sensor
were kept constant because the axes of the generated image
sequences depended on the specific resolutions constrained
by the sensor hardware. This situation is only valid if LIDAR
sensors are placed in a corridor or narrow street where people
walk in a single direction. In the future, LiDAR sensors
will be widely used in numerous scenarios, particularly in
mobile robots for person identification. For example, security
robots, which can be operated 24 hours a day and are
less conspicuous than humans, are becoming increasingly
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common in malls, offices, and public spaces. Night-time
surveillance can be achieved without the requirement for
additional vision sensors by applying biometrics to such secu-
rity robots. Furthermore, self-driving cars can be equipped
with biometric devices to detect and identify specific users
while driving. Considering these scenarios, designing a
robust gait recognition model that accounts for intra-subject
changes is critical for maintaining stable recognition capacity.

To minimize the effect of variations irrelevant to gait
features, we focused on improving the robustness in two
key areas: viewing angles and measurement distances. These
conditions are the primary challenges typically encountered
in LiDAR-related tasks. The proposed gait recognition model
using LiDAR is displayed in Fig. 1. Specifically, we used
a two-scale spatial resolution approach to learn various
point cloud densities projected onto 2D grids representing
depth information. Furthermore, this model exploits gait
features from two invariant viewpoints (i.e., left-side and back
views) across the gait sequence to enhance the consistency
of walking dynamics, whereas these gait shapes cannot be
obtained from RGB cameras. In this study, we designed a
2D-attention-based block to fuse gait features from multiple
resolutions and viewpoints. Unlike a typical self-attention
mechanism that considers the interrelationship of a single
input feature, this block takes two different features and
compares their statistics to bias towards the more informative
one.

A preliminary version of this study was published in [5].
We have extended this version based on the following three
aspects: 1) Rather than using pooling approaches [6], [7],
we designed a novel attention block to fuse the two gait
features more effectively for both invariant viewpoint and
spatial resolution in an end-to-end manner. 2) We conducted
additional ablation studies to verify the proposed modules.
3) We compared the recognition performance with prior
methods on our dataset, which consists of combinations of
cross-views and cross-distances, to achieve deeper insights
than previous studies [5].
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FIGURE 1. Overview of the proposed gait recognition model using 3D
LiDAR, which learns two viewpoint-invariant gait shapes in varying point
cloud densities using an attention-based approach.

The contributions of this study are as follows:

1) A novel framework is proposed for gait recognition
using 3D LiDAR. This model is robust to changes in
viewing angles and measurement distances.
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2) Performance of the proposed method is enhanced
in three aspects, namely, point cloud projec-
tion, gait direction transformation, and recogni-
tion network, to learn viewpoint- and point cloud
density-independent gait features with contextual depth
information.

3) Extensive experiments, including variances of both
viewing angles and measurement distances, conducted
on our dataset revealed that the proposed method
surpassed the recognition accuracy of prior studies.

Il. RELATED WORK

A. GAIT REPRESENTATION IN AN RGB CAMERA

Gait recognition approaches for RGB videos can be cate-
gorized into two types: model-based and appearance-based
methods. These categories depend on how the gait-related
features are designed for walking.

1) MODEL-BASED METHODS

In model-based methods, first, the pose estimation algorithm
is applied to model an articulated body with geometric
properties, such as the lengths of skeletons, stride, cadence,
and joint angles [1], [8]. These approaches are gener-
ally immune to appearance changes because gait-related
dynamics representing the joint information of the human
body are learned under different clothing conditions. With
the rapid development of human pose estimation methods,
the recognition accuracy of model-based approaches has
considerably improved [9], [10]. In particular, studies [9],
[11] have achieved high recognition performance by adopting
a 3D human representation [12] that includes not only pose
but also shape parameters. However, these approaches remain
challenging because of their heavy reliance on accurate
key point estimation of image sequences, and sensitivity to
occlusions, which could lead to the loss of identity-related
shape information.

2) APPEARANCE-BASED METHODS

Compared with model-based approaches, shape-related gait
features from original videos are directly used in appearance-
based approaches. For example, a gait energy image (GEI)
[13] is an appearance-based approach in which a silhou-
ette sequence of the gait cycle is averaged to represent
spatio—temporal information. Extended GEI-like modalities,
such as frame difference frieze patterns [14], gait flow
patterns [15], and affine moment invariants [16], have been
proposed. Furthermore, the performance is improved by
feeding GEIs into CNNs [17], and this approach has been
used in other studies as a baseline. However, these methods
compress time-series information into a single frame, which
leads to a loss of opportunity for applying gait dynamics
in temporal changes. In contrast, silhouette images, which
describe body states in binary, have become popular in
general gait recognition tasks as input representation because
of their effectiveness in recognition performance and low
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computational cost. For example, Chao et al. [18] achieved
promising results by integrating gait silhouettes as a set [18],
and [19] extracted spatio—temporal features from each body
part. In contrast, Fan et al. [20] proposed a global-local
convolution approach to address the neglect of local region
details in gait frames, and a subsequent version [21] designed
a cross-domain evaluation to synthesize both segmentation
and recognition networks. Auto-encoders that disentangle
appearance into style and pose features have been proposed to
address gait-irrelevant variables (e.g., clothing and carrying)
in RGB images [22]. The separation performance was further
improved by augmenting the training data through adver-
sarial generation [23]. We focused on the appearance-based
approach assuming that inferring accurate key point locations
remains challenging for gait recognition due to the sparseness
and incompleteness in pedestrian point clouds captured from
general LiDAR sensors, despite studies on LiDAR-based
pose estimation [24].

B. GAIT RECOGNITION USING RANGE SENSORS
Compared with RGB cameras, few studies based on
range-based sensors have been conducted for gait recogni-
tion. Kozlow et al. [2] classified the gait types of individuals
using RGB-D cameras by using a 3D skeleton model with
Bayesian networks, whereas Sadeghzadehyazdi et al. [25]
applied flash LiDAR sensors with both 2D and 3D skeleton
models. In studies applying LiDAR sensors, Benedek et al.
[26] proposed a GEI-based method to re-identify individuals
in a short time. However, this method cannot satisfactorily
extract dynamic features from gait frames, which are critical
for discriminating individuals. To address this problem,
Yamada et al. [3] proposed a method for exploring temporal
gait changes using LSTMs [4]. They exploited depth
representation in a spherical projection, which has been used
in several LiDAR-related tasks for its processing efficiency
[27]. However, this method exhibits degraded recognition
performance when the walking directions and distances
measured from LiDAR sensors are not constant, which limits
the flexibility of the model in real-world scenarios with
complex confounding conditions.

C. ATTENTION MECHANISM FOR CONVOLUTIONAL
NEURAL NETWORKS

The attention mechanism has been used in numerous tasks
because of its ability to bias the allocation of available pro-
cessing resources toward the most informative components
of an input signal [28]. Several studies have demonstrated
its applicability to computer vision. For example, Wang
et al. [29] proposed a nonlocal operation that captures
long-range dependencies in images or videos and can
be plugged into CNN-based architectures. Hu et al. [30]
enhanced the representation power of CNNs by focusing on
channel relationships using a gating mechanism, whereas
Woo et al. [31] inferred attention maps related to both
the channel and spatial features. In this study, a novel
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attention block was designed by considering inter-channel
dependencies to effectively fuse two gait features extracted
from convolutional encoders.
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FIGURE 2. Overview of the gait direction transformation (GDT) process
that generates two invariant gait shapes from pedestrian point cloud
sequences.

lll. METHODOLOGY

In this section, we demonstrate a pipeline for our gait
recognition method that consists of three steps: gait direction
transformation, depth image generation, and recognition
network. To enhance immunity to changes in the walking
directions of subjects, we used LiDAR characteristics, such
as gait shapes that are invariant to viewing angles and are not
captured by general RGB cameras.

A. GAIT DIRECTION TRANSFORMATION

We first describe the gait direction transformation (GDT)
process for estimating the walking directions of point cloud
sequences. These directions are transformed into constant
directions to extract the two viewpoint-invariant gait features.
For example, when generating gait images from a left-side
view, subject point sets are aligned with the —y’-axis in the
new x’y’-plane of Cartesian coordinates, to project these side
gait shapes from the y'z’-plane, as depicted in Fig. 2. Let
P; = {p:.1.P:.2, ..., Ps,n} denote the point set of a subject
at time step ¢, obtained using either background subtraction
or object tracking techniques. Here, N denotes the number of
points for time step ¢, which may vary across different frames.
In addition, n represents an arbitrary single point among N
points. Each point p; , € R3 is represented in Cartesian
coordinates (p; n.x, Pr.n,y» Pt,n,z)» Where the z-coordinate is a
vertical directional value at the corresponding points. Given
an extracted point cloud of the subject, we define the center
of mass ¢; = (¢ x, C1,y, C1,7) for the time step ¢ as follows:

1N
q=ﬁzmm (1)
n=

where ¢; ; is set to zero because we only consider the walking
direction on the xy-plane. Subsequently, the directional angle
Bgait Tor a given point cloud sequence P in the xy-plane can
be calculated from its starting and ending central points. This
approach avoids instability of the central points caused by a
variable number of points in the gait sequence. All walks over
an entire frame can be approximated as a straight line:

Ogait = arctan(cr,y — €o,y, CT,x — €0,x)> )
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where arctan(-, -) calculates the angle between a pedestrian
and a positive x-axis in the Euclidean plane. Given a
directional angle anit, the transformed point cloud sequence
P= {f’o, Pi...., Pr} is obtained by rotating the original gait
sequence P around the central points using the z-axis in the
case of a left-side view:

A b
Ptn = z(_egait - E) : (pl,n —¢), 3)

where R, represents a rotation matrix around the z-axis.
The case of generating back-view gait images follows the
above procedure, except that rotation matrix R;(—60gaic —1/2)
and the y'z’-plane are replaced with R.(—0g,j; — 7) and the
y"7Z"-plane, respectively, as shown in Fig. 2. The point clouds
from the left-side and back views are standardized to be
represented as depth images in the same coordinate direction
by varying the values of the rotation matrix R_(-).

B. DEPTH IMAGE GENERATION

We generated input data from the transformed pedestrian
point cloud P to feed a subsequent recognition network:
depth image sequences of the left-side and back views.
Our approach represents point clouds as gait images using
orthographic projection, which allows for a more intuitive
representation of walking shapes and texture information
from fixed viewing angles. Our projection manner differs
from the approach used in [3], in which point clouds
are assigned to an angular grid using spherical projection,
as displayed in Fig. 3. The proposed gait images are rendered
from the subject point cloud P, € RV*3 heading along the
—y-axis and —x-axis, which correspond to the left-side and
back views, respectively. The gait image i; of each time step
t is determined as V(= [;/R;) x H(= ly/Ry) grid, where [,
ly, R;, and Ry, are a height for the z-axis, width for the y-axis,
vertical resolution, and horizontal resolution, respectively,
for the generated images. Compared with the prior approach
in [3], which bijectively maps the pedestrian point cloud
to a 2D spherical grid through one-to-one correspondence,
the proposed method assigns this point cloud to a physical
space divided into pixel-level regions. When more than one
point exists in the same pixel, the largest x-coordinate value,
representing the nearest point based on the direction —x-axis
in which gait shapes are observed, is the depth value for
that corresponding pixel. If no points exist within a pixel, its
depth value is set to 0. This method for determining depth
values is similar to the Z-buffer algorithm, which compares
the depths of surfaces at each pixel position on the projection
plane, except that it uses the smallest depth values. For a
clear distinction between a pedestrian and the background,
a constant [, /2 is added to all pixel values where one or more
points exist. Here, the pixel position i, ; in the proposed depth
images for an arbitrary point p; , is defined as follows:

r . . n
V= \‘_ : (Pt,n,z — mn (Pt:O,n,z) + lz—const)J , @

RZ ne(l,...,N}
1, I,
h= R_y ' (pt,n,y + E) s (5)
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FIGURE 4. Architecture of (a) overall recognition network and (b) spatial encoder unit. (a) The overall recognition network consists of a
viewpoint-adaptive encoding (VE) module, two fully-connected layers, a ReLU activation function, and batch normalization. Specifically, the VE module
includes two spatial encoder units to process gait image sequences of both the left-side and back views. (b) The spatial encoder unit is equipped with
a resolution-adaptive encoding (VE) module and a temporal encoding (TE) module. This unit extracts the gait feature for a single viewpoint.

where the criterion for the vertical axis in the gener-
ated gait images is determined by considering the lowest
z-coordinate value of the point cloud sequence p;—on; at
time step + = 0, which represents the floor in walking
situations, with an additional constant /,_ .o, to standardize
gait shapes projected onto the image sequences. Compared
with typical gait recognition tasks that involve resizing
a pedestrian segmented from RGB images to a standard
height via linear interpolation, the proposed approach directly
projects a subject’s point cloud onto the image. Therefore,
the proposed gait images require limited pre-processing
than general RGB images and provide richer size-related
information. Consequently, we can obtain the gait image
sequence I = (if,...,ir) € RT*VXH for T frames.
We used depth images projected from two fixed viewpoints
for the subsequent recognition network: gait image sequences
of left-side view ILsge and back view Ipack. Although Igige
provides the richest dynamic gait information, Ip,ckx is more
practical than other viewing angles because people tend
to walk away from visual sensors and prefer not to show
their faces to visual sensors. The proposed depth images
can represent gait-related features more effectively than the
silhouettes and RGB images typically used in gait recognition
tasks because these images convey geometric information
more clearly than other images. The depth values for each
gait image sequence are normalized by dividing them by a
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constant [,/2. This normalization step can scale the depth
values within a specific range and facilitate the training
process of the proposed network. In this study, I, I, R;,
Ry, V, H, l,_const, and T are set to 2.6 m, 1.8 m, 0.04 m,
0.04 m, 64, 44, 0.4 m, and 15, respectively. Here, V and H
are selected based on previous gait recognition studies and
are used consistently throughout the experiments.

C. RECOGNITION NETWORK

In this section, we describe a recognition network for
learning the discriminative gait features from the afore-
mentioned inputs. The architecture in Fig. 4 (a) consists
of a viewpoint-adaptive encoding (VE), which includes
two spatial encoder units and one attention-based two-
feature fusing (ATFF) block, along with additional layers.
Each spatial encoder unit in the VE module is formed of
two components, namely, resolution-adaptive encoding (RE)
and temporal encoding (TE), as displayed in Fig. 4 (b).
In particular, the ATFF block is inserted into the ends of
the VE and RE to flexibly aggregate the two features under
various confounding conditions.

1) VIEWPOINT-ADAPTIVE ENCODING

In the viewpoint-adaptive encoding (VE) module, two-
feature maps are fused from different viewpoints: the left-side
and back views to obtain the discriminative gait feature.
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Specifically, the gait features fgge and fpack are extracted
from the same spatial encoder unit and combined into one
feature vector through the ATFF block. Unlike the pervious
version of this study [5], which aggregates outputs from
two units pre-trained for different viewpoints, this feature
fusion is achieved in an end-to-end manner. Subsequently,
the final linear layer in the proposed final network is used
as a gait feature vector fo.;; € RN, where N is the
number of trained subjects. During training, we adopt cross-
entropy loss, which is common in classification tasks, and
calculate the gap between a predictive distribution and the
corresponding ground-truth distribution. In contrast, during
testing, we use the nearest neighbor algorithm (i.e., rank-1
accuracy) to compute the cosine similarity between galleries
and probes for subsequent evaluations.

2) RESOLUTION-ADAPTIVE ENCODING

The high-resolution images represent fine-grained gait pat-
terns. However, when the input data are captured at a long
distance, these images do not have the ability to recognize
detailed spatial features because the human shape is generally
sparse, as displayed in Fig. 5.

il

3D LiDAR
Sensor

FIGURE 5. Examples with various measurement distances, with different
sparsity of proposed depth images.

Gait-related spatial features learned from dense data
acquired at short distances may not generalize to long
distances, as the point clouds captured from LiDAR sensors
typically have non-uniform densities at various distances.
To alleviate this problem, we designed an RE module
that leverages not only the original resolution but also the
low resolution. This method is robust to sparse data and
exhibits an enhanced recognition of coarse-grained patterns.
Furthermore, this module combines the two-scale features
extracted from the two resolutions. First, the double-reduced-
resolution image sequence Ijoy_res € RY *V/2XH/2 5 obtained
by feeding a gait image sequence I € R7*Y*# into a max
pooling layer as follows:

Liow-res = Maxpool2D(T) (6)

Liow-res is up-sampled to match the height and width
dimensions of the original image I as follows:

Tiow-res = Upsampling2D(Tow-res) 7

129754

Subsequently, we feed two gait image sequences into the
CNN-based extractor. This extractor consists of two 2D
convolutional layers and one 2D max-pooling layer to extract
two spatial feature maps with two different resolutions from
a single viewpoint. In this extractor, the kernels are shared
across both two resolutions and two viewpoints to reduce
the computational cost and to learn filters with the same
weights for the subsequent ATFF block in the RE module.
The detailed configurations of each layer are listed in Table 1.

TABLE 1. Layer configuration for the spatial encoder unit.

Layer Input/Output Channels ~ Kernel Size  Stride/Padding  Activation
2D Conv 1 1/32 5x5 1/0 ReLU
2D Conv 2 32/32 5x5 1/0 ReLU

2D Max Pooling - 2x2 2/0 -
2D ConvLSTM 32/64 3x3 1/0

3) ATTENTION-BASED TWO FEATURES FUSING

As displayed in Fig. 6, the ATFF blocks can adaptively
recalibrate and aggregate two-feature maps under changing
conditions, especially in terms of resolutions and viewpoints.
For instance, high-resolution images represent distinct spatial
features at short distances from LiDAR sensors, whereas
low-resolution images may be more effective at long
distances, as displayed in Fig. 5. Additionally, a more optimal
viewpoint for capturing gait-related features could exist
because self-occlusions depend on the emitting angles of the
lasers. Inspired by [30], we designed a novel attention-based
block that fuses two 2D feature maps that represent distinct
characteristics, biasing more useful weights under varying
scenarios. Unlike the typical self-attention mechanism that
explores the inter-relationships within a single input, this
block operates channel-wise comparisons between two-
feature maps. Thus, in this approach, the scores for both
inputs are compared and fused into a single feature. Given
that inputs fed into the ATFF module are denoted as f; €
RT % Cattn X Han X Watn g d f, € RTXCmmXHannXWatm’ we first
compress the global spatial information using global average
pooling in each channel to fully exploit the contextual
information. Here, Cuyn, Hawn, and Wy, represent the
channel, height, and width of these 2D spatial features,
respectively. Compared with the original structure [30],
our strategy incorporates an additional temporal context T
into the global average pooling calculation to capture the
gait-related consistency in sequences. Formally, the vector
z; € R js calculated with the spatio—temporal dimensions
T X Hyun X Wyn of f1 for each channel by the following
equation:

1 T Haitn Wain

"= ———— (B K. (8
Ucun = 7 meWmZZZﬁ,Lm(u ). (8)

i=1 j=1 k=1

Subsequently, we follow this operation with a second
operation that fully captures channel-wise dependencies and
expresses probabilistic values to determine which of the two

VOLUME 11, 2023
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block, which takes two different feature maps as input and recalibrates
their scores to fuse them into a single feature.

features f| and f, is more critical. First, the statistical vector
s; € R of f| is obtained by forming a bottleneck using
a dimensionality reduction layer with reduction ratio r and
sigmoid activation. Furthermore, another statistic s; € RCaitn
of f; is calculated with s; as follows:

$2=1-5; =1-0(W25(Wiz1)), )

where o (-) and S(é) refer to the sigmoid and ReLIg functions
with W, .

e R *Cm and W, € IR Catn X =5 Here,
we ensure that the sum of s ¢, and s2,,,, for each channel
is equal to 1 so that each statistic is standardized. This
subtraction operation is designed based on the insight that
the channel-wise scores of one input are determined simul-
taneously when the scores of another input are computed.
Finally, the final output fi € RT*Cam*HamxWam of this
ATFF block can be obtained by adding two outputs f; and
f, € R7*CumxHumxWamn which are rescaled from the inputs
f| and £, using the activation s; and s, respectively:

fora = 1 D F2 = (51 % F1) @ (52 % £2), (10

where @ and * represent element-wise adding and channel-
wise multiplication between a scalar s.,, and a feature
map fe,.,. respectively. These ATFF blocks are inserted at
the endpoints of the RE and VE modules in the proposed
network. In the VE module, the T dimension of the input
feature is set to 1.

4) TEMPORAL ENCODING

The TE block aggregates the temporal information of the
feature maps extracted from the previous RE module. Specif-
ically, this module consists of a single 2D convolutional
LSTM (ConvLSTM) layer [32], which is an extension of
LSTMs [4] and is used for modeling the spatio—temporal
representation of gait features, equipped with 2D max
pooling and batch normalization layers [33]. The hyper-
parameters of this layer are listed in Table 1. Compared with
[3], ConvLSTM can outperform 1D-LSTM layers because
it captures spatio—temporal correlations simultaneously. In
Addition, the kernels in this TE module are shared across two
viewpoints for the subsequent ATFF block in the VE module.
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IV. EXPERIMENTS

In this section, we report the results of comprehensive
experiments performed to evaluate the performance of the
proposed method. First, we describe our dataset used in these
experiments and compare our method with existing methods
under various settings, including measurement distances and
viewing angles from LiDAR sensors. We conducted ablation
studies to evaluate the effectiveness of proposed modules.
Furthermore, we investigated the practicality by limiting the
viewing angles of the database. Finally, we visualized the
gait features by reducing their dimensions and performed
qualitative evaluations.

A. DATASET

To verify the robustness to changes in viewing angles and
distances measured from a sensor, we collected a gait
database using a single Velodyne VLP-32C, which creates
3D range images with a horizontal 360° field of view using
32 lasers for vertical resolution. This data consists of gait
sequences containing 30 subjects in a 3D point cloud format.
Furthermore, in this dataset, the sampling rate was set to
10 Hz and it had 15 frames. During the capture, we placed
the LiDAR sensor on a tripod at a height of 1.2 m. We then
requested each subject to walk as usual along four straight
lines that evenly divided a circle, located at distances of
10 and 20 m away from the sensor, as displayed in Fig. 7.
We obtained gait data for each subject under eight views (0°,
45°,90°, 135°, 180°, 225°,280°, 315°) and two distances (10
and 20 m) per subject. In this experiment section, the viewing
angles are determined by the pedestrian’s walking direction
relative to the sensor-pedestrian vector, as shown in Fig. 7.
Compared with other gait datasets [34], [35] commonly used
in gait recognition challenges, this combination not only
includes cross-view but also cross-distance conditions. Fur-
thermore, 126-point cloud sequences were obtained for each
subject under a single condition. Therefore, our gait dataset
contains 30 x 8 x 2 x 126 = 60,480 sequences. During
training and evaluation, we only used the pedestrian point
cloud sequences, which were extracted through background
subtraction processing.

B. IMPLEMENTATION DETAILS

We conducted experiments based on our dataset. Essentially,
the first 20 subjects were used for training, and the remaining
10 subjects were used for testing with no overlap. Thus, the
training set contains 20 x 8 x 2 x 126 = 40,320 sequences
for all experimental settings. In addition, we standardized the
input to a set of aligned images with a size of 64 x 44 in all
recognition networks to ensure a fair comparison with prior
studies, as displayed in Fig. 8. For optimization, we used the
cross-entropy loss to train the networks. We adopted ADAM
[36] optimizer for optimization. The details for batch size,
learning rate, and training iterations in all the experimental
settings were 42, le-4, and 48k, respectively. The code for
all experiments was implemented using Python with Pytorch
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FIGURE 7. Data acquisition environment with two distances measured from a VLP-32C, which is visualized in a 3D point cloud format.
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FIGURE 8. Visualization of input data for feeding into recognition networks with two distances measured from a VLP-32C, which are
generated through a combination of point cloud projection, viewpoint, and modality.

1.12.1, and performed on a single NVIDIA GeForce RTX
3090 GPU. During testing, we used the penultimate feature
to match the 10 subjects that were not used in the training.

C. COMPARED METHODS

To evaluate the contribution of each component to the
overall performance, we investigated the effectiveness of the
proposed method by examining it from three changeable per-
spectives: viewpoint, point cloud projection, and recognition
network. In the GDT, we investigated the extent to which
viewing angle-independent gait features, which cannot be
directly obtained from RGB cameras, contribute to individual
recognition. Furthermore, we evaluated the proposed point
cloud projection for input and compared it with the existing
method (i.e., spherical projection) used in [3]. When applying
the spherical projection, we normalized gait images to a size
of 64 x 44 based on the height of pedestrians segmented
from the bijective 2D grids with bilinear interpolation,
in which pre-processing is commonly used in camera-based
gait recognition tasks. In the recognition network part,
we compared the performance of the proposed network
with three prior approaches [3], [17], [26]. Among these
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approaches, the LGEI-based technique [26] is the first gait
analysis study using LiDAR sensors. This network feeds the
GEIs of a gait sequence into the CNN layers and performs
person re-identification. On the other hand, [17], called
GEINet, is the most representative network that uses GEIs
in the gait recognition field, which structure is similar to that
of [26]. In [3], gait image sequences with depth information
are input into CNN and LSTM layers to classify individuals.
We compared our approach with both Network 1 and 2 in [3],
where the second architecture is a modified version of the first
method by supplementing a subtraction operation at the front
of the the LSTMs.

D. MAIN RESULTS

Table 2 presents a comparison between the proposed method
and the prior approaches. The results for all networks
were obtained through experiments. In this experiment,
we averaged all results across seven views, excluding
identical views. Furthermore, the robustness of the proposed
method was evaluated in various point cloud densities by
varying the measurement distances between the galleries and
probes. This experimental setting is more challenging than
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TABLE 2. Comparison with prior studies on our dataset under two conditions (%).

: S i S
Distances Networks Modalities  Projections Viewpoints Gallery All 8 Views (0 —315°)

Gallery  Probe Sensor-view  Side-view  Back-view 0° 45° 90° 135°  180°  225° 270° 315° Mean
Spher 7 273 320 425 286 261 331 369 296 320

Benedek et al. [26] GEI v 416 518 464 254 406 427 511 419 427
Ortho v 583 574 480 558 550 431 466 492 517

" v 527 583 633 650 646 550 502 568 582

Spher v 214 294 435 349 225 254 418 248 305

Shiraga et al. [17] GEI v 242 370 312 413 238 348 354 302 322
Ortho v 444 444 321 417 356 366 335 412 387

" v 529 505 656 624 532 479 592 473 549

Spher v 216 221 298 293 243 304 336 241 269

Yamada et al. (Network 1) (3] Depth Seq. v 116 206 85 129 187 113 226 155 152
10m  20m Orth v 542 499 498 60.1 513 483 530 574 530
rho- v 500 530 531 499 493 494 452 511 501

Spher v 177 368 321 376 230 337 293 293 300

Yamada et al. (Network 2) [3]  Depth Seq. v 123 131 171 156 107 98 100 160  13.1
Orth v 373 4701 325 511 445 413 332 496 421

riho-. v 518 505 588 531 541 514 532 454 523

Ahn et al. [5] Depth Seq. Spher. v v 523 679 556 694 669 621 562 549  60.7

Ortho. v v 738 774 814 833 818 745 891 743 795

v 298 399 462 383 429 362 439 306 385

Soh v 194 314 442 467 223 277 110 306 292

pher. v 546 500 351 551 577 538 329 418 476

v v 508 518 526 600 607 593 486 464 538

Ours Depth Seq.

v 645 733 656 725 682 739 636 710  69.1

Ortho v 623 646 802 730 741 694 808 645 711

" v 775 727 691 785 817 787 714 689 748

v v 693 829 900 854 849 824 804 782 817

Spher v 262 30.1 192 317 220 283 325 296 275

Benedek et al. [26] GEI v 50.5 477 414 360 405 375 408 504 431
Ortho v 574 535 520 520 564 549 504 495 533

- v 521 535 564 588 586 585 570 524 559

Spher. v 283 327 262 393 262 321 204 429 310

Shiraga et al. [17] GEI v 414 393 406 476 300 320 288 335 367
Ortho v 280 435 286 404 314 455 474 396 380

" v 529 608 573 689 671 725 529 581 613

Spher v 293 330 241 354 294 323 287 314 304

Yamada et al. (Network 1) (3] Depth Seq. v 177 176 226 214 183 182 141 86 173
20m 10 Ortho v 526 643 493 537 535 651 460 543 548
" v 495 541 414 521 564 539 457 507 505

Spher v 305 438 404 375 229 388 412 394 368

Yamada et al. (Network 2) [3]  Depth Seq, v 101 175 132 158 129 133 173 137 142
Orth v 456 586 499 486 385 593 525 543 509

rho- v 530 60.5 526 567 500 629 516 556 554

Ahn et al. [5] Depth Seq. Spher. v v 588 624 658 745 720 69.6 725 693  68.1

Ortho. v v 807 810 701 717 842 783 786 855 788

v 39.6 439 354 521 471 398 436 499 439

Soh v 255 485 341 296 275 217 216 220 288

pher. v 424 418 444 566 546 480 493 545 490

v v 521 567 595 630 657 605 595 573 593

Ours Depth Seq.

v 726 796 721 791 669 766 738 805 752

Ortho v 720 736 767 713 8.1 754 124 755 757

" v 863 766 713 796 888 817 754 857 807

v v 855 81.6 768 824 832 812 686 818 808

the typical cross-view conditions. In this experiment, the
gallery and probe contained 10 x 1 x 7 x 42 = 2,940,
and 10 x 1 x 1 x 84 = 840 sequences for each condition,
respectively. In the proposed network with a single viewpoint,
we used only one spatial encoder unit in the VE module
without the ATFF block.

First, in Table 2, we observed that networks using our
point cloud projection (Ortho.) achieved higher average
accuracies than the prior approach (Spher.). A possible
reason for this phenomenon is that the previous method
requires linear interpolation processing to adjust the size
of pedestrians to the same height, which may exclude
individuals’ unique spatial gait features, such as stride or
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height of the body. Although the generated images are
sparse at long distances, in the proposed projection, real-size
gait shapes are used without pre-processing, such as linear
interpolation algorithms. We achieved improved recognition
performance by using both the GDT and our proposed
projection (Ortho.) except for Network 1 [3]. A potential
reason is that the lateral gait shapes can capture dynamic
gait information more clearly, such as swinging motions of
the arms or legs, compared with the original view from
the sensors. On the other hand, when applying the prior
projection (Spher.) to the GDT process, we observed a
performance decline in the networks that use depth image
sequences [3], [5]. This result indicates that the spherical
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TABLE 3. Comparison with prior studies on our dataset under the sole
cross-view condition (%).

Networks Modalities  Projections Viewpoints Mean
Sensor-view  Side-view  Back-view
62.6
Spher. v 77
Benedek et al. [26] GEI .
v 71.9
Ortho. v 765
Spher. v v ;??
Shiraga et al. [17] GEI N
v 71.9
Ortho. v 765
Spher. v v jgi
Yamada et al. (Network 1) [3] ~ Depth Seq. N
v 64.1
Ortho. v 62.1
Spher. v v 23(])
Yamada et al. (Network 2) [3]  Depth Seq. T
v 549
Ortho. v 612
Ahn etal. [5] Depth Seq. __SPPer v v 934
Ortho. v v 94.8
v 89.6
v 54.6
Spher. v 83.4
Ours Depth Seq. v v 899
v 89.7
v 86.1
Ortho. v 91.0
v v 93.8

projection method may lead to increased distortion of the
gait shapes when rotating pedestrian point clouds around the
z-axis, compared with the proposed projection. Furthermore,
self-occlusions with LiDAR scanning can be one of the
potential causes of the performance decline in Network 1
[3] because they negatively affect the depth values in gait
images processed with the GDT. In our proposed network
and the previous version [5], the average accuracies of the
back view exceed those of the side view. Based on this result,
the gait shapes captured from a back view, especially when
depth information is included, could be critical discriminative
cues for recognition. In addition, we observed that our fixed
viewpoint strategy positively affected GEI-based networks
[17], [26] in both the proposed and prior projection methods.
This result indicates that GEIs captured from the side-view
show more significant changes in the overall gait shapes
than those from the original view. Finally, when comparing
the accuracies across all combinations, our complete method
achieved the highest discriminative capability by using two
viewpoints.

Table 3 presents the performance results for the recognition
networks under the sole cross-view condition. This experi-
mental setting is identical to that in Table 2, except that the
measurement distances for both the gallery and probe are the
same. Each average value in Table 3 represents a combination
of all eight cross-views and two distances. We observed that
the results in Table 3 are generally higher than those in Table 2
because this experiment evaluated only the robustness with
changes in the walking direction. In particular, among the
accuracy results for all combinations, the proposed method
using two viewpoints achieved the second-highest accuracy,
followed by the previous model [5]. From these results,
we observed that while the pooling method that combines
two gait features from independently trained units may
achieve optimal performance under a cross-view condition,
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our proposed attention method is more effective in scenarios
where the point cloud density changes.

E. ABLATION STUDY

In this section, we report the ablation experiments on our
dataset used in the comparison experiment to evaluate the
effectiveness of the elements proposed in our recognition
network.

TABLE 4. Effect of input modalities and temporal aggregating
manners (%).

Modalities Temporal Encoding (TE) Mean
Silhouette Seq.  Depth Seq. 1D-LSTM ConvLSTM [32]

' hidden size = 256 492
v hidden size = 512 58.4
v hidden size = 1024 57.6
v kernel size =3 x 3  69.7
v kernel size = 5 X 5 67.1
v kernel size =7 X 7  66.2
hidden size = 256 51.8

hidden size = 512 65.2

hidden size = 1024 65.9

kernel size = 3 x 3 72.1
kernel size = 5 X 5 70.4
kernel size =7 x 7 68.5

EENENENENEN

1) MODALITY AND TE

We first investigated the effectiveness of our network
by changing the input modalities, temporal aggregating
manners, and hyper-parameters, as presented in Table 4.
In this case, we conducted the experiment using only
a single original view without the VE module because
applying 1D-LSTMs in the TE module that includes the
ATFF block, which addresses 2D spatial features, is difficult.
Silhouettes are commonly used as the input format for
gait recognition using RGB cameras. In contrast, depth
images are obtained from 3D depth sensors, including LIDAR
sensors, which contain richer contextual information than
silhouettes and RGB images. In the TE part, we enhanced
the recognition performance by replacing the previously used
LSTMs in [3] with ConvLSTMs [32] to effectively extract
spatio—temporal features. The accuracies shown in Table 4
represent the averages across all the cross-view and cross-
distance combinations, as in Sec. IV-D. The use of depth
image sequences and ConvLSTMs yields superior results
compared with others, either individually or in combination.
This improvement could be attributed to two main reasons:
depth images capture gait features better because of their
textural information, and ConvLSTMs consider temporal
features with an additional spatial property and learn them
simultaneously, as opposed to 1D-LSTMs.

2) IMPACT OF RE

In Table 5, the experiment was conducted using only a single
spatial encoding unit of the VE module with the original
view, to evaluate the effectiveness of the RE module with
the ATFF block. This setting is the same as that in the
aforementioned ablation study. In Table 5, the comparison
metrics Ihigh—reSa Liow-res» fhigh—reS7 fiow-res, and f| are presented
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TABLE 5. Ablation experiment for resolution-adaptive encoding (RE) (%).

Original Res. Low Res. Fusion ’
(nigh-res) (Hrowares) - - Mean
high-res Tow-res Methods T-pooling  Attention Targets (1)

v 63.3

v 51.4

' v Element-wise Add. 69.9

' v Channel-wise Concat. 69.5

v v SE-Net [30] 714

v v ATFF Low Res. (fiow-res) 68.7

v v ATFF v Low Res. (fiow-res) 721

v v ATFF v Original Res. (fhigh-res) 71.8

in Fig. 4 (b) and Fig. 6. The average accuracies obtained
using a single resolution were lower than the results in the
last four rows of Table 5, using only a single experiment
by changing the components of the VE module and the
spatial encoding unit of the VE module with the original
view. Gait images with low resolution are insufficient
for independently extracting spatial features. Among the
fusion methods, the proposed ATFF block with squeezing
the dimension 7 achieved the highest performance and
outperformed both the simple combination of two spatial
features and the direct application of the original architecture
from [30]. This performance could be attributed to the ATFF
block re-calibrating the scores of both input features in a
correlated manner, which resulted in considerable robustness
and adaptability to changing conditions. Compared with
the original structure of [30] that considers channel-wise
interrelationships, in our attention strategy, the two spatial
features are fused by mutually comparing their scores across
channels. Furthermore, the use of the ATFF block with T
pooling compresses global temporal features related to gaits,
which results in improved discrimination power compared
with not using temporal pooling. In the last two rows of
Table 5, a slight difference in recognition accuracy was
observed when the two targets flowres and fhigh.res Were
switched in the ATFF block. This result indicates that The two
scores s1 and sy converge to be the same during the training.

TABLE 6. Ablation experiment for viewpoint-adaptive encoding (VE) (%).

Original view  Side-view  Back-view Fusion Mean
v 72.1

v 73.4

v 71.3

v v Average Pooling [5]  79.1

v v Max Pooling 78.5

v v Concatenating 77.3

v v ATTF (T = 1) 81.2

3) IMPACT OF VE

Table 6 presents the results of the ablation experiment to
investigate the effect of the VE module, which utilizes
two invariant gait shapes with the ATFF block to fuse
their features. This experiment was conducted by changing
the components of the VE module based on the complete
proposed network. In the first three lines of Table 6, the
performance adopting the GDT process outperforms that of
the original view. This phenomenon suggests that aligning the
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walking directions allows for better extraction of coherent
gait patterns. In the overall average accuracies in Table 6,
the approaches that consider two invariant viewpoints exhibit
superior performance compared with those of single views.
This method demonstrates better performance than either
pooling approaches, which were used in the previous version
[5], or the simple concatenation approach. These results
indicate that the ATFF method renders the proposed network
more robust to self-occlusions caused by changes in the
emission direction of the lasers. This effectiveness was
achieved by considering the higher influence between the two
viewpoints in an end-to-end manner.

F. PRACTICALITY

Galleries collected from practical scenarios have limitations
in terms of viewing angles or quantity of data, compared
with typical cross-view challenges. The proposed recognition
model could be more effective in these limited conditions
because it flexibly uses the gait shapes of the two viewpoints.
In this section, we investigated the practicality of the
proposed model, comparing with the prior methods [3],
[17], [26]. The experiment was conducted by restricting the
viewing angle of the galleries. Specifically, we saved only a
single angle as a database for each of the following: 270° (side
view), 0° (back view), and 315° (oblique view). Compared
with typical cross-view experiments, this scenario is more
challenging because of limitations not only in viewing angles
and gait sequences but also in the point cloud densities of
the galleries. We evaluated the recognition models from three
perspectives, namely projection, viewpoint, and network, for
which the combinations are the same as shown in Sec. IV-D.
Each accuracy value in Table 7 is the average of eight
probe views and two cross-distances per viewing angle of the
gallery.

In Table 7, our projection approach (Ortho.) outperformed
the previous way (Spher.) for all networks in terms of
the original view. A possible reason for this is that the
sorted walking directions representing consistent dynamics
can extract the gait features. When the viewing angles
of the galleries and viewpoints transformed using the
GDT processing were identical, this orthographic projection
improved the recognition performance considerably, except
for Network 1 in [3]. When the walking angles of the galleries
reached the target angles of the GDT, visual differences
such as partial occlusions or depth values in gait images
were observed, which resulted in distinct gait features. The
accuracies of the prior spherical projection deteriorated when
the GDT was applied. Based on these results, the point cloud
projection approach achieves superior compatibility with the
transformation of gait angles because of the undistorted
geometric features of the gait. Finally, the proposed model,
which utilizes two fixed gait shapes selectively with our
attention manner, achieved the best performance for all
combinations, from all viewing angles of the galleries.

129759



IEEE Access

J. Ahn et al.: Learning Viewpoint-Invariant Features for LiDAR-Based Gait Recognition

TABLE 7. Comparison with prior studies for evaluating practicality by limiting viewing angles (%).

Networks Modalities  Projection Viewpoints Gallery

Sensor-view  Side-view  Back-view 270 °© (Side-view) 0 ° (Back-view) 315 © (Oblique-view)

Spher. v 26.3 36.8 25.4

Benedek et al. [26] GEI v 383 376 40.2

v 44.2 48.1 46.5

Ortho. v 437 s1.1 474

Spher 7 264 281 252

Shiraga et al. [17] GEI v 17.3 18.8 18.9

v 46.5 54.3 51.5

Ortho. v 512 447 533

Spher. v 31.0 25.3 32.3

Yamada et al. (Network 1) [3]  Depth Seq. v 14.4 16.2 18.0

v 53.9 48.6 50.5

Ortho. v 337 45.1 456

Spher. v 31.0 28.2 33.6

Yamada et al. (Network 2) [3]  Depth Seq. v 15.2 15.8 17.3

v 33.5 41.9 45.8

Ortho. v 43.4 46.6 434

v 39.1 53.4 39.5

Soher. v 50.8 47.5 48.3

pher. v 404 49.6 47.0

Ours Depth Seq. v v 50.9 49.5 52.1

v 64.3 62.4 68.9

v 67.8 61.3 66.6

Ortho. v 63.3 67.7 67.4

v v 73.0 70.2 72.7

FIGURE 9. t-SNE visualization of the gait features from 10 subjects, each
with 8 views, 2 distances, and 42 sequences. The top row shows the
proposed model, in which the RE and VE modules are applied in order
from left to right. In this case, (a), (b), and (c) correspond to the top line
of Table 5 and the top and bottom lines of Table 6, respectively. The
bottom row shows the prior methods, with [3], [5], and [17] are listed in
order from left to right. In this case, all these networks are applied to the
proposed point cloud projection and GDT processing.

G. FEATURE VISUALIZATION THROUGH T-SNE

In this section, we describe a qualitative evaluation by
applying t-SNE [37] to visualize gait features through a
2D manifold space. Using the learned recognition models,
we extracted features from gait sequences for all the eight
viewing angles and two distances with ten subjects who were
not used in the training. The top row in Fig. 9 presents a
visualization of gait features extracted from our proposed
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model, which were gradually applied with RE and VE
modules from left to right. Adding more proposed modules
results in narrower intra-class distances and wider inter-class
margins, as displayed in Fig. 9. We visualized the features of
the prior methods in the bottom row of Fig. 9, representing
the results of [3], [17], and [5] from left to right. Here,
these recognition networks were applied to the proposed
point cloud projection (Ortho.) and the GDT processing
because these approaches achieved the best accuracy for
each network in Sec IV-D. The distances of points between
intra- and inter-class reveal that our complete model exhibits
superior discrimination power, compared with the three prior
methods.

V. CONCLUSION

We proposed a depth-based gait recognition model using
3D LiDAR, which is robust to changes in viewing angles
and distances captured from sensors. Focusing on the two
conditions, we enhanced the discriminative ability from three
perspectives: point cloud projection, GDT, and recognition
network. Specifically, in the proposed method, the gait shapes
of two invariant viewpoints (i.e., side and back views) are
generated from the point cloud sequence, and gait features
are extracted from them using a novel attention method
that fuses two similar features effectively. Experiments on
our dataset indicated that the proposed approach achieved
the best recognition performance in both cross-view and
cross-distance challenges compared with prior approaches.
Furthermore, based on the results of conducted extensive
experiments, the proposed model exhibited considerable
potential for use in practical scenarios, such as few viewing
angles.
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