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ABSTRACT This work presents a metamaterial absorber (MMA) for X- and Ku-bands with a metallic
resonating patch on top and a ground plane separated by substrate FR-4 with a thickness of 0.053 λ at the
lowest resonance frequency. The proposed MMA demonstrates perfect absorption of 99.42, 98.48, 98.92,
and 99.34 % at 9.948, 13.26, 14.92, and 15.80 GHz, respectively at normal incidence. The proposed MMA
demonstrates perfect absorption for a polarization and incident angle over a wide range of angles up to
45◦. To understand the fundamental EM behavior of the metamaterial structure, equivalent circuit analysis
was carried out, and the circuit outputs accorded with the simulation results. This article also compares
various machine learning (ML) methods for optimizing the design and predictive modeling of MMAs, such
as decision trees, K-nearest neighbors, random forests, extra trees (ET), bagging, LightGBM, XGBoost,
hist gradient boosting, cat boost, and gradient boosting regressors. The primary objective is to assess the
usefulness of each regressor technique in estimating the performance of MMAs using multiple tests ranging
from TC-40 to TC-80 and performance metrics such as adjusted R-squared score, MSE, RMSE, and MAE,
in which the ET regressor excels. Simulation results suggest that ML-based techniques can save simulation
resources and time while still being an efficient tool for predicting absorber behavior at intermediate and
subsequent frequencies.

INDEX TERMS Decision tree, equivalent circuit analysis, extra trees, machine learning, metamaterial
absorber, random forest.

I. INTRODUCTION
Due to the unbelievable properties of metamaterial which are
not found in nature, metamaterials have been widely used
in various applications like invisibility cloaks [1], electro-
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magnetic wave absorbers [2], sensing [3], modulators [4],
antennas, and so on. Metamaterial has emerged as an ideal
alternative for fulfilling the demands of advanced absorber
applications owing to its remarkably thin profile, compact
nature, and ability to achieve complete absorption. These
exceptional characteristics make MMA promising for wide
applications, such as energy harvesting [5], sensing [6], [7],
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satellite communication [8], photodetector [9], microwave
imaging [10], stealth technology [11], IoT applications and
many more.

Metamaterial absorbers have been around since 2002,
when Engheta first came up with the idea of using metama-
terial surfaces on screens to absorb electromagnetic waves
[12]. In 2008, Landy developed a highly efficient meta-
material absorber (MMA) [2]. Subsequently, metamaterial
absorbers (MMAs) have garnered significant interest due to
their exceptional capacity for electromagnetic (EM) wave
absorption [13], [14]. MMAs are often structured in periodic
configurations consisting of resonators that are fabricated on
a substrate, while a ground plane is located at the lowermost
position. The metallic resonator and dielectric substrate are
excited by the incident electric and magnetic field, respec-
tively [2]. These structures can minimize the reflection by
matching the impedance of the MMA to free space and the
transmission is eliminated by the ground plane to achieve
perfect absorption [3].
Till now, various metamaterial-based structures have been

investigated, including split-ring structures [15], ring-shaped
[16], square-shaped [17], cut-wire [18], Gemini-shaped [13]
and spilt-Jerusalem cross resonator [19] to demonstrate their
performance with dual- [15], [16], multi- [13], [17], [19],
and broad-band [20] operations. To achieve a multi-band
absorption performance, several efforts have been carried
out using orthogonal arrangements of different metallic res-
onators [18], [20] or multi-layer metallic structures separated
by dielectric substrates [17], [21]. Recently, a single-layer
triple-band absorber is proposed utilizing three concentric
closed circular ring resonators in a unit cell [15]. Neverthe-
less, these techniques can face technical challenges during the
manufacturing process, thereby substantially impacting their
feasibility for real-world applications. In addition, several
MMAs with polarization-sensitive characteristics have been
demonstrated and drawn significant attention due to their
applications in polarization detection and imaging [18], [19].

The majority of MMA modeling analysis depends on EM
simulation software like High-frequency Structure Simula-
tor (HFSS) and Computer Simulation Technology (CST),
which are based on iterative numerical full wave calcu-
lations such as the Finite Element Method (FEM) [22],
and Finite-Difference Time-Domain (FDTD) [23]. Designing
metamaterial absorbers with optimal performance remains
a significant challenge due to the involvement of large trial
and error searches over geometric dimensions, which neces-
sitates the validation and optimization of each parameter.
Extensive modeling techniques are needed to precisely esti-
mate the absorber’s performance because of the complex
relationship between the structural elements of the absorber
and its absorption characteristics. A recent study has demon-
strated a significant increase in the application of machine
learning regressor techniques to enhance the predictive
modeling of metamaterial absorber performance, enabling
an improved understanding of patterns and behaviors in
photonics devices [6]. Regression analysis is a statistical

methodology employed to determine the connection between
a dependent variable, namely absorption value, and an inde-
pendent variable, specifically frequency. Because of their
ability to capture complex relationships among data, decision
tree (DT), random forest (RF), K-nearest neighbors (KNN),
extra trees (ET), bagging, light gradient boosting machine
(LGBM), extreme gradient boosting (XGB), hist gradient
boosting (HGB), cat boost (CBR) and gradient boosting
(GBR) regressors techniques have emerged as attractive
methods. The regressormethods have demonstrated their effi-
cacy in various applications, such as electromagnetic wave
analysis and material characterization. The absorption and
reflection response of photonic devices can also be observed
and predicted using machine learning [6]. Several studies
have explored the use of machine learning in various appli-
cations related to antenna designs, metamaterials for target
adaptation, and manufacturing process optimization [24],
[25]. ML techniques offer faster simulations while achieving
the same levels of precision [26]. Since then,MMA structures
have been demonstrated with different applicable ML regres-
sion algorithms, such as Extra trees [6], XGBoost [27], and
k-nearest neighbor regressor [28].
This study presents a compact and ultra-thin metamate-

rial absorber that exhibits ideal absorption characteristics
in X- and Ku-band applications. The MMA exhibits quad
absorption peaks i.e. one (9.948 GHz) in X-band and three
(13.26, 14.92, and 15.80 GHz) in Ku-band. The primary
objective of this study is to address the existing research
gap through a comprehensive evaluation and comparison of
different well-known regression techniques for metamaterial
absorbers, which represents a novel contribution. The aim
is to identify the most efficient approach for optimizing the
design and predictive modeling of metamaterial absorbers for
microwave applications. The absorption dataset is initially
split into separate training and testing sets, followed by the
utilization of regressionmodels to effectively forecast absorp-
tion. The study conducts a comparative evaluation of multiple
regression models, specifically DT, KNN, RF, ET, bagging,
XGB, LGBM, HGB, CBR, and GBRmodels. Various perfor-
mance metrics, including root mean squared error (RMSE),
mean absolute error (MAE), mean squared error (MSE), and
Adjusted R-squared, are employed to determine the optimal
regressor technique for precise prediction modeling of meta-
material absorber performance in microwave applications.
The findings of the comparative analysis indicate that the
Extra Trees Regressor demonstrates superior predictive capa-
bilities compared to other models across all test sizes.

II. DESIGN AND RESULTS DISCUSSIONS
The proposed MMA configuration comprises a circular
enclosure containing T-shaped resonator that have been
altered to achieve complete absorption at four distinct res-
onant frequencies. As shown in Figure 1(a), the unit cell is
made up of a metallic resonator and a copper ground plane
that is isolated by a FR4 substrate. The loss tangent and per-
mittivity values for the FR4 substrate are reported as 0.02 and
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4.4, respectively. Furthermore, copper has a conductivity (σ )
value of 5.8 × 107 S/m. The metallic layer has a thickness
of 0.035 mm (hc), while the dielectric layer has a thickness
of 1.6 mm (hs). The top view of the MMA with optimized
parameters are a = 12.2 mm, b = 7.6 mm, c = 2.88 mm, g =

0.8 mm, ri =4.8 mm, and ro = 5.6 mm as shown in Fig. 1(b).
At the lowest resonance frequency, the absorber is compact
(0.406 λ) and thin (0.053 λ). The occurrence of electric and
magnetic fields excites theMMA, resulting in variations to its
effective permittivity (εeff) and effective permeability (µeff).
The absorption phenomenon at different resonant frequencies
is observed when the incident wave’s electric and magnetic
fields act simultaneously, as depicted in Figure 1(c).

FIGURE 1. (a) Perspective view, (b) Top View, (c) Absorption (A), reflection
(R) and transmission (T) response, and (d) Real and imaginary normalized
impedance (e) Absorption response for TM and TE mode of the proposed
metamaterial absorber.

The absorption coefficient can be determined using A =√
1 − |S11|2 − |S21|2, where S11 and S21 are the reflection

coefficient and transmission coefficient, respectively. Nev-
ertheless, the presence of a metallic ground plane results in
zero transmission, leading to the equation A =

√
1 − |S11|2.

The expression for the reflection coefficient is given by∣∣(Z − Z0)
/
(Z + Z0)

∣∣2, where Z0 and Z are the free space
and MMA impedance. The absorption will be perfect by
optimizing the geometrical structure and its dimensions
[15]. The reflection (R), absorption (A), and transmission
(T) characteristics are depicted in Figure 1(c), showcasing
peak absorptivity values of 99.42%, 98.48%, 98.92%, and
99.34% at resonating frequencies of 9.94 (f1), 13.26 (f2),
14.92 and 15.80 GHz (f3), respectively. In order to reduce
the chance of reflection, it is desirable for the real and imag-

inary components of the normalised impedance to converge
towards values of one and zero, respectively. The normalized
impedance (Z ) is 0.85+j0.01, 0.92-j0.22, 1.15+j0.16 and
1.01+j0.17 at 9.948, 13.26, 14.92, and 15.80 GHz, respec-
tively, as shown in Fig. 1(d). The absorption performance
of the MMA under TM and TE polarization is depicted in
Fig. 1 (e), where the absorptivity at resonant frequencies of
9.47 and 14.74 GHz is 76.1 and 68.4%, respectively, for TM
polarization, demonstrating the polarisation dependence of
the proposed MMA.

Commercially available software like as ADS can be uti-
lized to create the equivalent circuit of the MMA, as shown
in Fig. 2. Due to the presence of capacitive gaps between
the resonators, L and C values must be integrated as par-
allel transmission lines connected by a capacitive element
between them for each resonance frequency. Four parallel R-
L-C circuits were needed to accommodate the four resonance
frequencies. To match the corresponding absorption values
obtained from the HFSS simulation, the R values for each
R-L-C circuit (for each resonance frequency) were adjusted
using the ADS circuit simulator. Since MMAs exhibit peri-
odicity, they may enable electromagnetic coupling through
the presence of inductive and capacitive components within
the circuit. Introducing series capacitances (C5, C6, C7, and
C8) in the circuit, as presented in Fig. 2 (a), can eliminate
this issue. The values of capacitors C5, C6, C7, and C8 were
adjusted through fine-tuning using the ADS circuit simulator
to attain optimal isolation within the bands located between
resonance frequencies. The resonance frequencies in the out-
put obtained from the equivalent circuit and HFSS simulation
exhibit a high level of resemblance suggesting a strong agree-
ment in terms of absorption, as illustrated in Fig. 2 (b).

FIGURE 2. (a) Equivalent circuit Model (ECM) of the proposed MMA, R1 =

41.29 �, R2 = 27.06 �, R3 = 16.67 �, R4 = 27.08 �, R5 = 50 �, R6 = 50 �,
L1 = 28.60 nH, L2 = 36.70 nH, L3 = 6.30 nH, L4 = 39.6 nH, C1 = 0.009 pF,
C2 = 0.004 pF, C3 = 0.0291 pF, C4 = 0.002 pF, C5 = 0.167 pF, C6 =

0.039 pF, C7 = 0.015 pF, and C8 = 0.027 pF, (b) Absorption response from
ADS and HFSS.

The proposed MMA has been validated for various polar-
ization (φ) and incident (θ) angles for TE polarization as
depicted in Figure 3. The X- and Ku-band exhibit peaks
at frequencies of 9.94, 13.26, 14.92, and 15.80 GHz under
the condition of φ = 0o. The amplitude of the peaks
decreases gradually with an increase in the polarization
angle, which can be attributed to the asymmetrical char-
acteristics of the structure, as depicted in Figure 3(a). The
polarization-sensitive nature of the structure demonstrates the
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TABLE 1. Comparative performance with Multi-Band MMAs reported in prior studies.

FIGURE 3. Absorption characteristics for different (a) polarization (φ),
and (b) incident angles (θ).

FIGURE 4. Electric field, and magnetic field distribution of the MMA at
(a) 9.94, (b) 13.26, (c) 14.92, and (d) 15.80 GHz.

FIGURE 5. Surface current distribution for the top plane and ground
plane of the MMA at (a) 9.94, (b) 13.26, (c) 14.92, and (d) 15.80 GHz.

practical applications in various fields including polarization
detection and sensing [14], [19]. Moreover, it can be observed
that the absorber exhibits insensitivity to incident angles up

to 30 degrees. However, beyond this threshold, the rate of
absorption diminishes as the angle increases, as depicted in
Figure 3(b). Moreover, an analysis has been conducted on the
electric field (E-field), magnetic field (H-field), and distribu-
tion of surface current to gain a comprehensive understanding
of the absorption peaks. Figs. 4 (a) and (b) show that the
simultaneous excitation of E-field and H-field distribution
on the top plane resonator creates absorption peaks at 9.94,
13.26, 14.92, and 15.80 GHz. Figs. 5 (a) and (b) demonstrates
the surface current on top and ground plane are anti-parallel
and responsible for the magnetic coupling [33]. Nevertheless,
the simultaneous excitation of both E- and H-fields leads to a
significant enhancement in absorption performance. Table 1
presents a comparison of the proposed metamaterial absorber
(MMA)with respect to the dimensions of the unit cell, specif-
ically the size and thickness. The results indicate that the
proposed MMA exhibits a compact and ultra-thin structure,
which distinguishes it from previously reported multi-band
absorbers.

III. MACHINE LEARNING REGRESSION MODELS
Regression models are powerful tools that can significantly
reduce the time and resources needed to simulate complex
systems. By using machine learning techniques, regression
models can predict critical parameters and identify missing
values. The process involves simulating the design, creat-
ing a comprehensive dataset, training the regression model,
and predicting values for intermediate frequencies. Python
is commonly used for implementing these regression models
using simulated data.

A. SIMPLE REGRESSION MODELS
The relationships between the input parameters and the
desired characteristics of the metamaterial absorbers can be
understood with the help of simple regression models. In par-
ticular, we employ Decision trees and k-nearest neighbors
regression techniques to capture and quantify the linear and
nonlinear dependencies within the data. Decision trees are a
simple and user-friendly method for ML that may be applied
to both regression and classification applications. The process
involves the recursive partitioning of data into increasingly
smaller subsets, to achieve homogeneity within each subset.
This can be a decent choice for regression situations with
inadequate information, but it is prone to overfitting if not
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carefully tuned [34], [35]. The k-nearest neighbors (KNN)
algorithm is a non-parametric approach in machine learning
that can be effectively employed for both classification and
regression tasks. The functioning of this method involves
identifying the k instances in the training dataset that exhibit
the highest similarity to a novel instance. Subsequently, the
label of the novel instance is predicted by considering the
descriptions of the KNN. This can be an adequate option for
regression problems with insufficient information, but it can
be computationally expensive for large datasets [36].

B. BAGGING-BASED ENSEMBLE MODELS
Ensemble learning techniques are used to improve the
robustness and generalisation of our metamaterial absorber
optimisation models. Bagging-based Ensemble Models, such
as Random Forest, Extra Trees and Bagging, are especially
good at reducing overfitting and improving predictive accu-
racy. Random forest is an ML ensemble approach that mixes
numerous decision trees to increase prediction accuracy. They
operate by training several decision trees on distinct ran-
dom selections of the training data and then averaging the
individual tree’s predictions. This can be a suitable solution
for regression problems with inadequate data because it is
less prone to overfitting than single decision trees [37], [38].
Extra trees are a random forest variant that employs a more
randomized technique to train individual trees [39]. This
has the potential to improve forecast accuracy, particularly
in high-dimensional datasets [6], [40]. Bagging regression
technique combines many copies of a basic model, each
trained on a separate bootstrap sample of the training data.
This can help to improve forecast accuracy by reducing the
variance of the fundamental model. However, Bagging might
be computationally expensive for huge datasets [41].

C. BOOSTING-BASED ENSEMBLE MODELS
Boosting-based Ensemble Models iteratively combine weak
learners to create a strong predictive model to improve
model performance. The light gradient boosting machine
(LightGBM) Regressor is well-known for its speed and
effectiveness, particularly in instances with sparse datasets
[42]. The XGBoost Regressor (Extreme Gradient Boosting)
is an iterative procedure that integrates extra trees into the
model to correct faults produced by previous trees. XGBoost
is well-known for its remarkable computing efficiency and
great predicted accuracy, particularly when dealing with
large datasets [27]. The CatBoost algorithm targets cate-
gorical features to use the gradient boosting algorithm and
integrates several methodologies to improve the algorithm
performance when applied to datasets with categorical vari-
ables [43]. Histogram-based gradient boosting makes use of
histograms to represent the features of a given dataset. When
applied to datasets with categorical features, this approach
has the potential to improve the algorithm’s performance
[44]. Gradient boosting regressors are specifically developed
for regression problems, and they work by iteratively adding

new trees into the model to correct errors produced by previ-
ous trees [45].

These regression algorithms can be assessed using several
performance metrics, including MSE, RMSE, MAE, and
Adjusted R-squared score (Adj-R2S). These metrics reveal
the model’s tendency for generalization, goodness-of-fit, and
forecasting accuracy for MMAs. The subsequent equations
can be employed to ascertain these performance indices:

R2S

= 1 −

∑N
i=1 (Predicted Valuei − Actual Valuei)2∑N

i=1 (Actual Valuei − Average Target Valuei)2

(1)

Adj− R2S = 1 −
(1 − R2S)(N − 1)

N − p− 1
(2)

MSE =
1
N

∑N

i=1
(Actual Valuei − Predicted Valuei)2

(3)

RMSE =

√
1
N

∑N

i=1
(Actual Valuei − Predicted Valuei)2

(4)

MAE =
1
n

∑n

i=1

⌊
Actual Valuei − Predicted Valuei

Actual Valuei

⌋
(5)

where ‘N ’ is the total number of samples used in the regres-
sion model’s validation.

Regression models were used to forecast the absorption
coefficient value for various test sizes. The regression model
was trained with 60% of the records and its prediction per-
formance was tested with 40% of the records for the 40% test
size. Similarly, with the 80% test size, the regression model
was trained on a sample of 20% of the records before being
tested on the remaining 80%. This technique was repeated
with test sizes ranging from 50% to 70%.

IV. RESULTS AND DISCUSSIONS
The Adjusted-R2 scores for various regression algorithms
utilizing test sizes ranging from 40% to 80% of the data set
are shown in Figure 6. The Adjusted-R2 score is commonly
used for assessing the goodness of fit of regression mod-
els, taking into account both the model’s ability to explain
variance in the data and the number of predictors utilized.
Adjusted-R2 values near 1 imply a stronger link between
predicted and actual values. As the test size increased from
40% to 80% of the dataset, the adjusted-R2 scores for all
regression methods decreased suggesting that the percentage
of training and testing data affects the model’s prediction
performance. Across all test sizes, the extra trees regressor
consistently achieved the best adjusted-R2 scores, indicating
higher predictive performance. This regressor combines the
advantages of randomization and extreme random splitting,
resulting in decision trees with a higher amount of random-
ness and diversity. The enhanced randomization enables the
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additional trees regressor to capture a greater range of patterns
while reducing overfitting. The RF regressor also performed
well as it constructs a decision tree ensemble with random
subsets of features and data samples, decreasing overfitting
and improving generalization.

FIGURE 6. Adjusted-R2 for decision tree (DT), K-nearest neighbors (KNN),
random forest (RF), extra trees (ET), bagging, XGBoost, LightGBM, hist
gradient boosting (HGB), cat boost (CBR) and gradient boosting (GBR)
regressors with test sizes ranging from 40% to 80% of the dataset.

TABLE 2. Mean absolute error (MAE) values.

TABLE 3. Mean squared error (MSE) values.

The MAE, MSE, and RMSE performance metrics for var-
ious regression techniques are shown in Table 2, 3 and 4. The
accuracy of regression models is assessed using these met-
rics, which involve the examination of discrepancies between

TABLE 4. Root mean squared error (RMSE) values.

predicted and actual values. Lower values are indicative of
superior predictive performance. Between 40% and 80% of
the dataset was tested in various test sizes during the eval-
uation. Table 2 shows ET and RF regressors consistently
produced relatively low MAE values across all test sizes,
with ET achieving MAE as low as 0.0007 and RF as low
as 0.0038 for a test size of 0.4. In contrast, LGBM and
HGB regressors exhibited higher MAE values, especially as
the test size increased, suggesting that they may be more
sensitive to larger test datasets. Table 3 and 4 shows that
ET and RF regressors produced consistently low MSE and
RMSE values across all test sizes. On the other hand, LGBM
and HGB regressors had higher MSE and RMSE values,
especially as the test size increased. Across all test sizes,
the extra trees regressor consistently recorded the lowest
MSE, RMSE, and MAE scores, demonstrating its superior
predictive ability. This can be attributed to the extra trees
regressor’s ability to leverage randomization and extreme
random splitting, adding more randomness and variety to the
decision trees. Similarly, the KNN and RF regressor also
demonstrated competitive results with relatively low error
values. These observations emphasize the effectiveness of
different regression techniques and the need for careful selec-
tion based on the specific dataset characteristics and desired
predictive accuracy.

Figure 7 presents scatter plots illustrating the relationship
between predicted and simulated absorption values for differ-
ent regression models including DT, KNN, RF, ET, bagging,
XGB, LGBM, HGB, CBR, and GBR regressors with test
sizes of 0.4, 0.5, and 0.6. Among these ensemble models,
the Extra Tree regressor consistently exhibits the best results
in accurately predicting the absorption values. These figures
show howwell ensemble models and other regression models
perform in predicting absorption values across a range of
test sizes. The scatter plots provide visual representations
of the model’s performance, accuracy, and overall trends.
The inclusion of multiple test sizes from 0.4 to 0.6, enables
an in-depth investigation of the model’s performance when
training and testing data are in varying proportions.
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FIGURE 7. Scatter plots illustrating the relationship between predicted
and simulated absorption values of (a) DT, (b) KNN, (c) RF, (d) ET,
(e) bagging, (f) XGB, (g) LGBM, (h) HGB, (i) CBR and (j) GBR regressors for
different test sizes 0.4, 0.5, and 0.6.

In Figure 8, we present a comparative analysis of com-
putational times for various machine learning regression
techniques when applied to a test dataset with a size of 40%.
Notably, DT and KNN demonstrate remarkable computa-
tional efficiency, with execution times of 0.00485 seconds
and 0.00459 seconds, respectively. Extra Trees also exhib-
ited competitive computational performance, with an average
time of 0.16044 seconds. These findings suggest that DT,
KNN, and ET are well-suited for scenarios where rapid
predictions are crucial. The longer computational times of
CBR and LGBM, at 0.6938 seconds and 0.6061 seconds,
respectively, show that despite their superior predictive per-
formance, these models demand more computational power.
These computational trade-offs should be taken into account
by researchers when choosing regression techniques for par-
ticular applications.

FIGURE 8. Computational time comparison of various machine learning
regression techniques for test size of 40%.

V. CONCLUSION
The ultra-thinMMA at microwave frequencies exhibited four
distinct peaks of perfect absorption, occurring at frequen-
cies of 9.948, 13.26, 14.92, and 15.80 GHz. The absorption
mechanism can be understood by examining the normalized
impedance, E-field, H-field, and surface current distribution.
In contrast to absorbers that have been previously reported,
the proposed compact and ultrathin absorber exhibits per-
fect absorption at all resonant frequencies. The analysis of
the equivalent circuit was carried out to explain the funda-
mental electromagnetic behavior of the proposed absorber.
This study shows the rapid growth of MMAs but traditional
design methods are time- and computationally intensive,
making optimization difficult. To address this, this article
provides a comprehensive comparative analysis of various
ML regressors such as DT, KNN, RF, ET, bagging, XGB,
LGBM, HGB, CBR, and GBR regressors in forecasting the
performance of metamaterial absorbers. The ET regressor
demonstrates outstanding performance in predicting MMA
performance for an 80% test size with RMSE of 0.0147,MAE
of 0.0062, MSE of 0.003, and an Adjusted R2 of 0.9964.
Overall, this study has significant implications for optimizing
metamaterial absorber designs for microwave applications
such as polarization imaging, detection, sensing, and stealth
technology using ML regressor approaches.
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