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ABSTRACT Radar emitter classification plays an increasingly significant role in the electronic reconnais-
sance system. Due to many convolutional neural network (CNN)-based approaches suffer from insufficient
spatial receptive fields and inadequate feature representation, the classification accuracy is poor in low
signal-to-noise ratio (SNR) conditions. Therefore, in this paper, we stress the importance of multi-scale
dilated convolutions for target feature extraction, and propose two novel CNN architecture design approaches
called multi-scale dilated residual network (MDRN). By combining multi-scale dilated convolutions with
residual architecture, MDRN not only has a larger receptive field, but also can learn more diverse features,
thereby improving the ability to process time-frequency images (TFI) under high-noise energy conditions.
Moreover, compared with the original residual model, MDRN does not increase any parameter complexity
or floating-point operations per second (FLOPS). Experiments on the TFI classification task show that the
proposed MDRN has superior performance over state-of-the-art CNN models.

INDEX TERMS Intra-pulse modulation classification, dilated convolution, feature maps, multi-scale feature
fusion, time-frequency image.

I. INTRODUCTION
The intra-pulse modulation of radar transmitter signals is
an essential component of electronic support measurement
systems, electronic intelligence systems, and radar warning
receivers. By precisely identifying the intra-pulse modu-
lation of these signals, electronic support measure (ESM)
systems can assess the level of threat posed by incoming radar
emitter and develop appropriate countermeasures to pro-
tect against potential threats [1]. Therefore, radar intra-pulse
signal modulation classification is critical for ensuring the
security and safety of military. However, as the contem-
porary electromagnetic environment becomes increasingly
complex, the intra-pulse modulation of radar transmitters has
correspondingly become more intricate, posing significant
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challenges for classification tasks. In this article, we are
committed to proposing an effective approach to accomplish
pulse modulation of radar signals in complex electromagnetic
environments [2].

The Pulse Description Word [3] is a commonly used, early
method that extracted pulse interval characteristics, which
has found extensive application in low electromagnetic den-
sity environments and in traditional radar systems. However,
in modern radar systems, with their complex and varied
signal waveforms, effective classification of signals solely
based on the interval features is not feasible. To identify
radar radiation emitter signals in these environments, it is
necessary to explore the detailed structural feature infor-
mation inside each pulse [4], as modulation signals within
each pulse possess their unique electrical signal structure,
including intentional and unintentional modulation. Time-
frequency analysis can better handle non-stationary signals
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by simultaneously providing time and frequency information
and facilitating more comprehensive extraction of signal fea-
ture information. Therefore, time-frequency analysis is one of
the most effective ways to extract intra-pulse features of radar
signals. Naturally, a range of time-frequency analysis tech-
niques, including short-time Fourier transform (STFT) [4],
wavelet transform [5], Wigner-Ville distribution, and Choi-
Williams distribution [6], have been proposed.
Traditional machine learning methods combined with

time-frequency analysis have been an effective approach
for intra-pulse modulation classification, such as Support
Vector Machine (SVM) [7], Decision Tree [8], and Ran-
dom Forest [9]. However, these approaches generally lack
the capacity of automation, robust and generalization [10],
[11], [12]. This is because these methods require manual
design of feature extractors, and it is difficult to extract
the high-level features of the target, therefore, the perfor-
mance drops rapidly in low signal-to-noise ratio (SNR)
environment [13].

In recent years, significant breakthroughs have been
achieved in various fields such as image classification and
recognition [14], natural language processing [15], object
detection [16], using deep learning (DL) algorithms. The
typical approach involves transforming raw one-dimensional
data into two-dimensional time-frequency images (TFI)
through time-frequency analysis, which is then used to drive
a convolutional neural network (CNN) for automatic training.

Compared with the hand-crafted methods, the DL-based
methods improved the information completeness, efficiency,
and noise-robust [17], [18], therefore, it has state-of-the-
art performance, intelligence and generalization. This is of
great significance for improving the intelligence and stability
of ESM. Top researchers worldwide increasingly employ
DL-based approaches to tackle bottleneck challenges in radar
signal processing [19]. Correspondingly, Thesemethods have
been shown to achieve high accuracy (up to 90%) in classi-
fying radar emitter signals even in environments with high
electromagnetic density and noise. For examples, the clas-
sic open-source CNN models including GoogleNet [20],
ResNet [21] and MobileNetV2 [22] have achieved remark-
able performance in the classification of time-frequency
images due to its strong generalization abilities.

Despite the significant progress achieved by the CNN-
based methods, there are still some deficiencies that need to
be addressed. One of the main concerns is the performance
limitation of these CNNmodels, which is determined by their
architecture and size [23]. To achieve state-of-the-art classifi-
cation accuracy, some complex and large-scale CNN models
have been utilized. The large-scale CNN models require sig-
nificant storage and computational resources (floating-point
operations per second (FLOPS)), which makes it difficult to
apply CNNmodels on portable devices and reduces their real-
time performance. This is undoubtedly unfavorable for the
application of deep learning algorithms in the rapidly chang-
ing modern electromagnetic field environment. Therefore,
how to improve the model performance while maintaining

the model complexity has become an important research
direction in the current field.

The analysis of the differences between time-frequency
images and conventional natural images (such as CIFAR-100,
ImageNet, and FLOWERS102 dataset) should be the starting
point of our work, as the effective extraction and transmission
of data features determine the accuracy of CNN models [24].
Therefore, in practical applications, it is necessary to propose
the adjustments and optimization methods of model based on
the characteristics of specific dataset, building upon classic
CNN architectures, to achieve state-of-the-art performance.

Compared with natural images, the scale of features in
time-frequency images is relatively larger, and the subtle fea-
tures such as shapes and textures are less. Additionally, noise
energy can disrupt the structural features of time-frequency
images to some extent, which is also a key factor affect-
ing the performance of time-frequency image classification.
To address this issue, we aim to enhance and optimize the
CNN model structure from two directions: one is to enable
the model to extract more comprehensive large-scale feature
information; the other is to enable the model to mitigate the
adverse impact of noise.

Aiming at the aforementioned objectives, we propose a
novel design idea of the Dilated Convolution Neural Net-
works (DCNN) inspired by the idea of dilated residual
network [25], multi-scale fusion [26], and denoise [27], [28].
On the one hand, in this research, we employed dilated
convolution to increase the receptive field and capture
more comprehensive structural features. On the other hand,
we adopted dilated convolution with different dilation rates in
multiple convolutional layers to combine features of different
abstraction levels and effectively suppress the adverse impact
of noise.

To be detailed, the main contributions of this paper are
summarized as follows:
(1) we have conducted a comprehensive analysis of the

distinguishing features between time-frequency images
and conventional natural images. Based on this analy-
sis, we have explored targeted improvement directions
from a fundamental mechanism perspective, paving the
way for proposing CNN improvementmethods suitable
for time-frequency image recognition.

(2) A design approach of dilated DCNN suitable for
time-frequency image recognition has been proposed.
Compared to standard CNN models, the DCNN model
possesses a larger receptive field, which enables it to
capture structural features of time-frequency images
more effectively. Moreover, the model suppresses the
adverse impact of noise by combining abstract features
extracted using different dilation scales of convolu-
tion. The DCNN model achieves superior recognition
performance without adding any additional model
complexity and computational resources.

(3) The transferability of our proposed design method
is effectively validated in this study. We evaluate
the method on four different types of networks,
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including residual networks constructed with basic
block, residual networks constructed with linear bot-
tleneck structures, GoogleNet constructed with the
Inception structure, andMobileNetV2 constructedwith
Inverted linear bottleneck structures. Our experimental
results demonstrate that our proposed design method
exhibits favorable transferability, as the improved
dilated models outperform their counterpart models
with simple modifications.

(4) The proposed method has been evaluated on a dataset
of 14 categories of intra-pulse modulation of radar
signals commonly used inmodern radar systems. Addi-
tionally, various levels of environmental noise were
incorporated, posing further challenges to classifica-
tion accuracy. The experimental results demonstrate
that the improved models using our proposed method
achieve state-of-the-art accuracy and exhibit excellent
transferability.

The reminder of this paper is organized as follows. The
design method of DCNN is proposed in Section II, including
the design ideas, specific optimization operation and the anal-
ysis of the method’s transferability. Furthermore, Section III
conducts a series of comparative experiments and profoundly
analyze the experiment results. Finally, the conclusion of this
article is drawn in Section IV.

II. METHODOLOGY
To begin with, we compare and analyze the differences
between time-frequency images and natural images, which
provides a theoretical foundation for model selection and
design. Subsequently, we review the principles of dilated
convolution and explore its suitability for recognition of time-
frequency images. Accordingly, an improved dilated residual
network that incorporates multi-scale fusion naturally fol-
lows. Finally, we will substantiate the transferability of our
approach by validating it using several open-source models.

A. THE COMPARISON AND ANALYSIS OF
TFI AND NATURAL IMAGES
Since 2012, a number of CNN models have emerged, such as
GoogleNet, ResNet, and MobileNet, which were originally
designed for computer vision tasks and focused on natural
images. Although these open-source models exhibit strong
generalization and have achieved considerable success in
TFI recognition, they were not specifically designed for this
task. Therefore, it is essential to analyze and compare the
similarities and differences between TFI and natural images
in order to develop an improved CNN model that is tailored
for TFI classification.

Natural images refer to various images that we encounter
in our daily lives, including landscapes, people, animals,
buildings, and so on. Color, texture, and shape are consid-
ered the most fundamental and effective features of natural
images [25], as they represent a significant portion of the
information contained in the image. In contrast, TFI are
constructed using time-frequency analysis methods applied

to signals. In such images, time is represented along the hor-
izontal axis while the vertical axis represents frequency. The
intensity of the signal is represented using different colors or
brightness levels based on its frequency. Thus, TFI reflect
the frequency characteristics of the signal over time. The
features of time-frequency images are usually composed of
two dimensions, time and frequency, and signal components
at different frequencies are often considered as features.

Therefore, there are significant differences in the expres-
sion of features between the two types of images, mainly in
the following aspects:
(1) Spatial correlation of features. Time-frequency images

have clear boundaries, with distinct signal and non-
signal regions, strong continuity between adjacent pixel
values, and representation information that is reflected
in a strong spatial structure connectionmethod between
pixel points. In contrast, natural images exhibit spatial
correlation between adjacent pixels, where this correla-
tion is localized to only surrounding pixels and not the
entire image [26].

(2) Characteristics of features. Natural images have more
spatial features such as edges, textures, shapes, and
complex structures and diversities. They also contain
various detailed information, such as edges and cor-
ners, which are critical for distinguishing different
objects or scenes [29]. In contrast, TFI have fewer and
simpler detail and texture features than natural images.

(3) Natural images generally have higher clarity, better
image quality, and a higher fidelity of feature informa-
tion [25]. However, actual radar signals often contain
large amounts of noise, resulting in fuzzy TFI where
the feature information of the images is destroyed to
varying degrees.

In light of the above analysis, we should focus on
enhancing the ability of the original model in two areas:
firstly, reinforcing the model’s capacity to extract compre-
hensive structural feature information; secondly, decreasing
the model’s susceptibility to noise.

B. MULTI-SCALE DILATED RESIDUAL NETWORK
Convolutional neural networks (CNNs) used for natural
image classification gradually reduce the resolution of fea-
ture maps through multiple pooling or adjusting convolution
stride, abstracting and compressing the target’s feature infor-
mation until a tiny feature map containing representative
information is output (7×7 is typical) [25]. Given natural
images contain a significant amount of subtle information
crucial for classification, smaller convolution kernels can
locally perceive images and extract their detailed features.
Using smaller convolution kernels also results in lower com-
putational complexity, enabling faster operation [26], [29],
therefore, they are better suited for natural image recog-
nition. However, it is evident that smaller receptive fields
of convolution kernels are inadequate to extract compre-
hensive spatial structural features [30], which is necessary
for TFI. Conversely, using larger convolution kernels would
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exponentially increase model and computational complexity,
adversely affecting CNN’s operating efficiency.

The use of dilated convolution has emerged as a key
approach to address this challenge. The reason why dilated
convolution can lead to improvedmodel performance is that it
allows for the expansion of the receptive field [31]. Formally,
we denote I as input feature maps and w as a convolution
kernel, respectively. Standard convolution ∗ is defined as
follows:

(I∗w)(t) =

∑
p+q=t

I(p)w(q) (1)

where subscript (.) is the position of the input feature maps.
Dilated convolution is a generalization of standard convolu-
tion which is formulated as follow:

(I ∗ lw)(t) =

∑
p+lq=t

I(p)w(q) (2)

where l is the dilation factor. We denote ∗l as dilated convo-
lution with a factor l. This means one pixel in w corresponds
to l pixels (skip of l-1 pixels) in I , as in [32]. The skipped
positions are filled with holes with a value of 0. The receptive
field of ∗l with k×k kernel is (k-1)×l+1, while the receptive
field of ∗ is k .

Therefore, the range of the receptive field can be expanded,
enabling larger feature information coverage. Furthermore,
dilated convolution expands the receptive field by increas-
ing ‘holes’ without increasing model size and computational
complexity [33]. The dilated convolutions with different
rates are presented in Fig. 1, where the red markers repre-
sent the actual values and the spaces between them denote
‘holes’. Specifically, Fig. 1 (a)-(c) correspond to the tra-
ditional convolution, dilated convolution with rate 2, and
dilated convolution with rate 3, respectively. It is notice-
able that compared with the traditional convolution that
only has a 3-by-3 receptive field, the dilated convolu-
tions have expanded their receptive fields to 5-by-5 and
7-by-7, respectively, providing advantages for extracting
image features.

FIGURE 1. Dilated convolutions of different dilation factors. (a) The
traditional convolution of dilation rate is 1. (b) The dilated convolution of
dilation rate is 2. (c) The dilated convolution of dilation rate is 3.

Compared to traditional convolutional approaches, dilated
convolution is widely used for tasks requiring large spatial
feature extraction, such as image and video processing [26],
[30], [31], [34], where larger scale feature information must

be extracted, and semantic segmentation [27], [28], [29], [35],
which involves processing greater ranges of feature
information.

SNR is an another critical factor that significantly affects
the accuracy of model classification, whereby radar signals
are more readily identifiable in high SNR environments
compared to low SNR environments. This disparity can be
attributed to the well-established fact that noise can corrupt
the genuine characteristics of radar signals, causing a wide
range of difficulties during signal identification. Driven by
the significance of SNR, a question arises as to how to extract
features in low SNR environments. To address this problem,
an effective enhancement method called multi-scale dilated
convolution fusion technology has been proposed, and has
been demonstrated significant advantages in various applica-
tions such as SAR image recognition [28], image semantic
segmentation task [29] and audio source separation task [36].
Compared to traditional CNN, the improved CNN model
with this technology is better equipped to identify complex
features from noisy data. The primary reason behind this
improvement is that traditional CNN extract features using
a fixed convolution kernel of single scale size which can-
not fully exploit feature information at different abstraction
levels [37], and are susceptible to noise interference. How-
ever, by implementing multiple scales of convolution kernels,
the multi-scale dilated convolution fusion technology can
effectively capture features at different abstraction levels [38]
and integrate the feature maps obtained from these multi-
ple scales into more comprehensive representations of input
images. This approach reduces the model’s sensitivity to
noise and suppresses noise interference in feature extraction
to some extent. And the experimental results will demonstrate
the effectiveness of this method, as it significantly improves
the performance of CNNs and enhances feature extraction in
low SNR environments.

Based on the above comprehensive analysis, we propose
a new design method for a multi-scale dilated residual net-
work to extract more complete spatial structural features of
time-frequency images while mitigating the adverse effects
of noise, without increasing model complexity and compu-
tational cost. The starting point of our construction is a set
of residual network architectures proposed by He et al [39],
which have been widely applied to time-frequency image
recognition due to their well-designed model architecture.
The residual network architecture consists of five groups
of convolutional layers, denoted as conv1∼conv5, with the
output feature map size of each group of convolutional layers
being 112 × 112, 56 × 56, 28 × 28, 14 × 14, and 7 × 7,
respectively. The architecture of ResNet-18 is presented
in Fig. 2 (a). The yellow marks denote shortcut connections,
the relationship between the input and output of the residual
block can be written as follow:

y = x + F(x) (3)

where x represent input, y is the output, and the function F(x)
denotes residual mapping. Through a multilayer network
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structure, the output can be represented as follow:

xO = xl +
o−1∏
i=l

F(xi) (4)

Thus, through residual block, each layer parameters can
play a role. We denote loss as loss function of networks,
the gradient of the reverse process can be represented as
follow:

∂loss
∂xl

=
∂loss
∂xL

•
∂xL
∂xl

=
∂loss
∂xL

(1 +
∂

∂xl

o−1∏
i=l

F(xi)) (5)

Shortcut connections ensures that gradients do not vanish
during the multiplication process. And another residual gra-

dient ∂
∂xl

o−1∏
i=l

F(xi) needs to pass through weight layers.

In the design of convolutional neural network models,
two critical aspects are where to use dilated convolutions
and how to choose the dilation rate. Our design follows the
principle of using standard convolutions in the lower layers
and dilated convolutions in the upper layers. This is because
at the lower layers, the model mainly extracts ‘‘low-level’’
features such as edges and corners, where small convolu-
tion kernels are more effective. However, as the depth of
the network increases, the abstract ability of the network
gradually improves. At the top layers, the convolution ker-
nels need to extract ‘‘high-level’’ features such as textures,
shapes, and global information, thus requiring larger recep-
tive fields. Moreover, the selection of dilation rates should
be proportional to the output feature map size [40]. If the
output feature map is small, smaller dilation rates should be
used, and vice versa. This is because improper use of dilated

convolutions can lead to the problem of grid artifacts. Due to
the insertion of zero values in the input signal by dilated con-
volutions, there may exist large gaps between input signals,
resulting in discontinuities in information, thereby forming a
grid-like artifact in the output feature map. As the resolution
of the feature map decreases, the discontinuity caused by too
large dilation rates will become more apparent [36]. Finally,
in situations where model performance is similar, lower dila-
tion rates should be preferred wherever possible. We should
avoid unnecessary modifications as much as possible, clearly
understand the purpose and underlying mechanisms behind
each modification, and improve the interpretability of the
model after the enhancement.

In accordance with the design principles outlined above,
we adopted a highly flexible approach and propose two
specific design methods that mainly modify the conv3 and
conv4 convolutional layers. The first approach is relatively
simple, involving the replacement of standard convolutions
with dilated convolutions, as shown in Fig. 2 (b). Since
the output feature map resolution of conv4_x halves com-
pared to that of conv3_x, the corresponding dilation rate
also halves accordingly. It should be noted that compared to
the original residual network, the multi-scale dilated residual
network (MDRN) models proposed in this paper maintain
the same computational complexity and volume. The only
difference between the two architectures is the replacement
of standard convolution with dilated convolution in conv3_x
and conv4_x.

To explore the impact of the dilation factor on classifi-
cation performance, we provide six different dilation-scaled
MDRN models named MDRN-1 to MDRN-6, as shown
in Table 1.

FIGURE 2. The architecture of ResNet and its corresponding MDRN, the yellow mark indicates the part that has been
modified. (a) The architecture of ResNet-18. (b) The architecture of MDRN.
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TABLE 1. Comparison of structural parameter configuration between mdrn and resnet models.

TABLE 2. Comparison of structural parameter configuration between mdrn and resnet models.

The second design method is more complex, which
inspired by the design idea of the inception structure proposed
in GoogleNet model [41]. Our design idea is to construct
an inception structure instead of the standard convolutional
structure, which involves multiple dilation-scaled convolu-
tions, to extract multi-scale features. To be specific, we evenly
divided the original number of convolutions into four parts
and used different dilation-scaled convolutions for feature
extraction in each part before fusing the extracted features.
The convolutional structure before and after modification is
shown in Fig. 3. It is worth noting that the modifications
to the architecture did not change the complexity or volume
of the model. The inception structure can be formulated as
follow:

yp = concat(σ (W ∗

d1xp), σ (W
∗

d2xp), σ (W
∗

d3xp), σ (W
∗

d4xp))

(6)

where Wd1, Wd2, Wd3, Wd4 are the parameter of dilated
convolutions with different dilation rates, respectively; σ is
a composite of batch normalization (BN) and rectified lin-
ear unit (ReLu). Compared to the first simple approach,
it is clear that the MDRN models improved using second
design method have more dilation scales and a more complex
structure.

FIGURE 3. The structure of basic block and its improved structure using
method 2. (a) The structure of basic block. (b) Improved structure using
method 2.

We also added four newMDRNmodels, named MDRN-A
to MDRN-D, as shown in Table 2.

C. THE TRANSFERABILITY OF OUR METHOD
To evaluate the transferability and effectiveness of our pro-
posed method in optimizing not only the MDRN model but
also other related models, we conducted comparative exper-
iments on three widely-used classic CNN models, namely
ResNet50 [39], GoogleNet [41], and MobileNetV2 [42].
These models are commonly employed in TFI classifica-
tion tasks and thus serve as control groups for our study.
To demonstrate the reliability and effectiveness of our pro-
posed method, we modified these three models using the
first type of improvement strategy presented in this paper
and designated them as ResNet50-A, GoogleNet-A, and
MobileNetV2-A, respectively, which served as the experi-
mental group.

The basic building blocks of three typical models are
Inception, Bottleneck, and Inverted residuals and linear bot-
tlenecks, as shown in Fig. 4. In this study, we improved
the original CNN model by utilizing dilated convolution
with an expansion factor of 6 at the output feature map
resolution of 28×28, and an expansion factor of 3 at the
output feature map resolution of 14×14, while no operation
was conducted on other positions. It is noteworthy that our
improved model maintains the same architecture, number of
convolutional kernels, complexity, and output feature map
resolution as the original CNNmodel, except for using dilated
convolution.

As shown in Fig. 4(a), the model adopting the inception
structure was adjusted by altering the expansion factors of
3×3 and 5×5 convolutional kernels. The Bottleneck structure
depicted in Fig. 4(b) is the fundamental unit of ResNet50,
ResNet101, and ResNet152 models, which differs from the
basic block structure in ResNet-18. Here, only the expan-
sion factor of the 3×3 convolutional kernel was adjusted.
Additionally, the Inverted residuals and linear bottlenecks
structure, which is the fundamental unit of the lightweight
CNN MobileNetV2 model, was studied in our research,
as shown in Fig. 4(c). We only adjusted the parameters of
the 3×3 depthwise convolutional kernel.
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FIGURE 4. The basic building blocks of three typical models.
(a) Inception. (b) Bottleneck. (c) Inverted residuals and linear bottlenecks.

III. EXPERIMENT AND RESULTS DISCUSSION
This section presents experiments conducted to demonstrate
the efficiency and transferability of the proposed methods.
Firstly, the experimental dataset is introduced and con-
structed. Subsequently, compared to the original ResNet
models, we evaluate the performance of the improved mod-
els (MDRN). Additionally, we compare the accuracy of
different classifiers under varying SNR. Lastly, we test the
transferability of our proposed method based on three typical
CNNmodels. Notably, to ensure fairness and rationality in the
comparative experiment, we adopted the same experimental
setup for both the control group and the experimental group.
Specifically, we used identical dataset and training methods
to train and test these models.

Before proceeding with the discussion, we introduce the
definition of ‘‘accuracy’’ as a measurement metric. Accuracy
is the ratio of ‘‘correct’’ to ‘‘incorrect’’ predictions made
by a model,which is the quality of being right or accurate,
or a way of measuring it [43]. This is because CNN model
architectures are usually complex, multilayered and non-
linear, making it difficult to see what happens inside them
and how they make decisions. To address this dilemma,
scholars in this field usually adopt ‘‘accuracy’’ to evaluate
the performance of CNNmodels. For example, in the popular
ImageNet (ImageNet Large-Scale Visual Recognition Chal-
lenge) competition, ‘‘Top-5 accuracy’’ and ‘‘Top-1 accuracy’’
are common metrics used to evaluate the performance of the
model.

A. DATASET INTRODUCTION AND CONSTRUCTION
The whole dataset contains radar signals with 14 mod-
ulation models, including continuous wave signal (CW),
linear frequency modulation (LFM), non-linear frequency
modulation (NLFM), frequency modulated continuous wave
signal (FMCW), quaternary frequency shift keying sig-
nal (QFSK), binary frequency shift keying signal (BFSK),
frequency hopping coded signal (COSTAS), binary phase
shift keying signal (BPSK), quaternary phase shift keying
signal (QPSK) and polyphase codes signals (FRANK, P1,
P2, P3, P4). To facilitate computer processing, the intercepted
radar signal is usually describe into

x(l) = s(l) + n(l) (7)

where x is the actual received signal, s is the original signal
without noise, n is the noise, l ∈ N ∗ denotes the sample point.
Gaussian white noise is adopted in current work. And the
signal can be formulated as follow:

s(l) = Aejφ

φ =
2π lδ(l)
fs

+ θ (l) + θ0 (8)

where A is the signal amplitude, δ and θ are the frequency
modulation function and phase modulation function used for
frequency coding and phase coding respectively, θ0 is initial
phase.

In order to better approximate real-world scenarios,
Gaussian white noise with different SNRs ranging from
−16 to 0 dB in 2 dB increments is added to each original
signal. Each modulation scheme generates 1200 samples at
each SNR level. Based on the ratio of 4:1:1, the samples
are divided into training sets, validation sets, and testing
sets, resulting in 100800, 25200, and 25200 samples, respec-
tively. The pulse width and the sampling frequency fs of
the simulated signal are fixed at 2 µs and 400MHz, respec-
tively. The configuration of more parameters are detailed
in Table 3

Radar signals are non-stationary signals, and time-
frequency analysis is an important method for describing
the frequency variation of non-stationary signals over time.
Time-frequency analysis can be used to reveal the mod-
ulation characteristics of radar radiation source signals.
Among them, Choi-Williams distribution (CWD) is a widely
used and effective method for time-frequency analysis. The
CWD uses an exponential weighted kernel to suppress
cross-terms and has high resolution capability and identifi-
cation accuracy for signals of different times or frequencies.
As radar signals contain a large amount of noise energy,
cross-terms are generated during the time-frequency trans-
formation process, which interferes with the features of
the real radar signals. In this context, the CWD can effec-
tively suppress cross-terms and minimize damage to the
features of radar signal images. Therefore, in this paper, the
CWD is adopted for the time-frequency transformation of
radar signals. Mathematically, the CWD can be expressed
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TABLE 3. Signal parameter settings.

as follows:

CWD(t,w) =

∫∫
1√

4πτ 2/σ
exp[−

(t − u)2

4τ 2/σ
]s(t +

τ

2
)

× s∗(t +
τ

2
)e−jwτdudτ (9)

where t and w denote time and angular frequency, σ is the
attenuation coefficient. To acquire the high time-frequency
resolution and the suppression of cross terms, the configura-
tion of σ is 1.

The CWD transformation can create 14 distinct types of
radar signals, as revealed in Fig. 5, when the SNR is 0dB.
Analysis of the resulting time-frequency images shows that
the structural characteristics of the signals are partially dis-
rupted, with some subtle features obscured by noise energy.
This increases the difficulty of correctly classifying the radar
signals. For instance, CW, LFM, NLFM, FMCW, QFSK,
BFSK, and COSTAS waveforms exhibit clear and distinctive
features that enable distinguishing them from other signals.
However, the characteristics of BPSK and QPSK waveforms
are less apparent and have some similarities. Furthermore,
it is challenging to distinguish between P1 and P2, or FRANK
and P3 at low SNR conditions, when multiple phase-encoded
signals with the same step frequency (FRANK, P1, P2, P3
and P4) are set.

To facilitate the training and testing of the model, it is
necessary to preprocess TFI. This paper adopts a simple
preprocessing method to ensure that the original features of

TFI are not destroyed. Only grayscale processing and bicubic
interpolation operations are performed on TFI, and the data
samples with a size of 224 × 224 are obtained in the end.

B. EXPERIMENT RESULTS OF MDRN
Given the significant differences between TFI and conven-
tional images, we proposed the MDRN design idea of using
dilated convolutions in high-resolution space to enhance
the model’s feature extraction capability under low signal-
to-noise ratio conditions. To verify the superiority of our
method, we tested the accuracy of the models listed in Table 1
and Table 2. As shown in Fig. 6, we plotted the average clas-
sification rate of ten models. The experimental results of our
study are consistent with our previous predictions, suggesting
that the reasonable use of dilated convolutions can improve
model classification accuracy. The ResNet-18 model was
selected as the benchmark model, and its classification accu-
racy was the lowest, at 92.15%. AnyMDRNmodel improved
from the benchmark outperformed the ResNet-18 model,
with MDRN-3 performing the best, achieving a classification
accuracy of 93.12%. It should be noted that MDRN models
improved by strategy 1 (MDRN-1 to MDRN-6) showed sig-
nificantly better classification accuracy than MDRN models
improved by strategy 2 (MDRN-A to MDRN-D). This sug-
gests that the inception structure combining multiple dilation
convolution scales is not suitable for TFI recognition. One
possible reason is that excessive dilation convolutions with
different feature extractions under high noise energy would
introduce errors during feature fusion.

It can be seen in Fig. 6 that the classification accuracy
changes with the variation of the dilation rate in design
method one and two. This is because as the dilation factor
increases, the model can extract more comprehensive repre-
sentations of images, but this can also exacerbate the grid
artifacts [36], which can blur the extracted features. There-
fore, Therefore, it is the model with an appropriately chosen
dilation factor, rather than the model with the maximum
dilation factor, that will achieve the best performance.

In order to further compare the stability and robustness
of the proposed methods, we will analyze the classification
accuracy of models for every signals under different SNR
conditions, especially in low SNR environment. AsMDRN-1
to MDRN-6 adopt the same improvement method, their per-
formance under different signal-to-noise ratio conditions for
different signals should be roughly similar, with differences
only in terms of performance levels. Similar behaviors can
be seen in MDRN-A to MDRN-D. Consequently, in order
to visually and efficiently demonstrate the superiority of
the proposed method, we have selected the best models
based on the two proposed modifications, namely MDRN-3
and MDRN-B, to compare with the benchmark model
ResNet-18.

Fig. 7 shows the recognition accuracy of the three mod-
els for various signals under different SNR conditions. The
results indicate that under each SNR condition, the accuracy
of the twoMDRNmodels is higher than or equal to that of the
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FIGURE 5. The TFI of 14 types intra-pulse modulation signals by CWD transformation at the condition of SNR is 0dB. (a) BFSK. (b) BPSK.
(c) QPSK. (d) CW. (e) FMCW. (f) LFM. (g) COSTAS. (h) QFSK. (i) P1. (j) P2. (k) P3. (l) P4. (m) FRANK. (c) NLFM.

FIGURE 6. The accuracy of models of different dilation degree.

corresponding ResNet models with no increase in complex-
ity. Notably, when the SNR is below −10dB, the accuracy of
ResNet-18 declines faster than that of the twoMDRNmodels,

indicating that the classification performance advantage of
MDRN models becomes more apparent as SNR decreases.
For instance, when the SNR is −10dB, the accuracy of
MDRN-3 and MDRN-B is approximately 0.5% and 0.4%
higher than that of ResNet-18, respectively. Furthermore,
when the SNR is −16dB, the accuracy difference between
them increases to 4.1% and 2.5%, respectively.

Three models perform well in the classification of rela-
tively easy signals. For example, when the SNR is greater
than −10dB, the classification accuracy of BFSK, BPSK,
CW, COSTAS, FRANK, LFM, NLFM, P3, QFSK and QPSK
signals reaches nearly 100% for all three models. However,
for signals that are more difficult to distinguish, the perfor-
mance of the three models decreases. Specifically, the overall
performance of the three models in classifying FMCW, P1,
P2, and P4 signals is inferior to that of easily identifiable sig-
nals. When the SNR decreases, MDRN models demonstrate
superior classification accuracy to ResNet-18 for all signals,

VOLUME 11, 2023 129213



E. Guo et al.: Dilated CNN Design Approach for Extracting Multi-Scale Features

FIGURE 7. The performance comparison of three models for fourteen signals classification. (a) The overall average accuracy of three models.
(b) BFSK. (c) BPSK. (d) COSTAS. (e) CW. (f) FMCW. (g) FRANK. (h) LFM. (i) NLFM. (j) P1. (k) P2. (l) P3. (m) P4. (n) QFSK. (o) QPSK.

particularlyMDRN-3. This advantage is evenmore evident in
recognizing confusing signals. For example, when the SNR
is as low as −16dB, the recognition rate of MDRN-3 for
FMCW, P1, P2, and P4 signals is over 8% higher than that
of ResNet-18.

C. TRANSFERABILITY OF MDRN
In Section III-B, we successfully tested the superiority of
the MDRN model. The purpose of this section is to eval-
uate the transferability of our proposed method to other
baseline models. To this end, we selected three classic
open-source models, namely ResNet50, GoogleNet, and
MobileNetV2, and improved them using the approach
described in this paper. Specifically, we respectively

named the corresponding improved models ResNet50-A,
GoogleNet-A, and MobileNetV2-A and evaluated their per-
formance through testing.

As shown in Fig. 8, dilated models have better per-
formance than their corresponding original models. For
instance, ResNet50-A achieved a higher accuracy rate
of 0.87% compared with ResNet50, GoogleNet-A outper-
formed GoogleNet by 0.95% in terms of accuracy, and
MobileNetV2-A improved the accuracy of MobileNetV2
by 1.21%. It should be emphasized that traditional models
are hardly able to achieve high accuracy rates comparable to
those of dilated models, particularly when they have similar
levels of depth and complexity. This further confirms our
analysis in Section II-C, which suggests that our approach can
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FIGURE 8. Comparison of accuracy between three classic models before
and after improvement.

not only be applied to residual networks but also transferred
well to other CNN models.

We observed that the classification accuracies of three
typical models, GoogleNet, ResNet-50, and MobileNetV2,
were lower than or comparable to that of ResNet-18, despite
having deeper and more complex architectures. Therefore,
based on our experience, it can be concluded that CNN mod-
els built on basic blocks (the fundamental building blocks of
ResNet-18) are more suitable for TFI classification than those
constructed respectively with Inception (the basic structure of
GoogleNet), Bottleneck (the basic structure of ResNet-50),
and Inverted residuals and linear bottlenecks (the basic struc-
ture of MobileNetV2). This suggests that, in the context
of TFI classification, higher depth and complexity do not
necessarily lead to better performance, and that simpler basic
block structures may be better suited for this task.

IV. CONCLUSION
In this paper, we showed the importance ofmulti-scale dilated
convolutions in learning representation features under high
noise conditions and proposed a novel CNN design approach
for TFI classification. By increasing the model’s receptive
field and incorporating richer representation features, we can
extract more complete global features of the target and sup-
press noise. Experimental results demonstrate that our simple
and flexible transformation yields higher model performance
compared to original CNN models. For example, MDRN-3
has an overall average accuracy that is 0.97% higher than
ResNet-18’s. Additionally, we find that our design method
has good transferability and can be easily applied to other
types of models. For instance, the transformed models have
overall average accuracy that are 0.87%, 0.95%, and 1.21%
higher than the original models GoogleNet, ResNet-50, and
MobileNetV2, respectively. This study provides a novel CNN
design approach that will further facilitate the convergence of
deep learning algorithms and TFI classification.
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