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ABSTRACT The long cycle and cross-region evolution of the public health emergency have caused sharp
turbulence in the society. Especially, the multi-stage and multi-channel information spreading triggered by
the public health emergency has further aggravated the social panic, and even caused a chain reaction to
cause greater chaos. In this paper, we extend the information spreading to simplicial complexes, and analyze
the effect of the spatiotemporal evolution of public health emergency on individuals’ behaviors at each stage
by taking 2-simplex as an example, firstly. Then the multi-stage information spreading dynamics model is
constructed and the basic reproduction number is estimated. What’s more, empirical analysis and simulation
are carried out to verify the effectiveness and analyze the dynamics of the model. The results show that
the strength effect of 2-simplex interactions would expand information’s maximum impact, and enlarge
the spreading scale. Besides, the information’s impact and spreading scale at the first stage are positively
correlated with epidemic’s initial impact. The information could spread rapidly or even rebound and produce
new peaks when the public health emergency getting worse. Especially, the rebound speed, peak and scale are
negatively correlated with the initial impact of the public health emergency with epidemic local worsening.
Moreover, the greater and the earlier of local and spatial deterioration, the greater the effect and the wider
the information spreading scale. Furthermore, with the public health emergency in different regions getting
worse or better in succession, the information’s maximum impact and the spreading scale would be also
enlarged. The results are useful to understand better the effect of public health emergency’s spatiotemporal
evolution on information spreading and suggest a promising way to weaken the negative effect of relevant
information.

INDEX TERMS Information spreading, public health emergency, simplicial complexes, spatiotemporal
evolution.

I. INTRODUCTION
The outbreak of public health emergency such as COVID-19,
SARS, H5N1, H7N9, MERS and so on, often poses a
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serious threat to human health, triggers public panic, and
inflicts a huge impact on the global economy and society
[1], [2]. Especially, in the era of intelligent communication,
individuals could express their opinions on multiple social
networks in real time conveniently [3], [4], which leads to
the emergence of relevant information immediately. While
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the internet would also bring some disadvantages [5], [6].
For example, it could provide space for the spread of
rumor and misinformation, and cause the flood of negative
emotions as there are a lot of matters full of uncertainty
or unknown after the outbreak of public health emergency
[7], [8], [9], [10]. This will increase the risk of secondary
derivative emergencies and chain reactions, challenge the
governance and control ability of the government, and pose
a serious threat to public security, social harmony and
stability. Therefore, it is of great significance to study the
complex information spreading process under public health
emergencies.

At present, the research of information spreading has
attracted extensive attention. Due to the similarity between
information spreading and disease contagion, many schol-
ars carried out the researches by establishing differen-
tial equations [11]. For example, based on the idea of
Susceptible-Infected-Recovered (SIR) model [12], Daley and
Kendall proposed D-K model, divided individuals’ states
into susceptible, infected and recovered, and constructed a
dynamic model to solve the problem [13]. Subsequently,
some scholars made some improvements by refining the
spreading rules. For example, Maki and Thompson pointed
out that the contact between two spreaders would promote
the former to become recovered, and then proposed M-K
model [14]. Besides, some researchers studied the problem
from the perspective of ecosystem [15], and constructed
mathematical model, like Lotka-Volterra and its improved
models [16].

Since the 21st century, with the rapid development of
information technology, public communication has become
increasingly convenient. At the same time, information
spreading is also increasingly affected by the structure of
social networks [17]. Therefore, some scholars integrated the
small-world [18], scale-free [19] and other characteristics of
complex networks into the spreading model, and analyzed
the spreading threshold and the stabilities of the equilibrium
points. Zanette studied the dynamics of rumor spreading
on small-world networks [20]. Moreno et al. analyzed the
spreading process in complex heterogeneous networks [21].
Nekovee et al. found that the spreading threshold in scale-free
network is small, and rumor is more likely to spread in
scale-free networks [22]. Zhang et al. divided the spreader
into independent spreader and cross network spreader, and
proposed cross-network information spreading model in
coupled networks [23]. Chai et al. considered the population
disturbance and connectivity changes, proposed a stochastic
information spreading model in complex social networks
[24]. Dong et al. established an improved two-layer model
to describe the dynamic process of rumor spreading in
multiple channels [25]. Han et al. proposed a repeated rumor
spreading model in coupled social networks [26]. Jing et al.
proposed a spreading pairwise model on weighted networks
to investigate the effects of weight distribution on rumor
spreading [27]. Shao et al. developed a multilayer network

spreading model by considering the coupling effect of online
and offline communication [28].

In addition, because of the differences between informa-
tion spreading and disease contagion, scholars also analyzed
the spreading process considering the social attributes
of the public in further [29]. Zhu and He considered
the mobility of the crowd and studied rumor spreading
based on reaction-diffusion model [30]. Ai et al. analyzed
the impact of public anxiety on rumor spreading [31].
Cheng et al. considered the interaction between media
and social networks, as well as factors such as delay
and cost in the spreading process, and established a new
delay model to analyze the dynamics of rumor spreading
[32]. Wang et al. analyzed the differences in spreading
behaviors among the individuals with different levels of
scientific knowledge, and proposed a spreading dynamic
model [33]. Suo et al. analyzed the information spreading
process in complex social networks under different spreading
strategies [34]. Yin et al. analyzed multi-topic discussion
behavior under major public health events, and proposed a
multiple-information susceptible-discussing-immune model
to describe the multiple information spreading process [35].
Wang et al. proposed a novel model for the propagation of
two rumors with mutual promotion [36]. Liu et al. proposed
a rumor spreading dynamics model by incorporating the
role of memory, user’s ability to distinguish the rumors and
rumor-denier’s behavior of refuting rumors [37]. Yin et al.
divided spreaders into super-infected and normal-infected
according to the difference of their confidence in the
rumor, and incorporated vigilantes and rumor de-bunkers
to describe the diversity of information [38]. Zhang and
Xu presented a model based on biomathematics theory to
describe the interplay between rumors and rumor refutations
[39]. Zhao et al. constructed a novel information spreading
model considering the important role of opinion leaders and
individuals’ interest [40]. Li et al. simultaneously considered
individual activity differences and rumor-refuting nodes, and
proposed a new multifactor model to better analyze the
process of rumor spreading in practice [41].
To some extent, scholars have conducted a series of

researches on the information spreading mechanism based
on disease dynamics and complex network theory. However,
most of them only focused on the pairwise interactions
and ignored the high-order interactions among individuals.
Nowadays, more and more recent researches show that the
high-order structures exist widely in the complex social
networks and play an important role during spreading
process, resulting in bistability, hysteresis, and explosive
transitions [42], [43], [44]. Fan et al. found that 2-simplex
could provide extra possibility for an individual to be
informed [45]. Matamalas et al. analyzed the fixed-point
solutions of the model, and found an interesting phase
transition that became abrupt with the infectivity parameter
of the 2-simplices [46]. Li et al. found that once the pairwise
interactions gain coverage, high-order simplices would take
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over and drive the spreading dynamics [47]. Gao et al.
found that a canonical reaction-diffusion system defined
over a simplicial complex would yield Turing patterns [48].
As these phenomena cannot be described simply by pairwise
interactions, Iacopini et al. proposed a high-order model of
social contagion in which a social system was represented
by a simplicial complex and contagion could occur through
interactions in groups of different sizes [49]. Jhun adopted
hypergraph to describe high-order interactions between more
than two individuals [50].

The above findings provide important references for
analyzing the process of information spreading under public
health emergencies. While most of them analyzed the process
of information spreading under general cases. Although
some scholars have studied the information spreading under
natural disasters, social security and other emergencies,
they usually took the emergency as static environment and
did not consider enough the impact of the attributes and
evolution characteristics of the emergencies. Therefore, the
above researches might not be well applied to the analysis
of information spreading driven by the dynamic evolution of
public health emergencies. In 2015, Morgeson et al. proposed
event system theory, pointed out that event intensity, duration
and spatial diffusion could influence individuals’ behaviors
[51]. As we all know, except for the larger influence, public
health emergencies also have some other characteristics like
long-term and spatial diffusion. For example, the COVID-19
public health emergency has affected all regions of the world
and has been assessed as a ‘‘public health emergency of
international concern’’ by the World Health Organization
(WHO), constituting a ‘‘global pandemic’’. In particular,
affected by the evolution of public health emergency, relevant
information emerges in stages [52]. Meanwhile, individuals
usually show different spreading intentions according to
whether the public health emergency occurred in the locality.
That is to say, individuals usually have stronger intentions
to spread public health emergency information if they are in
the affected areas. Besides, the spreading intentions would
change dynamically with the evolution of public health
emergency [53]. Hence, the traditional SIR spreading model
and the improved models such as Susceptible-Infected-
Recovered-Susceptible (SIRS) have certain limitations due
to insufficient consideration of the effect of public health
emergency evolution and the heterogeneity of individuals’
behaviors.

Inspired by the aforementioned analysis, we propose a
novel S1S2I1I2R model (S1: susceptible in affected areas,
S2: susceptible in not affected areas, I1: spreader in affected
areas, I2: spreader in not affected areas, R: recovered) to
investigate multi-stage information spreading dynamics in
simplicial complexes driven by the spatiotemporal evolution
of public health emergency. As the main contributions of this
paper, on the one hand, not only the pairwise information
spreading is considered, but the group interactions are also
integrated into the model. On the other hand, the effect of
the dynamic evolution of public health emergency on the

individuals’ behaviors in different stages and states is ana-
lyzed. The mean-field equations are derived to describe the
process of information spreading and the basic reproduction
number is estimated. The results show that the strength effect
of group interactions would expand information’s maximum
impact, and enlarge the spreading scale, but the inhibition
effect would play the opposite role. Besides, we find that
during the two-stage spreading process, the information’s
impact and spreading scale at the first stage are positively
correlated with epidemic’s initial impact, but are negatively
correlated with initial impact as public health emergency
local worsening. Especially, the relevant information may
rebound to a new peak as public health emergency worsening.
Moreover, the faster and greater the deterioration of public
health emergency, themore serious the impact of information.
It is helpful to understand better themechanism and law of the
multi-stage information spreading.

The remaining paper is organized as follows. In Section II,
we analyze the effect of the dynamic evolution of public
health emergency on the individuals’ behaviors in different
stages and states based on simplicial complexes. Then a
novel S1S2I1I2R model is introduced, and the mean-field
equations are derived to describe the dynamics and the
basic reproduction number is estimated in Section III.
In Section IV, we present the simulations to verify the
effectiveness of S1S2I1I2R model and analyze the dynamics
of the model. Finally, the conclusions are given in Section V.

II. EFFECT OF THE EVOLUTION OF PUBLIC HEALTH
EMERGENCY IN SIMPLICIAL COMPLEXES
In this section, we introduce individuals’ states during
the information spreading process considering the regional
differences and group interactions. Then, we describe the
initial transition probabilities between different states in
simplicial complexes. Moreover, the effect of evolution
of public health emergency on transition probabilities are
analyzed in further.

A. INDIVIDUAL STATES
In the existing researches about information spreading,
individuals’ states usually include three categories, namely
susceptible (S), spreader (I ), and recovered (R). Here, the
susceptible (S) refers to the individual who has not spread
public health emergency information but is very susceptible,
the spreader (I ) refers to the individual who is spreading
public health emergency information, and the recovered (R)
refers to the individual who is not interested in public health
emergency information and does not spread it. However,
since different individuals are in different situations, there
are obvious regional differences for the spreading of public
health emergency information in the network. Generally
speaking, individuals in the areas affected by public health
emergency are more likely to resonate with relevant topics,
and pay more attention to the relevant information. This
will enable local individuals to gather in the network, and
then promote the rapid spread of public health emergency
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information in a certain region. Therefore, in this paper, the
susceptibles and spreaders are divided into two categories
by taking account of the different behaviors of individuals
in different regions when facing public health emergency.
Besides, as recovereds do not spread the public health
emergency information forever, they are not subdivided for
simplicity. Hence, the individuals’ states can be divided into
the following five categories.

1) Susceptible in affected areas (S1): individuals who are
in the areas affected by public health emergency, and
have not spread the information, but could be affected
easily.

2) Spreader in affected areas (I1): individuals who are in
the areas affected by public health emergency, and are
spreading the information.

3) Susceptible in not affected areas (S2): individuals who
are not in the areas affected by public health emergency,
and have not spread the information, but could be
affected easily.

4) Spreader in not affected areas (I2): individuals who are
not in the areas affected by public health emergency,
and are spreading the information.

5) Recovered (R): individuals who are not interested in
the public health emergency information and do not
spread it.

B. INITIAL TRANSITION PROBABILITIES
IN SIMPLICIAL COMPLEXES
With public health emergency information spreading, indi-
viduals’ states will exchange. Specifically, the susceptible
would turn into the corresponding spreader after receiving the
information, and the spreader might turn into the recovered.
While it is worth noting that there are two ways for the sus-
ceptible to receive information in simplicial complexes. For
simplicity, we just consider the 2-simplex here. On the one
hand, the susceptible could receive the information through
the direct neighbors who are spreading the information,
namely pairwise interactions. On the other hand, the suscep-
tible could also receive the information through simplicial
complexes if the 2-simplex contains one susceptible and two
spreaders, namely 2-simplex interactions.

Therefore, based on the definition method in Ref. [54],
the initial transition probabilities could be set as Table 1.
Here, the spreaders include both the spreaders in affected
areas and those in not affected areas. Then the information
spreading process with pairwise and 2-simplex interactions
can be shown as Fig. 1. Obviously, α1, β1, α1

1 , β1
1 , γ1,

λ1, ξ1, λ1
1 , ξ1

1 , η1 are all bounded in the interval [0,1]
and satisfy α1 + β1 < 1, λ1 + ξ1 < 1, α1

1 + β1
1 <

1, λ1
1 + ξ1

1 < 1. Moreover, considering the difference
of individuals’ behaviors after receiving the public health
emergency information, we assume that α1 > λ1, β1 < ξ1,
α1
1 > λ1

1 , β1
1 < ξ1

1 , γ1 < η1. In addition, α1, α1
1 , λ1, λ1

1
describe the probability of susceptibles in affected areas and
in not affected areas turning into the corresponding spreaders

TABLE 1. Initial transition probabilities under public health emergency.

when receiving public health emergency information. That
is to say, these four parameters reflect the initial impact
of public health emergency on the individuals in different
regions. For similarity, we set α1

1 = µα1, λ1
1 = µλ1,

β1
1 = σβ1, ξ1

1 = σξ1. Here, µ shows the effect of 2-simplex
interactions on susceptibles turning into the corresponding
spreaders, and σ shows the effect of 2-simplex interactions
on susceptibles turning into recovereds.

C. EFFECT OF EVOLUTION OF PUBLIC HEALTH
EMERGENCY ON STATES TRANSITION
Different from general events, public health emergency like
COVID-19 also has some special characteristics, such as
long-period, multi-stage, spatial diffusion and so on. It is
important to analyze the information spreading process
considering the effect of the evolution of public health
emergency. Here, the dynamic evolution of public health
emergency includes not only the deterioration or improve-
ment of emergency in affected areas, but also the interactive
evolution between affected areas and not affected areas.
Therefore, it is necessary to analyze the effect according to
the changes at each stage and the spatial coverage of the
affected areas. It is assumed that the evolution of public health
emergency can be divided into n stages, n ≥ 1.

On the one hand, the local deterioration or improvement
degree of public health emergency in affected areas has an
important effect on the transition probabilities. For clarity, the
interactive evolution between affected areas and not affected
areas is not considered. At stage n, each state transition
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FIGURE 1. Different cases that susceptibles receiving public health emergency information with pairwise and 2-simplex interactions.
(a)-(f) denote the different cases of susceptibles in affected areas, and (g)-(l) denote the different cases of susceptibles in not affected areas.
(a) and (g) are cases of one 1-simplex (link) and the individual receives the public health emergency information from a spreader, then the
individual would exchange the state with αn + βn, λn + ξn at each time step. (b) and (h) are cases of two 1-simplices, and the individual could
receive the public health emergency information from two spreaders. (c), (d), (i) and (j) denote the cases of three 1-simplices as they do not
form the 2-simplex since missing the face of the triangular enclosure. (e) and (k) denote the cases of one 2-simplex, but there is only one
spreader in each of them, which does not meet the information spreading conditions of the 2-simplex. (f) and (l) denote the cases of one
2-simplex, and the susceptible not only could receive the public health emergency information through pairwise interactions and exchange
the state with αn + βn, λn + ξn, but also could receive the information through 2-simplex interactions and exchange the state with α1

n + β1
n ,

λ1
n + ξ1

n .

probability in Table 1 can be expressed as αn, βn, α1
n , β

1
n , γn,

λn, ξn, λ1
n , ξ

1
n , ηn, respectively. Compared with stage (n-1),

the deterioration or improvement degree in affected areas at
stage n is θn, and θn ≥ 0, θ1 = 0. Generally speaking, if public
health emergency gets worse and worse, individuals would be
more likely to be attracted by the relevant information, and
keep spreading the information. This would result that the
transition probability of susceptibles turning into spreaders
increases rapidly to 1, and the probability of susceptibles
or spreaders turning into recovereds decreases rapidly to 0.
On the contrary, if public health emergency is well controlled,
the attraction of relevant information will gradually decrease,
and individuals tend to shift their attention to other things.
This will result the probability of susceptibles turning into
spreaders decreases rapidly to 0, and the probability of
susceptibles or spreaders turning into recovereds increases
rapidly to 1. In fact, the changes of transition probabilities
are usually nonlinear with the evolution of public health
emergency. In the existing researches, exponential function
is often constructed to describe the nonlinear changing trend
of transition probability [55]. Therefore, we use exponential
function to describe the effect of public health emergency’s
local evolution in affected areas on transition probabilities.
According to Ref. [56], when the public health emergency
deteriorates locally at stage n (n ≥ 2), the transition
probabilities could be defined as

αn = 1 − (1 − αn−1)e−θn

βn = βn−1e−θn

α1
n = 1 − (1 − α1

n−1)e
−θn

β1
n = β1

n−1e
−θn

γn = γn−1e−θn

λn = 1 − (1 − λn−1)e−θn

ξn = ξn−1e−θn

λ1
n = 1 − (1 − λ1

n−1)e
−θn

ξ1
n = ξ1

n−1e
−θn

ηn = ηn−1e−θn (1)

While when the public health emergency gets better locally at
stage n (n ≥ 2), the transition probabilities could be defined
as

αn = αn−1e−θn

βn = 1 − (1 − βn−1)e−θn

α1
n = α1

n−1e
−θn

β1
n = 1 − (1 − β1

n−1)e
−θn

γn = 1 − (1 − γn−1)e−θn

λn = λn−1e−θn

ξn = 1 − (1 − ξn−1)e−θn

λ1
n = λ1

n−1e
−θn

ξ1
n = 1 − (1 − ξ1

n−1)e
−θn

ηn = 1 − (1 − ηn−1)e−θn (2)

Obviously, αn, βn, α1
n , β1

n , γn, λn, ξn, λ1
n , ξ1

n , ηn are all
bounded in the interval [0,1] and satisfy αn + βn < 1,
λn + ξn < 1, α1

n + β1
n < 1, λ1

n + ξ1
n < 1.

On the other hand, the spatial diffusion and receding
of public health emergency could lead to the interactive
evolution between affected areas and not affected areas.
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This would further result in the changes of individuals’
states. Here, let δn denote the probability that affected
area becomes not affected area, and let εn denote the
probability that not affected area becomes affected area at
stage n. Then the individuals’ states would change with
corresponding probabilities. When public health emergency
spreads spatially at stage n, there would bemore andmore not
affected areas turning into affected areas, i.e., δn < εn. That
means public health emergency deteriorates across affected
areas and not affected areas in spatial dimension. On the
contrary, when public health emergency is improved at stage
n, there would be more and more affected areas turning into
not affected areas, i.e., δn > εn. It indicates that public health
emergency gets better across affected areas and not affected
areas in spatial dimension.

III. MULTI-STAGE SPREADING MODEL
In this section, we analyze information spreading process
in simplicial complexes considering the spatiotemporal
evolution of public health emergency. Then we derive
mean-field equations to describe the dynamics of novel
information spreading model called S1S2I1I2R. Besides, the
basic reproduction number is also estimated. For simplicity,
we just consider the 2-simplex here as above.

A. MODEL DESCRIPTION
According to the analysis of the effect caused by the evolution
of public health emergency, information spreading rules in
2-simplex could be demonstrated as follows. Here, we take
stage n as an example.

(1) When a susceptible in affected areas S1(i) receiving the
public health emergency information sending by a spreader in
affected areas I1(j) or not affected areas I2(j) through pairwise
interaction, S1(i) may be eager to share the information to
others and become a spreader in affected areas I1(i) with
probability αn. Besides, S1(i) may also think that the public
health emergency information is inconsistent with the fact
or not be interested in it and become a recovered R(i) with
probability βn. According to [57] and [58], the transitions can
be denoted with Equation (3).

S1(i) + I1(j)
αn
−→ I1(i) + I1(j)

S1(i) + I2(j)
αn
−→ I1(i) + I2(j)

S1(i) + I1(j)
βn
−→ R(i) + I1(j)

S1(i) + I2(j)
βn
−→ R(i) + I2(j) (3)

(2) When a susceptible in affected areas S1(i) receiving
the public health emergency information sending by two
spreaders in affected areas I1(j), I1(k) or not affected areas
I2(j), I2(k) through 2-simplex interactions, S1(i) might send
the information to others and become a spreader in affected
areas I1(i) with probability α1

n . Besides, S1(i) might also doubt
the authenticity of the public health emergency information
or not be interested in it and become a recovered R(i) with
probability β1

n .Then the transitions can be denoted with

Equation (4).

S1(i) + I1(j) + I1(k)
α1
n

−→ I1(i) + I1(j) + I1(k)

S1(i) + I2(j) + I1(k)
α1
n

−→ I1(i) + I2(j) + I1(k)

S1(i) + I1(j) + I2(k)
α1
n

−→ I1(i) + I1(j) + I2(k)

S1(i) + I2(j) + I2(k)
α1
n

−→ I1(i) + I2(j) + I2(k)

S1(i) + I1(j) + I1(k)
β1
n

−→ R(i) + I1(j) + I1(k)

S1(i) + I2(j) + I1(k)
β1
n

−→ R(i) + I2(j) + I1(k)

S1(i) + I1(j) + I2(k)
β1
n

−→ R(i) + I1(j) + I2(k)

S1(i) + I2(j) + I2(k)
β1
n

−→ R(i) + I2(j) + I2(k) (4)

(3) When a susceptible in not affected areas S2(i) receiving
the public health emergency information sending by a
spreader in affected areas I1(j) or not affected areas I2(j)
through pairwise interaction, S2(i) might believe it and
become a spreader in not affected areas I2(i) with probability
λn. Besides, S2(i) may not be interested in it and become a
recovered R(i) with probability ξn. Similarity, the transitions
of S2(i) can be denoted with Equation (5).

S2(i) + I1(j)
λn
−→ I2(i) + I1(j)

S2(i) + I2(j)
λn
−→ I2(i) + I2(j)

S2(i) + I1(j)
ξn
−→ R(i) + I1(j)

S2(i) + I2(j)
ξn
−→ R(i) + I2(j) (5)

(4) When a susceptible in not affected areas S2(i) receiving
the public health emergency information sending by two
spreaders in affected areas I1(j), I1(k) or not affected areas I2(j),
I2(k) through 2-simplex interactions, S2(i) might be inclined
to share it and become a spreader in not affected areas I2(i)
with probability λ1

n . Besides, S2(i) may not be interested in
it and become a recovered R(i) with probability ξ1

n . Then the
transitions of S2(i) can be denoted with Equation (6).

S2(i) + I1(j) + I1(k)
λ1
n

−→ I2(i) + I1(j) + I1(k)

S2(i) + I2(j) + I1(k)
λ1
n

−→ I2(i) + I2(j) + I1(k)

S2(i) + I1(j) + I2(k)
λ1
n

−→ I2(i) + I1(j) + I2(k)

S2(i) + I2(j) + I2(k)
λ1
n

−→ I2(i) + I2(j) + I2(k)

S2(i) + I1(j) + I1(k)
ξ1
n

−→ R(i) + I1(j) + I1(k)

S2(i) + I2(j) + I1(k)
ξ1
n

−→ R(i) + I2(j) + I1(k)

S2(i) + I1(j) + I2(k)
ξ1
n

−→ R(i) + I1(j) + I2(k)

S2(i) + I2(j) + I2(k)
ξ1
n

−→ R(i) + I2(j) + I2(k) (6)

(5) After a spreader in affected areas I1(i) spreading the
public health emergency information to others, I1(i) may stop
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spreading and become a recovered R(i) with probability γn.
Then the transition of I1(i) can be expressed as

I1(i)
γn
−→ R(i) (7)

(6) After a spreader in not affected areas I2(i) spreading the
public health emergency information to others, I2(i) may stop
spreading and become a recovered R(i) with probability ηn.
Then the transition of I2(i) can be expressed as

I2(i)
ηn
−→ R(i) (8)

(7) The spatial diffusion and receding of public health
emergency could result in the interaction evolution between
affected areas and not affected areas. Suppose that individual
i is a susceptible in affected areas S1(i), individual j is a
susceptible in not affected areas S2(j), individual k is a
spreader in affected areas I1(k), and individual l is a spreader
in not affected areas I2(l). With the effect of the spatial
evolution of public health emergency, S1(i) turns into S2(i) with
probability δn, S2(j) turns into S1(j) with probability εn, I1(k)
turns into I2(k) with probability δn, and I2(l) turns into I1(l)
with probability εn. Then the transitions can be described as

S1(i)
δn
−→ S2(i)

S2(j)
εn
−→ S1(j)

I1(k)
δn
−→ I2(k)

I2(l)
εn
−→ I1(l) (9)

According to the above spreading rules, the information
spreading process at stage n driven by spatiotemporal
evolution of public health emergency can be shown in Fig. 2.

FIGURE 2. Process of information spreading in simplicial complexes
under spatiotemporal evolution of public health emergency. αn, βn, λn, ξn
are the state transition probabilities through pairwise interaction, α1

n , β1
n ,

λ1
n , ξ1

n are the state transition probabilities through 2-simplex
interactions.

B. S1S2I1I2R MODEL CONSIDERING SPATIOTEMPORAL
EVOLUTION OF PUBLIC HEALTH EMERGENCY
Assuming individual i is a susceptible in affected areas S1(i)
at time t , there are k adjacent nodes in the social network,
among which g nodes are spreaders. Besides, the number
of 2-simplices individual i belongs to is k1. Among these
2-simplices, there are g1 2-simplices including two spread-
ers. These spreaders will spread the public health emergency
information in the time interval [t, t+1t]. This will affect the

individual i to change the state. We denote with piS1I1 , p
i
S1R

the
probability that individual i turns into a spreader in affected
areas and a recovered respectively under the impact of the
two categories or spreaders through pairwise and 2-simplex
interactions. Then we can get

piS1I1 = (1 − (1 − αn1t)g(1 − α1
n 1t)g

1

)(1 − δn1t)

piS1R = ((1 − αn1t)g(1 − α1
n 1t)g

1

− (1 − (αn + βn)1t)g

× (1 − (α1
n + β1

n )1t)
g1

)(1 − δn1t) (10)

Here, g and g1 are random variables that satisfy the following
distribution∏

(g, t) =

(
k
g

)
w(k, k1, t)g(1 − w(k, k1, t))k−g∏

(g1, t) =

(
k1

g1

)
ϕ(k, k1, t)g

1

(1 − ϕ(k, k1, t))k
1

−g1

(11)

where w(k, k1, t) is the probability at time t that an edge
emanating from the individual with k neighbors and k1

2-simplices points to a spreader in affected areas and not
affected areas, and ϕ(k, k1, t) is the probability at time t that
the individual with k neighbors and k1 2-simplices locates
in a 2-simplex with two edges emanating from the individual
pointing to two spreaders in affected areas and not affected
areas, respectively. They can be written as

w(k, k1, t)

=

∑
k ′,k1 ′

P(k ′, k1′
|k, k1)(P(I1k ′k1 ′ |S1kk1 )+P(I2k ′k1 ′ |S1kk1 ))

≈

∑
k ′,k1 ′

P(k ′, k1′
|k, k1)(ρI1 (k ′, k1′

, t) + ρI2 (k ′, k1′
, t))

=

∑
k ′,k1 ′

k ′P(k ′, k1′
)(ρI1 (k ′, k1′

, t) + ρI2 (k ′, k1′
, t))

/
⟨k⟩

=

∑
k ′

k ′
/
⟨k⟩

∑
k1 ′

P(k ′, k1′
)(ρI1 (k ′, k1′

, t) + ρI2 (k ′, k1′
, t))

=

∑
k ′

k ′P(k ′)(ρI1 (k ′, t) + ρI2 (k ′, t))
/

⟨k⟩

ϕ(k, k1, t)

=

∑
k ′,k1 ′

,k∗,k1∗

P(k ′, k1′
, k∗, k1

∗ |k, k1)(P(I1k ′k1 ′ |S1kk1 )

+ P(I2k ′k1 ′ |S1kk1 ))(P(I1k∗k1∗|S1kk1 )

+ P(I2k∗k1∗|S1kk1 ))

≈

∑
k ′,k1 ′

,k∗,k1∗

P(k ′, k1′
, k∗, k1

∗ |k, k1)(ρI1 (k ′, k1′
, t)

+ ρI2 (k ′, k1′
, t))(ρI1 (k∗, k1

∗, t)

+ ρI2 (k∗, k1
∗, t))

=

∑
k ′,k1 ′

,k∗,k1∗

k ′P(k ′, k1′
)k ∗ P(k∗, k1

∗)(ρI1 (k ′, k1′
, t)

+ ρI2 (k ′, k1′
, t))(ρI1 (k∗, k1

∗, t)
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+ρI2 (k∗, k1
∗, t))

/
⟨k⟩2

=

∑
k ′,k1 ′

k ′P(k ′, k1′
)(ρI1 (k ′, k1′

, t) + ρI2 (k ′, k1′
, t))

/
⟨k⟩

×

∑
k∗,k1∗

k ∗ P(k∗, k1
∗)(ρI1 (k∗, k1

∗, t)

+ρI2 (k∗, k1
∗, t))

/
⟨k⟩

=

∑
k ′

k ′P(k ′)(ρI1 (k ′, t) + ρI2 (k ′, t))
/

⟨k⟩

×

∑
k∗

k ∗ P(k∗)(ρI1 (k∗, t) + ρI2 (k∗, t))
/

⟨k⟩

=

[∑
k ′

k ′P(k ′)(ρI1 (k ′, t) + ρI2 (k ′, t))
/

⟨k⟩

]2

(12)

In Equation (12), P(k ′, k1′
|k, k1) = k ′P(k ′, k1′)

/
⟨k⟩

is the degree-degree correlation function, where P(k, k1)
is the degree distribution and ⟨k⟩ is the average degree.
P(I1k ′k1 ′ |S1kk1 ) and P(I2k ′k1 ′ |S1kk1 ) are the conditional
probabilities that a spreader in affected areas or not affected
areas with degree of 1-simplex k ′ and degree of 2-simplex k1′

is connected to a susceptible in affected areas with degree of
1-simplex k and degree of 2-simplex k1, respectively. And
ρI1 (k ′, k1′

, t), ρI2 (k ′, k1′
, t) are the densities of spreaders in

affected areas or not affected areas at time t which belong
to connectivity class (k ′, k1′), ρI1 (k ′, t), ρI2 (k ′, t) are the
densities of spreaders in affected areas or not affected areas at
time t which belong to connectivity class k ′, respectively. The
approximations in Equation (12) are obtained by ignoring
dynamic correlations between the states of neighboring
individuals.

According to the above analysis, the transition probability
p̄S1I1 (k, k

1, t) averaged over all possible values of g and g1

is given by

p̄S1I1 (k, k
1, t)

=

k∑
g=0

k1∑
g1=0

(
k
g

)
w(k, k1, t)

g
(1 − w(k, k1, t))

k−g

×

(
k1

g1

)
ϕ(k, k1, t)

g1

(1 − ϕ(k, k1, t))
k1

−g1

× (1 − (1 − αn1t)g(1 − α1
n 1t)g

1

)(1 − δn1t)

= (1 − (1 − αnw(k, k1, t)1t)k (1 − α1
n ϕ(k, k1, t)1t)k

1

)

× (1 − δn1t) (13)

Similarly, we can obtain

p̄S1R(k, k
1, t)

=

k∑
g=0

k1∑
g1=0

(
k
g

)
w(k, k1, t)

g
(1 − w(k, k1, t))

k−g

×

(
k1

g1

)
ϕ(k, k1, t)

g1

(1 − ϕ(k, k1, t))
k1

−g1

× ((1 − αn1t)g(1 − α1
n 1t)g

1

− (1 − (αn + βn)1t)g

× (1 − (α1
n + β1

n )1t)
g1

)(1 − δn1t)

= (1 − αnw(k, k1, t)1t)k (1 − α1
n ϕ(k, k1, t)1t)k

1

× (1 − δn1t) − (1 − (αn + βn)w(k, k1, t)1t)k

× (1 − (α1
n + β1

n )ϕ(k, k
1, t)1t)k

1

(1 − δn1t) (14)

Following steps similar to the above, we can obtain other
average transition probabilities of an individual with degree
of 1-simplex k and degree of 2-simplex k1

p̄S2I2 (k, k
1, t)

=

k∑
g=0

k1∑
g1=0

(
k
g

)
w(k, k1, t)

g
(1 − w(k, k1, t))

k−g

×

(
k1

g1

)
ϕ(k, k1, t)

g1

(1 − ϕ(k, k1, t))
k1

−g1

× (1 − (1 − λn1t)g(1 − λ1
n 1t)g

1

)(1 − δn1t)

= (1 − (1 − λnw(k, k1, t)1t)k (1 − λ1
n ϕ(k, k1, t)1t)k

1

)

× (1 − δn1t) (15)

p̄S2R(k, k
1, t)

=

k∑
g=0

k1∑
g1=0

(
k
g

)
w(k, k1, t)

g
(1 − w(k, k1, t))

k−g

×

(
k1

g1

)
ϕ(k, k1, t)

g1

(1 − ϕ(k, k1, t))
k1

−g1

× ((1 − λn1t)g(1 − λ1
n 1t)g

1

− (1 − (λn + ξn)1t)g

× (1 − (λ1
n + ξ1

n )1t)g
1

)(1 − δn1t)

= (1 − λnw(k, k1, t)1t)k (1 − λ1
n ϕ(k, k1, t)1t)k

1

× (1 − δn1t) − (1 − (λn + ξn)w(k, k1, t)1t)k

× (1 − (λ1
n + ξ1

n )ϕ(k, k1, t)1t)k
1

(1 − δn1t) (16)

p̄S1S2 (k, k
1, t) = δn1t (17)

p̄S2S1 (k, k
1, t) = εn1t (18)

p̄I1I2 (k, k
1, t) = δn1t (19)

p̄I2I1 (k, k
1, t) = εn1t (20)

p̄I1R(k, k
1, t) = γn1t (21)

p̄I2R(k, k
1, t) = ηn1t (22)

Denote with S1(k, k1, t), S2(k, k1, t), I1(k, k1, t),
I2(k, k1, t), R(k, k1, t) the expected values of the number
of individuals belonging to connectivity class (k, k1) which
at time t are in state S1, S2, I1, I2 or R, respectively. Then the
rate of change in the population of individuals in each state
belonging to class (k, k1) in the time interval [t, t+1t] could
be given by

S1(k, k1, t + 1t)

= S1(k, k1, t) − S1(k, k1, t)p̄S1I1 (k, k
1, t)

− S1(k, k1, t)p̄S1R(k, k
1, t)
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− S1(k, k1, t)p̄S1S2 (k, k
1, t)

+ S2(k, k1, t)p̄S2S1 (k, k
1, t)

S2(k, k1, t + 1t)

= S2(k, k1, t) − S2(k, k1, t)p̄S2I2 (k, k
1, t)

− S2(k, k1, t)p̄S2R(k, k
1, t)

− S2(k, k1, t)p̄S2S1 (k, k
1, t)

+ S1(k, k1, t)p̄S1S2 (k, k
1, t)

I1(k, k1, t + 1t)

= I1(k, k1, t) − I1(k, k1, t)p̄I1R(k, k
1, t)

− I1(k, k1, t)p̄I1I2 (k, k
1, t) + S1(k, k1, t)p̄S1I1 (k, k

1, t)

+ I2(k, k1, t)p̄I2I1 (k, k
1, t)

I2(k, k1, t + 1t)

= I2(k, k1, t) − I2(k, k1, t)p̄I2R(k, k
1, t)

− I2(k, k1, t)p̄I2I1 (k, k
1, t) + S2(k, k1, t)p̄S2I2 (k, k

1, t)

+ I1(k, k1, t)p̄I1I2 (k, k
1, t)

R(k, k1, t + 1t)

= R(k, k1, t) + S1(k, k1, t)p̄S1R(k, k
1, t)

+ S2(k, k1, t)p̄S2R(k, k
1, t) + I1(k, k1, t)p̄I1R(k, k

1, t)

+ I2(k, k1, t)p̄I2R(k, k
1, t) (23)

Denote with ρS1 (k, k1, t), ρS2 (k, k1, t), ρI1 (k, k1, t),
ρI2 (k, k1, t), ρR(k, k1, t) the fraction of individuals belong-
ing to class (k, k1) which are in state S1, S2, I1, I2,
R, respectively. These quantities satisfy the normalization
condition

ρS1 (k ′, k1, t)+ρS2 (k ′, k1, t)+ρI1 (k ′, k1, t) + ρI2 (k ′, k1, t)

+ ρR(k ′, k1, t) = 1 (24)

In the limit 1t → 0, we can obtain the multi-stage
information spreading dynamics model S1S2I1I2R driven by
the spatiotemporal evolution of public health emergency as
follows
∂ρS1 (k, k1, t)

∂t
= −k(αn + βn)ρS1 (k, k1, t)

∑
k ′

P(k ′
|k)(ρI1 (k ′, t)

+ ρI2 (k ′, t)) − k1(α1
n + β1

n )ρ
S1 (k, k1, t)

×

[∑
k ′

P(k ′
|k)(ρI1 (k ′, t) + ρI2 (k ′, t))

]2

− δnρ
S1 (k, k1, t) + εnρ

S2 (k, k1, t)

∂ρS2 (k, k1, t)
∂t

= −k(λn + ξn)ρS2 (k, k1, t)
∑
k ′

P(k ′
|k)(ρI1 (k ′, t)

+ ρI2 (k ′, t)) − k1(λ1
n + ξ1

n )ρS2 (k, k1, t)

×

[∑
k ′

P(k ′
|k)(ρI1 (k ′, t) + ρI2 (k ′, t))

]2

− εnρ
S2 (k, k1, t) + δnρ

S1 (k, k1, t)

∂ρI1 (k, k1, t)
∂t

= kαnρS1 (k, k1, t)
∑
k ′

P(k ′
|k)(ρI1 (k ′, t) + ρI2 (k ′, t))

+ k1α1
n ρS1 (k, k1, t)

×

[∑
k ′

P(k ′
|k)(ρI1 (k ′, t) + ρI2 (k ′, t))

]2

− δnρ
I1 (k, k1, t) + εnρ

I2 (k, k1, t) − γnρ
I1 (k, k1, t)

∂ρI2 (k, k1, t)
∂t

= kλnρS2 (k, k1, t)
∑
k ′

P(k ′
|k)(ρI1 (k ′, t) + ρI2 (k ′, t))

+ k1λ1
n ρS2 (k, k1, t)

×

[∑
k ′

P(k ′
|k)(ρI1 (k ′, t) + ρI2 (k ′, t))

]2

− εnρ
I2 (k, k1, t) + δnρ

I1 (k, k1, t) − ηnρ
I2 (k, k1, t)

∂ρR(k, k1, t)
∂t

= kβnρS1 (k, k1, t)
∑
k ′

P(k ′
|k)(ρI1 (k ′, t) + ρI2 (k ′, t))

+ k1β1
n ρS1 (k, k1, t)

×

[∑
k ′

P(k ′
|k)(ρI1 (k ′, t) + ρI2 (k ′, t))

]2

+ kξnρS2 (k, k1, t)
∑
k ′

P(k ′
|k)(ρI1 (k ′, t) + ρI2 (k ′, t))

+ k1ξ1
n ρS2 (k, k1, t)

[∑
k ′

P(k ′
|k)(ρI1 (k ′, t)+ρI2 (k ′, t))

]2

+ ηnρ
I2 (k, k1, t) + γnρ

I1 (k, k1, t) (25)

C. BASIC REPRODUCTION NUMBER
In the existing researches, the basic reproduction number
R0 is usually used as the judgment to estimate whether the
information could spread in a large scale or not. Here, the
basic reproduction number refers to the average number of
individuals that can be affected by a new spreader under
the situation that every individual is susceptible and without
any external intervention. Therefore, we mainly analyze the
spreading process of public health emergency information at
the first stage. When the basic reproduction number R0 > 1,
the public health emergency information will spread in a large
scale. However, when the basic reproduction number R0 < 1,
the public health emergency information could not spread
widely.

We define x = (I1(t), I2(t),R(t), S1(t), S2(t))T . Let F(x)
be the probability of appearance of new spreaders in each
state,V+(x) be the probability of transition of individuals into
each state by all other means, and V−(x) be the probability of
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transition of individuals out of each state. Then we have x ′
=

F(x) − V (x), where V (x) = V−(x) − V+(x). For simplicity,
we set w = w(k, k1, t), ϕ = ϕ(k, k1, t). According to the
model, when n = 1, we have (26) and (27), as shown at the
bottom of the page.

Obviously, the system is stable when the public health
emergency information does not exist and there are only two
categories of susceptibles. Thus, we can verify that system
has an equilibrium E0 = (0, 0, 0, S∗

1 , S∗

2 ). According to
Equation (25), S∗

1 = ε1
/
(δ1 + ε1), S∗

2 = δ1
/
(δ1 + ε1). Then

the derivatives DF(E0) and DV (E0) are partitioned as

DF(E0) =

[
F 0
0 0

]
, DV (E0) =

[
V 0
J1 J2

]
,

where

F =


k2α1ε1P(k, k1)
(δ1 + ε1)⟨k⟩

k2α1ε1P(k, k1)
(δ1 + ε1)⟨k⟩

k2λ1δ1P(k, k1)
(δ1 + ε1)⟨k⟩

k2λ1δ1P(k, k1)
(δ1 + ε1)⟨k⟩

 ,

V =

(
δ1 + γ1 −ε1

−δ1 ε1 + η1

)
.

Thus (28), as shown at the bottom of the page. Then we can
obtain the spectral radius of FV−1

R0 =
k2P(k, k1)[α1ε1(δ1 + ε1 + η1) + λ1δ1(δ1 + ε1 + γ1)]

⟨k⟩(ε1 + δ1)[(δ1 + γ1)(ε1 + η1) − ε1δ1]
(29)

It can be seen that the basic reproduction number is
closely related to the initial impact and the spatiotemporal
evolution of public health emergency. These factors have an
important effect on the information spreading under public
health emergency. In particular, as the probability α1, λ1
reflect the initial impact of the public health emergency, when
the value of α1, λ1 make the basic reproduction number
greater than 1, the public health emergency information will
gradually spread.

IV. NUMERICAL SIMULATIONS
In this section, we perform numerical simulations to validate
the effectiveness of model. As the similar results between
numerical simulations and real data experiments, we analyze
the dynamics of the model through numerical simulations in
further. Besides, when there are more stages in the evolution
of public health emergency, we can roughly divide the
two adjacent stages into a group for analysis in turn. For
simplicity, we take two stages as an example for simulation
analysis.

A. MODEL VERIFICATION
The outbreak of COVID-19 suddenly made individuals
become highly panicked and anxious. In particular, because
the novel coronavirus is a new virus, individuals know little
about it. This led to infection symptoms becoming the focus
that individuals concerned. Therefore, we take the novel
coronavirus infection symptoms as an example to analyze
the effectiveness of the model S1S2I1I2R. Based on massive
Baidu user behavior data, Baidu Index makes a statistical
analysis of the change of the Chinese people’s attention
to a certain keyword, so it is widely used by scholars to
study the changing trend of information [59]. As shown
in Fig. 3(a), with the term ‘‘What are the symptoms of
the novel coronavirus’’, we use Baidu Index to show the
spreading trend of relevant information from January 20,
2020 to February 20, 2020.1

In the simulation of S1S2I1I2Rmodel, we take a connected
subnet in the social network as an example, and assume
that there are 1000 individuals in the network. As the
patients detected at that time were mainly concentrated in
a few areas, it is assumed that there are 100 individuals
in affected areas and 900 individuals in not affected areas.
Considering the power law distribution of the node degree in
social network, we choose the typical Barabasi Albert (BA)

1https://index.baidu.com/v2/index.html

F(x) =


kα1ρ

S1 (k, k1, t)w+ k1α1
1 ρS1 (k, k1, t)ϕ

kλ1ρS2 (k, k1, t)w+ k1λ1
1 ρS2 (k, k1, t)ϕ

0
0
0

 (26)

V (x) =


δ1ρ

I1 (k, k1, t) − ε1ρ
I2 (k, k1, t) + γ1ρ

I1 (k, k1, t)
ε1ρ

I2 (k, k1, t) − δ1ρ
I1 (k, k1, t) + η1ρ

I2 (k, k1, t)
−(kβ1w+ k1β1

1 ϕ)ρS1 (k, k1, t) − (kξ1w+ k1ξ1
1 ϕ)ρS2 (k, k1, t) − γ1ρ

I1 (k, k1, t) − η1ρ
I2 (k, k1, t)

k(α1 + β1)ρS1 (k, k1, t)w+ k1(α1
1 + β1

1 )ρS1 (k, k1, t)ϕ + δ1ρ
S1 (k, k1, t) − ε1ρ

S2 (k, k1, t)
k(λ1 + ξ1)ρS2 (k, k1, t)w+ k1(λ1

1 + ξ1
1 )ρS2 (k, k1, t)ϕ + ε1ρ

S2 (k, k1, t) − δ1ρ
S1 (k, k1, t)

 (27)

FV−1
=


k2P(k, k1)α1ε1(δ1 + ε1 + η1)

⟨k⟩(ε1 + δ1)[(δ1 + γ1)(ε1 + η1) − ε1δ1]
k2P(k, k1)α1ε1(δ1 + ε1 + γ1)

⟨k⟩(ε1 + δ1)[(δ1 + γ1)(ε1 + η1) − ε1δ1]
k2P(k, k1)λ1δ1(δ1 + ε1 + η1)

⟨k⟩(ε1 + δ1)[(δ1 + γ1)(ε1 + η1) − ε1δ1]
k2P(k, k1)λ1δ1(δ1 + ε1 + γ1)

⟨k⟩(ε1 + δ1)[(δ1 + γ1)(ε1 + η1) − ε1δ1]

 (28)
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FIGURE 3. Comparison between public health emergency information about ‘‘What are the symptoms of the novel coronavirus’’ and model
simulation results. (a) Baidu Index of the term ‘‘What are the symptoms of the novel coronavirus’’. (b) Simulation results of S1S2I1I2R, SIR
and SIRS models. The blue area shows the result of S1S2I1I2R model, the red line shows the result of SIR model, and the purple line shows
the result of SIRS model.

scale-free network to construct the spreading networks in
affected areas and not affected areas. According to Ref.
[49], we set the average degree of nodes in each network
is 12, and the amount of 2-simplices within which each
node may locate is 4. To connect the affected network and
not affected network, five nodes are randomly selected from
the two networks to connect with each other. In addition,
considering that the individuals in affected areas could obtain
and spread the relevant information earlier, we assume the
density of spreaders in affected areas is 0.001, and the density
of susceptibles in affected areas is 0.099, and others are
all susceptibles in not affected areas. As the number of
patients were gradually increasing, and Academician Zhong
Nanshan said that the virus could spread from human to
human on January 20, 2020 [60], individuals in affected areas
were eager to know the symptoms of novel coronavirus, and
spread relevant information with strong willingness. Thus,
we assume that α1 = 0.4, β1 = 0.3, γ1 = 0.35.
While for the individuals in not affected areas, because
cases had not been reported and it was the Lunar New
Year, the willingness to spread relevant information was
slightly weaker. Thus, we assume that λ1 = 0.2, ξ1 =

0.4, η1 = 0.5. Moreover, facing with the public health
emergency, the 2-simplex interactions would promote the
information spreading significantly. Thus, we set µ = 1.2,
σ = 0.8, then α1

1 = 0.48, β1
1 = 0.24, λ1

1 = 0.24,
ξ1
1 = 0.32. Besides, as the Spring Festival travel in
China had begun at that time, there was a large passenger
flowing. This resulted that the virus gradually spread to
other areas. Especially, COVID-19 has an incubation period,
and individuals’ protection awareness were not strong. This
resulted that more and more areas turned into the affected
areas. Thus, it is assumed that δ1 = 0.1, ε1 = 0.12.
In addition, due to the increasingly severe epidemic situation
from late January 2020 to early February 2020, individuals
were more frightened and more inclined to spread the
information, the evolution of the public health emergency in
this period could be divided into two stages, and the second
stage was gradually deteriorating. Thus, we set θ2 = 2,
δ2 = 0.07, ε2 = 0.15, and t2 = 3.

The simulation result of S1S2I1I2R model is shown in
the blue area of Fig. 3(b). Furthermore, we compare the
result with simulation results of SIR and SIRS models. Here,
the network structure remains unchanged. Considering that
the regional difference is not taken into account in these
models, the density of spreaders is set as 0.001, the density of
susceptibles is set as 0.999, and the densities of others are set
as 0 at the initial moment. For simplicity, we set the transition
probability that a susceptible turns into a spreader in the
model SIR and SIRS are all 0.3 through simple arithmetic
average. By the same way, the transition probability that
a susceptible turns into a recovered is set as 0.35 and the
transition probability that a spreader turns into a recovered
is set as 0.425 in SIR and SIRS models. Moreover, we set
the transition probabilities that a recovered turns into a
susceptible is 0.1 in model SIRS. These simulation results
are shown with red and purple lines. Compared Fig. 3(a)
with Fig. 3(b), we can find that the simulation result of the
S1S2I1I2R model is consistent with the spreading trend of
information about ‘‘What are the symptoms of the novel
coronavirus’’. However, the traditional SIR model and the
improved model SIRS are difficult to describe the multi-stage
information spreading process under public health emergency
effectively for the reason that they do not consider the effect
of emergency evolution, regional differences, and 2-simplex
interactions. Thus, the S1S2I1I2R model is more effective.

B. MULTI-STAGE INFORMATION SPREADING UNDER
PUBLIC HEALTH EMERGENCY
In order to further analyze the changing trend of individuals
in each state, we perform the numerical simulation by setting
the same value of each parameter and the proportion of
initial states as in Subsection MODEL VERIFICATION.
As shown in Fig. 4, compared with the previous single-stage
information spreading, the densities’ variation trends present
different characteristics. On the one hand, there are signif-
icant differences between affected areas and not affected
areas. For example, the density of individuals in state S2
decreases continuously until the system reaches a stable state,
while the density of individuals in state S1 increases firstly
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FIGURE 4. Information spreading process under public health emergency.
We set α1 = 0.4, α1

1 = 0.48, β1 = 0.3, β1
1 = 0.24, γ1 = 0.35, λ1 = 0.2,

λ1
1 = 0.24, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5, δ1 = 0.1, ε1 = 0.12, θ2 = 2,
δ2 = 0.07, ε2 = 0.15, and t2 = 3.

and then decreases. On the other hand, the density curves
of individuals in state I1 and I2 have two stages and the
density curve of individuals in state I2 changes faster and the
peak value is larger than that in state I1 as the initial number
of individuals in not affected areas is larger. In particular,
the density curves of individuals in state I1 and I2 have
two peaks, and both of them present a trend of rising and
falling, and then rising and falling again. Especially, the
decrease rate of the density curve of individuals in state I1
is slower as more and more not affected areas becoming
affected areas. In addition, although the variation trend of
individuals in state R is rising as previous research results,
the growth rate of the curve slows down significantly at the
second stage. The main reason for these trends is that at
the initial moment, only a few of the individuals in affected
areas know little about it, and most of individuals might
think it is a common disease, so they are not willing to
spread the information and have aweak protection awareness.
However, with the movement of individuals and the spread
of the virus, the coverage areas become more and more
extensive, the public health emergency gradually gets worse.
This results that the individuals become more and more panic
and spread the information for a long time. Especially, the
number of spreaders may even rebound. Thus, the growth rate
of recovereds becomes slow gradually.

In fact, the variation trends presented in Fig. 4 are
consistent with the real situation. Take the information
spreading process of symptoms of COVID-19 as an example.
On January 20, 2020, Academician Zhong Nanshan said that
the virus could spread from human to human [60]. Besides,
National Health Commission of the People’s Republic of
China published the situation of COVID-19 every day since
then. This resulted that more and more individuals were eager
to obtain and spread relevant information. As the number
of infected people gradually increased and confirmed cases
were reported in many regions, the public health emergency

became severe increasingly and individuals became more
panic. This led to the further spread of public health
emergency information and the second stage of spreading.

C. EFFECT OF 2-SIMPLEX INTERACTIONS
Except for the basis of pairwise interactions, high-order
interactions among individuals also affect the information
spreading. Here we perform numerical simulations to analyze
the effect of 2-simplex interactions on the information
spreading. The spreading network and initial state ratios are
the same as those in Subsection MODEL VERIFICATION.
The cross-regional spatial evolution is not taken into account,
and δ1 = δ2 = ε1 = ε2. Besides, the local evolution of public
health emergency in affected areas is also not considered
here, i.e., θ1 = θ2 = 0. Considering the maximum sum of
the densities of the two categories of spreaders reflects the
information’s maximum impact, and the maximum density
of the recovereds reflects the final spreading scale of the
information, we mainly pay attention to the changes of these
two densities.
The effect of 2-simplex interactions on individuals mainly

lies in two aspects. On the one hand, it would affect the
transition from susceptibles to spreaders. On the other hand,
it would affect the transition from susceptibles to recovereds.
Therefore, as shown in Fig. 5, we describe the changes
densities of the two categories of spreaders and recovereds
with µ to reveal the effect of 2-simplex interactions on
susceptibles turning into corresponding spreaders. Similarly,
as shown in Fig. 6, we describe the changes densities of the
two categories of spreaders and recovereds with σ to reveal
the effect of 2-simplex interactions on susceptibles turning
into recovereds. Here, when µ = 0, and σ = 0, there is
no 2-simplex interactions. We can see that comparing with
the single pairwise interactions, the process of information
spreading under the effect of 2-simplex interactions shows
the significant difference. Specially, with the increase of µ,
both the information’s maximum impact and the spreading
scale increase. While on the contrary, with the increase of σ ,
both the information’s maximum impact and the spreading
scale decrease. That is to say, the 2-simplex interactions have
significant effect on the information spreading. The greater
the effect of 2-simplex interactions on the transformation
from susceptibles to corresponding spreaders, and the weaker
the effect of 2-simplex interactions on the transformation
from susceptibles to recovereds, the faster and wider
information spreading.

D. EFFECT OF THE PUBLIC HEALTH EMERGENCY’S
INITIAL IMPACT
As we all know, α1, α1

1 , λ1, λ
1
1 are important parameters to

describe the initial impact of the public health emergency.
Here we perform numerical simulations to analyze the effect
of public health emergency’s initial impact on the information
spreading under four different situations, respectively. The
spreading network and initial state ratios are the same as
those in Subsection MODEL VERIFICATION. Besides,
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FIGURE 5. Effect of 2-simplex interactions on susceptibles turning into
spreaders. (a) The density of two categories of spreaders with the
increase of µ. (b) The density of recovereds with the increase of µ. We set
σ = 0, α1 = 0.4, β1 = 0.3, γ1 = 0.35, λ1 = 0.2, ξ1 = 0.4, η1 = 0.5, δ1 = 0.1,
ε1 = 0.1, θ2 = 0, δ2 = 0.1, ε2 = 0.1, and t2 = 3.

FIGURE 6. Effect of 2-simplex interactions on susceptibles turning into
recovereds. (a) The density of two categories of spreaders with the
increase of σ . (b) The density of recovereds with the increase of σ . We set
µ = 0, α1 = 0.4, β1 = 0.3, γ1 = 0.35, λ1 = 0.2, ξ1 = 0.4, η1 = 0.5, δ1 = 0.1,
ε1 = 0.1, θ2 = 0, δ2 = 0.1, ε2 = 0.1, and t2 = 3.

considering the 2-simplex interactions usually stimulate
the propagation willingness and promote the information
spreading, we set µ = 1.2, σ = 0.8.

1) EFFECT OF THE INITIAL IMPACT WITH LOCAL EVOLUTION
OF PUBLIC HEALTH EMERGENCY
The local evolution of public health emergency includes
deterioration and improvement in affected areas. The
cross-regional spatial evolution is not taken into account, and
δ1 = δ2 = ε1 = ε2. As shown in Fig. 7-Fig. 10, we describe
the changes densities of the two categories of spreaders and
recovereds with α1, α1

1 , λ1, λ1
1 to reveal the effect of the

public health emergency’s initial impact on the information
spreading under two local evolution situations.

According to the numerical simulations results in
Fig. 7-Fig. 10, it can be seen that the information is widely
spread. Observing Fig. 7-Fig. 10, we can find that at the first
stage, the change rates of the two categories of spreaders and
recovereds gradually speed upwith the increase of α1, α1

1 , λ1,
λ1
1 . Besides, the peak value of the two categories of spreaders

and the information spreading scale also gradually increase.
However, compared the curves’ trends at the second stage in
Fig. 7-Fig. 8 with Fig. 9-Fig. 10, we can find that the decrease
rates of the densities of the two categories of spreaders
slow down significantly, and even rebound to produce new
peaks when the public health emergency gradually worsens

FIGURE 7. Effect of public health emergency’s initial impact in affected
areas on information spreading under local deterioration. (a) The density
of two categories of spreaders with the increase of α1, α1

1 . (b) The density
of recovereds with the increase of α1, α1

1 . We set β1 = 0.3, β1
1 = 0.24,

γ1 = 0.35, λ1 = 0.2, λ1
1 = 0.24, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5, θ1 = 0,
θ2 = 2, δ1 = δ2 = ε1 = ε2 = 0.1, t2 = 4, respectively. The transition
probabilities at the second stage could be determined according to
Equation (1) and Equation (2), respectively. The blue lines denote the
densities of two categories of spreaders and recovereds in each time with
α1 = 0.4, α1

1 = 0.48. The orange lines denote the densities of two
categories of spreaders and recovereds in each time with α1 = 0.5,
α1

1 = 0.6. The green lines denote the densities of two categories of
spreaders and recovereds in each time with α1 = 0.6, α1

1 = 0.72.

FIGURE 8. Effect of public health emergency’s initial impact in not
affected areas on information spreading under local deterioration. (a) The
density of two categories of spreaders with the increase of λ1, λ1

1 . (b) The
density of recovereds with the increase of λ1, λ1

1 . We set α1 = 0.4,
α1

1 = 0.48, β1 = 0.3, β1
1 = 0.24, γ1 = 0.35, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5,
θ1 = 0, θ2 = 2, δ1 = δ2 = ε1 = ε2 = 0.1, t2 = 4, respectively. The transition
probabilities at the second stage could be determined according to
Equation (1) and Equation (2), respectively. The blue lines denote the
densities of two categories of spreaders and recovereds in each time with
λ1 = 0.2, λ1

1 = 0.24. The orange lines denote the densities of two
categories of spreaders and recovereds in each time with λ1 = 0.25,
λ1

1 = 0.3. The green lines denote the densities of two categories of
spreaders and recovereds in each time with λ1 = 0.3, λ1

1 = 0.36.

in affected areas. Moreover, the growth rates of recovereds
also slow down significantly compared with the first stage.
However, when the public health emergency in affected areas
gradually getting improved, the decrease rates of the two
categories of spreaders and the growth rates of recovereds
increase rapidly at the second stage. In addition, according
to the densities’ changes of the two categories of spreaders
and recovereds at two stages in Fig. 7-Fig. 8, it can be
found that the maximum densities and change speeds of
the two categories of spreaders and recovereds are larger
when α1, α1

1 , λ1, λ1
1 are relatively low. This is different

from the trend at the first stage. It could be explained as
follows. On the one hand, the low initial attraction at the first
stage might not arouse individuals’ attention, and most of

128328 VOLUME 11, 2023



Y. Su et al.: Multi-Stage Information Spreading Model in Simplicial Complexes

FIGURE 9. Effect of public health emergency’s initial impact in affected
areas on information spreading under local improvement. (a) The density
of two categories of spreaders with the increase of α1, α1

1 . (b) The density
of recovereds with the increase of α1, α1

1 . We set β1 = 0.3, β1
1 = 0.24,

γ1 = 0.35, λ1 = 0.2, λ1
1 = 0.24, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5, θ1 = 0,
θ2 = 2, δ1 = δ2 = ε1 = ε2 = 0.1, t2 = 4, respectively. The transition
probabilities at the second stage could be determined according to
Equation (1) and Equation (2), respectively. The blue lines denote the
densities of two categories of spreaders and recovereds in each time with
α1 = 0.4, α1

1 = 0.48. The orange lines denote the densities of two
categories of spreaders and recovereds in each time with α1 = 0.5,
α1

1 = 0.6. The green lines denote the densities of two categories of
spreaders and recovereds in each time with α1 = 0.6, α1

1 = 0.72.

FIGURE 10. Effect of public health emergency’s initial impact in not
affected areas on information spreading under local improvement.
(a) The density of two categories of spreaders with the increase of λ1, λ1

1 .
(b) The density of recovereds with the increase of λ1, λ1

1 . We set α1 = 0.4,
α1

1 = 0.48, β1 = 0.3, β1
1 = 0.24, γ1 = 0.35, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5,
θ1 = 0, θ2 = 2, δ1 = δ2 = ε1 = ε2 = 0.1, t2 = 4, respectively. The transition
probabilities at the second stage could be determined according to
Equation (1) and Equation (2), respectively. The blue lines denote the
densities of two categories of spreaders and recovereds in each time with
λ1 = 0.2, λ1

1 = 0.24. The orange lines denote the densities of two
categories of spreaders and recovereds in each time with λ1 = 0.25,
λ1

1 = 0.3. The green lines denote the densities of two categories of
spreaders and recovereds in each time with λ1 = 0.3, λ1

1 = 0.36.

them are susceptibles. As a result, much more susceptibles
become anxious and spread information quickly when public
health emergency deteriorating. On the other hand, the
decline rate of the two categories of spreaders is slow at
the first stage when the initial impact is small. This leads to
more individuals in states I1 and I2 when the public health
emergency deteriorating. Specially, the probabilities of two
categories of spreaders turning into recovereds decrease at
the second stage. This results in a larger maximum density of
the two categories of spreaders and recovereds.
According to the above analysis, the initial impact and

local evolution trend of public health emergency have
an important effect on individuals’ behaviors. This result

inspires the government to take strong prevention and control
measures to promote emergency improvement, and stabilize
individuals’ sentiment in further. Especially, the government
should not relax the guidance when the individuals’ willing-
ness to spread the information at the early stage is not strong.
It is helpful to weaken the negative impact of misinformation.

2) EFFECT OF THE INITIAL IMPACT WITH SPATIAL
EVOLUTION OF PUBLIC HEALTH EMERGENCY
The spatial evolution of public health emergency is mainly
reflected by the probability of interaction between affected
areas and not affected areas. The local evolution of public
health emergency in affected areas is not considered here,
i.e., θ1 = θ2 = 0. If the probability that individuals transmit
from affected areas to not affected areas decreases, while
the probability that individuals transmit from not affected
areas to affected areas increases, it indicates that the public
health emergency deteriorates in space. On the contrary,
if the probability that individuals transmit from affected areas
to not affected areas increases, while the probability that
individuals transmit from not affected areas to affected areas
decreases, it indicates that the public health emergency is
getting improved in space. Thus, as the numerical simulations
results shown in Fig. 11-Fig. 14, the density changes of the
two categories of spreaders and recovereds with α1, α1

1 , λ1,
λ1
1 under the two situations are mainly analyzed, so as to

reveal the effect of initial impact on the information spreading
under the spatial evolution of public health emergency.
Observing Fig. 11-Fig. 14, we can find that with the

increase of α1, α1
1 , λ1, λ1

1 , both the change speeds of the
densities of the two categories of spreaders and recovereds
gradually speed up, and the peak value of the two categories
of spreaders and the information spreading scale also
gradually increase no matter the public health emergency
worsens or gets better in space. Meanwhile, compared Fig. 11
and Fig. 13 with Fig. 12 and Fig. 14, we can also find that
the changes are much larger when the initial impact of public
health emergency on not affected areas increases. The above
results indicate that the initial impact plays an important role
in the information spreading regardless of deterioration or
improvement in space.

E. EFFECT OF THE LOCAL EVOLUTION OF PUBLIC
HEALTH EMERGENCY
According to the above analysis, the dynamic evolution of
public health emergency has an important effect on the
information spreading. Here, the effects of deterioration and
improvement of public health emergency in affected areas
are analyzed firstly, and the impact of cross-regional spatial
evolution is ignored now. Therefore, it is assumed that the
transition probabilities of individuals between affected areas
and not affected areas are the same and unchanged, i.e., δ1 =

δ2 = ε1 = ε2. Similar to the above, we also set µ = 1.2, σ =

0.8. The effects of local evolution degree and time of public
health emergency on the information spreading are analyzed
through numerical simulations, respectively. Based on the
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FIGURE 11. Effect of public health emergency’s initial impact in affected
areas on information spreading under spatial deterioration. (a) The
density of two categories of spreaders with the increase of α1, α1

1 . (b) The
density of recovereds with the increase of α1, α1

1 . We set β1 = 0.3,
β1

1 = 0.24, γ1 = 0.35, λ1 = 0.2, λ1
1 = 0.24, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5,
θ1 = θ2 = 0, δ1 = ε1 = 0.2, δ2 = 0.1, ε2 = 0.3. The blue lines denote the
densities of two categories of spreaders and recovereds in each time with
α1 = 0.4, α1

1 = 0.48. The orange lines denote the densities of two
categories of spreaders and recovereds in each time with α1 = 0.5,
α1

1 = 0.6. The green lines denote the densities of two categories of
spreaders and recovereds in each time with α1 = 0.6, α1

1 = 0.72.

FIGURE 12. Effect of public health emergency’s initial impact in not
affected areas on information spreading under spatial deterioration.
(a) The density of two categories of spreaders with the increase of λ1, λ1

1 .
(b) The density of recovereds with the increase of λ1, λ1

1 . We set α1 = 0.4,
α1

1 = 0.48, β1 = 0.3, β1
1 = 0.24, γ1 = 0.35, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5,
θ1 = θ2 = 0, δ1 = ε1 = 0.2, δ2 = 0.1, ε2 = 0.3. The blue lines denote the
densities of two categories of spreaders and recovereds in each time with
λ1 = 0.2, λ1

1 = 0.24. The orange lines denote the densities of two
categories of spreaders and recovereds in each time with λ1 = 0.25,
λ1

1 = 0.3. The green lines denote the densities of two categories of
spreaders and recovereds in each time with λ1 = 0.3, λ1

1 = 0.36.

network construct in Subsection MODEL VERIFICATION
and taking the same initial states setting, we study the effect of
local evolution of public health emergency on the information
spreading by analyzing the densities’ changes of the two
categories of spreaders and recovereds.

1) EFFECT OF THE LOCAL EVOLUTION DEGREE OF PUBLIC
HEALTH EMERGENCY
The deterioration and improvement of public health emer-
gency in affected areas have an important effect on individu-
als’ behaviors. Here, the degree of local evolution of public
health emergency can be reflected through θ2. According
to Subsection EFFECT OF EVOLUTION OF PUBLIC
HEARLTH EMERGENCYON STATES TRANSITION, the
same evolution degree has different effects on individuals’
behaviors when public health emergency worsening or

FIGURE 13. Effect of public health emergency’s initial impact in affected
areas on information spreading under spatial improvement. (a) The
density of two categories of spreaders with the increase of α1, α1

1 . (b) The
density of recovereds with the increase of α1, α1

1 . We set β1 = 0.3,
β1

1 = 0.24, γ1 = 0.35, λ1 = 0.2, λ1
1 = 0.24, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5,
θ1 = θ2 = 0, δ1 = ε1 = 0.2, δ2 = 0.3, ε2 = 0.1. The blue lines denote the
densities of two categories of spreaders and recovereds in each time with
α1 = 0.4, α1

1 = 0.48. The orange lines denote the densities of two
categories of spreaders and recovereds in each time with α1 = 0.5,
α1

1 = 0.6. The green lines denote the densities of two categories of
spreaders and recovereds in each time with α1 = 0.6, α1

1 = 0.72.

FIGURE 14. Effect of public health emergency’s initial impact in not
affected areas on information spreading under spatial improvement.
(a) The density of two categories of spreaders with the increase of λ1, λ1

1 .
(b) The density of recovereds with the increase of λ1, λ1

1 . We set α1 = 0.4,
α1

1 = 0.48, β1 = 0.3, β1
1 = 0.24, γ1 = 0.35, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5,
θ1 = θ2 = 0, δ1 = ε1 = 0.2, δ2 = 0.3, ε2 = 0.1. The blue lines denote the
densities of two categories of spreaders and recovereds in each time with
λ1 = 0.2, λ1

1 = 0.24. The orange lines denote the densities of two
categories of spreaders and recovereds in each time with λ1 = 0.25,
λ1

1 = 0.3. The green lines denote the densities of two categories of
spreaders and recovereds in each time with λ1 = 0.3, λ1

1 = 0.36.

improving, which can be reflected by calculating correspond-
ing transition probabilities according to Equation (1) and
Equation (2). As shown in Fig. 15 and Fig. 16, the densities’
changes of the two categories of spreaders and recovereds
along with the evolution degree under the two situations are
described respectively.
From the numerical simulation result in Fig. 15(a), we can

see that at the second stage, the peak value of the density
curve of the two categories of spreaders increases gradually
with the increase of θ2, and the larger θ2 is, the faster the
increase rate before reaching the peak of the second stage,
and the slower the decrease rate after reaching the peak of the
second stage. In particular, the deterioration of public health
emergency also makes the density of the two categories of
spreaders rebound to produce a new peak at the second stage.
In addition, it can be seen from the numerical simulation
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FIGURE 15. Effect of local deterioration degree of public health
emergency on information spreading. (a) The density of two categories of
spreaders with the increase of θ2. (b) The density of recovereds with the
increase of θ2. We set α1 = 0.4, α1

1 = 0.48, β1 = 0.3, β1
1 = 0.24,

γ1 = 0.35, λ1 = 0.2, λ1
1 = 0.24, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5, θ1 = 0,
δ1 = δ2 = ε1 = ε2 = 0.1 and t2 = 4, respectively. The blue lines denote the
densities of two categories of spreaders and recovereds in each time with
θ2 = 1. The orange lines denote the densities of two categories of
spreaders and recovereds in each time with θ2 = 1.5. The green lines
denote the densities of two categories of spreaders and recovereds in
each time with θ2 = 2.

FIGURE 16. Effect of local improvement degree of public health
emergency on information spreading. (a) The density of two categories of
spreaders with the increase of θ2. (b) The density of recovereds with the
increase of θ2. We set α1 = 0.4, α1

1 = 0.48, β1 = 0.3, β1
1 = 0.24,

γ1 = 0.35, λ1 = 0.2, λ1
1 = 0.24, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5, θ1 = 0,
δ1 = δ2 = ε1 = ε2 = 0.1 and t2 = 4, respectively. The blue lines denote the
densities of two categories of spreaders and recovereds in each time with
θ2 = 1. The orange lines denote the densities of two categories of
spreaders and recovereds in each time with θ2 = 1.5. The green lines
denote the densities of two categories of spreaders and recovereds in
each time with θ2 = 2.

result in Fig. 15(b) that at the second stage, the increase
rate of recovereds’ density gradually slows down with the
increase of θ2. This results that the recovereds’ density under
the high evolution degree is smaller than that under the low
evolution degree in a period of time, but themaximum density
of recovereds’ density increases with the increase of θ2. This
is mainly because that the local deterioration of public health
emergency in affected areas makes the susceptibles willing to
spread the information much more, and makes the spreaders
continue to spread for a long time. As a result, the information
spreading cycle is extended, and the effect and the final
spreading scale are also gradually expanded. By contrast, the
numerical simulation result in Fig. 16 shows that with the
local improvement of public health emergency at the second
stage, the density of the two categories of spreaders decreases
rapidly, and the greater the improvement degree, the faster the
decrease rate of the density of the two categories of spreaders.

This leads to much more individuals turn into recovereds,
resulting in a faster increasing in the density of recovereds
and declining in the spreading scale. These results indicate
that the local evolution degree of public health emergency has
an important effect on the information spreading. The greater
the deterioration degree, the greater the effect and information
spreading scale, while the greater the improvement degree,
the more helpful to weaken the negative impact of public
health emergency information.

2) EFFECT OF THE LOCAL EVOLUTION TIME OF PUBLIC
HEALTH EMERGENCY
The time of local evolution of public health emergency
reflects the severity of the local situation. Fig. 17 and
Fig. 18 describe the densities’ changes of the two categories
of spreaders and recovereds with the evolution time under
the local deterioration and improvement of public health
emergency respectively.

FIGURE 17. Effect of local deterioration time of public health emergency
on information spreading. (a) The density of two categories of spreaders
with the increase of t2. (b) The density of recovereds with the increase of
t2. We set α1 = 0.4, α1

1 = 0.48, β1 = 0.3, β1
1 = 0.24, γ1 = 0.35, λ1 = 0.2,

λ1
1 = 0.24, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5, θ1 = 0, θ2 = 2,
δ1 = δ2 = ε1 = ε2 = 0.1, respectively. The blue lines denote the densities
of two categories of spreaders and recovereds in each time with t2 = 2.
The orange lines denote the densities of two categories of spreaders and
recovereds in each time with t2 = 3. The green lines denote the densities
of two categories of spreaders and recovereds in each time with t2 = 4.
The red lines denote the densities of two categories of spreaders and
recovereds in each time with t2 = 5.

As shown in Fig. 17, the earlier the local deterioration
time of public health emergency, the larger the density
peak of the two categories of spreaders and the maximum
density of the recovereds. The numerical simulation result
shows that the more rapid the deterioration of public
health emergency and the more sudden the outbreak, the
more individuals spread the information and the wider the
information spreading scale. Besides, from the numerical
simulation result in Fig. 17(a), we can find that if the local
deterioration of public health emergency occurs before the
arrival of the first peak, the density curve of the two categories
of spreaders would become steeper rapidly. While if the
local deterioration of public health emergency occurs just
after the arrival of the first peak, the density curve of the
two categories of spreaders would rebound quickly after a
small decline and rise to produce a new peak. Besides, the
earlier the local deterioration, the greater the peak value. This
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FIGURE 18. Effect of local improvement time of public health emergency
on information spreading. (a) The density of two categories of spreaders
with the increase of t2. (b) The density of recovereds with the increase of
t2. We set α1 = 0.4, α1

1 = 0.48, β1 = 0.3, β1
1 = 0.24, γ1 = 0.35, λ1 = 0.2,

λ1
1 = 0.24, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5, θ1 = 0, θ2 = 2,
δ1 = δ2 = ε1 = ε2 = 0.1, respectively. The blue lines denote the densities
of two categories of spreaders and recovereds in each time with t2 = 2.
The orange lines denote the densities of two categories of spreaders and
recovereds in each time with t2 = 3. The green lines denote the densities
of two categories of spreaders and recovereds in each time with t2 = 4.
The red lines denote the densities of two categories of spreaders and
recovereds in each time with t2 = 5.

trend is mainly due to the fact that when the deterioration
occurs at the beginning of information spreading, most
of individuals are in state S1 and S2, and their panic
would be intensified by the sudden deterioration of public
health emergency. This makes their willingness to spread
the public health emergency information be strengthened,
and the number of spreaders increases rapidly. While if
the deterioration occurs after the arrival of the first peak,
on the one hand, the susceptibles would be stimulated to
spread information, on the other hand, the spreaders would
be promoted to continue spreading the information, thus
the number of spreaders rebounds. However, because the
majority of individuals have known the information and
even become recovereds, the rebound peak of the density
curve of two categories of spreaders would become smaller
and the decline speed would be slower. On the contrary,
from the numerical simulation result in Fig. 18, we can see
that the earlier the local improvement, the more rapid the
density of the two categories of spreaders decreases, and the
smaller the maximum density of recovereds. In particular,
it also can be seen from Fig. 18 that local improvement occurs
before the density curve of the two categories of spreaders
reaching the peak, themaximum impact of informationwould
gradually decrease with the advance of the evolution time.
These results suggest that the government should strengthen
the monitoring of public health emergency and take timely
measures to promote the improvement as soon as possible.
It is important for controlling the spread of public health
emergency information.

F. EFFECT OF THE SPATIAL EVOLUTION OF PUBLIC
HEALTH EMERGENCY
In order to further study the effect of the spatial evolution of
public health emergency, the effects of the interaction tran-
sition probabilities between affected areas and not affected

FIGURE 19. Effect of initial spatial transition probabilities on information
spreading. We set α1 = 0.4, α1

1 = 0.48, β1 = 0.3, β1
1 = 0.24, γ1 = 0.35,

λ1 = 0.2, λ1
1 = 0.24, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5, t2 = 3. (a) The
maximum sum of the densities of the two categories of spreaders as a
function of δ1 and ε1. (b) The maximum density of the recovereds as a
function of δ1 and ε1.

areas on the information spreading are analyzed through
numerical simulations, respectively. Here the effect of local
evolution in affected areas is ignored, thus it is assumed that
θ1 = θ2 = 0. As above, the spreading network and initial
state ratios setting in Subsection MODEL VERIFICATION
are used to study the effect of spatial evolution by analyzing
the density changes of the two categories of spreaders and
recovereds. Meanwhile, we also set µ = 1.2, σ = 0.8.

1) EFFECT OF INITIAL SPATIAL TRANSITION PROBABILITIES
Fig. 19 depicts the changes of the maximum densities of two
categories of spreaders and recovereds under the different
initial spatial transition probabilities between affected areas
and not affected areas. The effect of spatial evolution of public
health emergency among different stages is not considered
here, that is to say the corresponding probability of the same
state transition at two stages is assumed to be the same.
As can be seen from Fig. 19, with the increase of the initial

transition probability that affected areas turn into not affected
areas, the maximum densities of two categories of spreaders
and recovereds gradually decrease, while with the increase
of the initial transition probability that not affected areas turn
into affected areas, the maximum densities of two categories
of spreaders and recovereds gradually increase. It indicates
that the spatial evolution of public health emergency plays
an important role in promoting the information spreading.
Especially for a new public health emergency, individuals
have little knowledge about it and lack of experience in
effective prevention and control. It is easy to cause the cross
regional diffusion of public health emergency, and trigger
panic, so that more and more individuals pay attention to
the relevant information. Especially at a special time like
holidays, the human flow is often more frequent, thus the
diffusion of the public health emergency would be more
serious, and the information would also be more concerned.
Besides, according to the diagonal color changes, we can
find that the maximum sum of the densities of the two
categories of spreaders and recovereds increase when δ1 and
ε1 increasing synchronously. That means when the public
health emergency in different regions getting worse or better
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in succession, the information’s maximum impact and the
spreading scale would be enlarged.

2) EFFECT OF THE SPATIAL EVOLUTION DEGREE OF PUBLIC
HEALTH EMERGENCY
Furthermore, we perform numerical simulations to analyze
the effect of different spatial evolution degree at different
stages on the information spreading. Here the density changes
of the two categories of spreaders and the recovereds under
different interaction transition probabilities between affected
areas and not affected areas at the second stage are explored
without considering the local deterioration and improvement.
The numerical simulations results are shown in Fig. 20 and
Fig. 21.

FIGURE 20. Effect of transition probability from affected area to not
affected area at second stage on information spreading. (a) The density of
two categories of spreaders with the increase of δ2. (b) The density of
recovereds with the increase of δ2. We set α1 = 0.4, α1

1 = 0.48, β1 = 0.3,
β1

1 = 0.24, γ1 = 0.35, λ1 = 0.2, λ1
1 = 0.24, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5,
ε1 = ε2 = 0.2, δ1 = 0.2, t2 = 2. The blue lines denote the densities of two
categories of spreaders and recovereds in each time with δ2 = 0.05. The
orange lines denote the densities of two categories of spreaders and
recovereds in each time with δ2 = 0.2. The green lines denote the
densities of two categories of spreaders and recovereds in each time with
δ2 = 0.35.

FIGURE 21. Effect of transition probability from not affected area to
affected area at second stage on information spreading. (a) The density of
two categories of spreaders with the increase of ε2. (b) The density of
recovereds with the increase of ε2. We set α1 = 0.4, α1

1 = 0.48, β1 = 0.3,
β1

1 = 0.24, γ1 = 0.35, λ1 = 0.2, λ1
1 = 0.24, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5,
ε1 = 0.2, δ1 = δ2 = 0.2, t2 = 2. The blue lines denote the densities of two
categories of spreaders and recovereds in each time with ε2 = 0.05. The
orange lines denote the densities of two categories of spreaders and
recovereds in each time with ε2 = 0.2. The green lines denote the
densities of two categories of spreaders and recovereds in each time with
ε2 = 0.35.

According to Fig. 20, at the second stage of spatial
evolution, assuming the probability that individuals from not

affected areas turning into affected areas remains unchanged,
if the transition probability from affected areas turning into
not affected areas decreases, the maximum densities of
the two categories of spreaders and recovereds increase.
On the contrary, if the transition probability from affected
areas turning into not affected areas increases, the maximum
densities of the two categories of spreaders and recovereds
decrease. Contrary to this result, as shown in Fig. 21, at the
second stage of spatial evolution, assuming the probability
that individuals from affected areas turning into not affected
areas remains unchanged, if the transition probability from
not affected areas turning into affected areas decreases,
the maximum densities of the two categories of spreaders
and recovereds decrease. On the contrary, if the transition
probability from not affected areas turning into affected areas
increases, the maximum densities of the two categories of
spreaders and recovereds increase. In addition, the numerical
simulations results in Fig. 20-Fig. 21 also show that the
maximum densities of the two categories of spreaders and
recovereds decrease as the probability of the individual
turning from affected areas to not affected areas increases and
the probability of the individuals turning from not affected
areas to affected areas decreases. The above results show
that the spatial deterioration would accelerate the spread of
public health emergency information, and further aggravate
the negative effect of information.

3) EFFECT OF THE SPATIAL EVOLUTION TIME OF PUBLIC
HEALTH EMERGENCY
In order to further analyze the effect of spatial evolution
time on the information spreading, the densities’ changes
of the two categories of spreaders and recovereds under
different spatial evolution trends and evolution time are
explored without considering local evolution in affected
areas. Obviously, if the probability that individuals turn
from affected areas to not affected area decreases, and the
probability that individuals turn from not affected areas to
affected areas increases, the public health emergency gets
worse in space. On the contrary, if the probability that
individuals turn from affected areas to not affected areas
increases, and the probability that individuals turn from not
affected areas to affected areas decreases, the public health
emergency gets better in space.

As can be seen from Fig. 22, the earlier the spatial
deterioration evolution, the greater the maximum densities of
the two categories of spreaders and recoveoreds. By contrast,
as can be seen from Fig. 23, the earlier the spatial
improvement, the smaller the maximum densities of the two
categories of spreaders and recovereds. These results show
that the wider the coverage of affected areas, the faster and
the wider the spread of public health emergency information.
On the contrary, the smaller the coverage areas of affected
areas, the slower the spread of public health emergency
information, and the smaller the spreading scale. Besides, the
spatial deterioration of public health emergency is related to
the movement of individuals closely. Therefore, we should
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FIGURE 22. Effect of spatial deterioration time of public health
emergency on information spreading. (a) The density of two categories of
spreaders with the increase of t2. (b) The density of recovereds with the
increase of t2. We set α1 = 0.4, α1

1 = 0.48, β1 = 0.3, β1
1 = 0.24,

γ1 = 0.35, λ1 = 0.2, λ1
1 = 0.24, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5,
δ1 = ε1 = 0.2, δ2 = 0.05, ε2 = 0.35. The blue lines denote the densities of
two categories of spreaders and recovereds in each time with t2 = 2. The
orange lines denote the densities of two categories of spreaders and
recovereds in each time with t2 = 3. The green lines denote the densities
of two categories of spreaders and recovereds in each time with t2 = 4.
The red lines denote the densities of two categories of spreaders and
recovereds in each time with t2 = 5.

FIGURE 23. Effect of spatial improvement time of public health
emergency on information spreading. (a) The density of two categories of
spreaders with the increase of t2. (b) The density of recovereds with the
increase of t2. We set α1 = 0.4, α1

1 = 0.48, β1 = 0.3, β1
1 = 0.24,

γ1 = 0.35, λ1 = 0.2, λ1
1 = 0.24, ξ1 = 0.4, ξ1

1 = 0.32, η1 = 0.5,
δ1 = ε1 = 0.2, δ2 = 0.35, ε2 = 0.05. The blue lines denote the densities of
two categories of spreaders and recovereds in each time with t2 = 2. The
orange lines denote the densities of two categories of spreaders and
recovereds in each time with t2 = 3. The green lines denote the densities
of two categories of spreaders and recovereds in each time with t2 = 4.
The red lines denote the densities of two categories of spreaders and
recovereds in each time with t2 = 5.

pay attention to the movement of individuals in affected areas
as soon as possible to control the spreading of public health
emergency information.

V. CONCLUSION
In summary, we propose a novel S1S2I1I2Rmulti-stage infor-
mation spreading dynamic model in simplicial complexes
considering the spatiotemporal evolution effect of public
health emergency. In the novel model, not only pairwise
interactions are analyzed, but the group interactions are
also studied, which is discussed by taking 2-simplex as an
example. Then the mean-field state transition equations are
derived driven by the spatiotemporal evolution under public
health emergency, and the basic reproduction number is
estimated, too. The results of numerical simulations and real

data experiments are found to be matched well. Furthermore,
extensive numerical simulations are conducted to reveal the
information spreading law.

Through the extensive experiments, the key new results
are as follows. Firstly, the strength effect of group inter-
actions in simplicial complexes would increase possibility
of individuals spreading information. This would result that
the information’s maximum impact might be expanded, and
the spreading scale might be enlarged. Secondly, the initial
impact of public health emergency has a strong promotion
effect on the information spreading. Thirdly, the local and
spatial deterioration of public health emergencywould lead to
the rapid spread, and the greater and the earlier the deteriora-
tion, the faster the spread of the information. Especially, as the
local deterioration occurs after the information spreading
slowing down, there would be a rebound phenomenon, and
the new peak would be negative correlated with the initial
impact of the public health emergency. At last, with the public
health emergency in different regions getting worse or better
in succession, the information’s maximum impact and the
spreading scale would be also enlarged. These results suggest
that the government should do a good job in monitoring and
early warning of public health emergency through multiple
channels, and activate the emergency command system
immediately to reduce the negative impact of the public
health emergency.

In recent years, a variety of public health emergencies
occur frequently and present some special characteristics
such as sudden, high-intensity, long-period, cross-regional
evolution and so on. This leads to the large-scale spreading
of public health emergency information which springs up
withmulti stages and peaks. Besides, the relevant information
could spread through different ways, such as the pairwise
interactions and group interactions based on simplicial
complexes. We provide a new idea to extend the information
spreading process to a high-order network structure, and
construct multi-stage information spreading model with the
spatiotemporal evolution effect of public health emergency.
The current results are really inspiring for government to
device prevention and control strategies according to the
evolution of the public health emergency to deal with public
health information which have serious impact on society.
In the future, we may apply other high-order structures into
the public health emergency information spreading process
and study the immunization strategy in further.
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Data and code will be made available on request.
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