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ABSTRACT It is always a hot and challenging problem to extract the characteristic information of
roller bearings from strong noise interference. Conventional Hilbert-Huang Transform (HHT), Local Mean
Decomposition (LMD), Local Feature-Scale Decomposition (LCD), and so on have some issues like
overenvelope, under-envelope, frequency-chaos, end-point effect, and so on. Symplectic Geometry Mode
Decomposition (SGMD) is one of the most efficient approaches to reconstruct this model. But SGMD has
a drawback that the computation efficiency is reduced quickly with an increase in the quantity of data, and
the degradation precision is influenced by the non-valid Symplectic Geometric Component (SGC). On this
basis, a Regularized Composite Multiscale Fuzzy Entropy (RCMFE) is proposed, which is used to estimate
the complexity of the reconstructed original individual parts and restrict the minimum amount of remaining
power. This paper presents a Partial Reconstruction Symplectic GeometryMode Decomposition (PRSGMD)
approach. The simulation results indicate that PRSGMD can not only enhance the precision of SGMD but
also enhance its robustness and validity. Finally, a maximal distance evaluation technique (DET) is employed
in combination with a more interpretable tree-based Light Gradient Boosting Machine (LightGBM) for the
intelligence fault diagnosis for rolling bearings.

INDEX TERMS Fault diagnosis, part reconstruction of symplectic geometric pattern decomposition,
regularized composite multiscale fuzzy entropy, rolling bearings, symplectic geometric mode components.

I. INTRODUCTION
Roll bearing is an indispensable part of the mechanical sys-
tem [1], [2]. The fault of roller bearings will lead to a series
of effects, which may lead to different levels of mechanical
damage. In severe cases, it can cause a fall or even an accident.
Thus, the state of the roll bearing directly influences machine
operation reliability [3], [4], [5], [6]. Thus, in order to ensure
the safety and stability of the system, it is necessary for
the rolling bearings to be monitored and diagnosed in real
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time [7], [8], [9], [10]. However, due to the complex inner
structure of the device and severe operating conditions, the
collection of vibration signals is often combined with the
multicomponent and noise-related vibration modes. There-
fore, the key for accurate diagnosis of a bearing failure is to
extract the fault characteristic information with interference
information from the vibrating signal [11], [12], [13].

The conventional approaches to extract the characteristic
data are Fourier transform based spectrum analysis, STFT,
WD, and WT) [14], [15], [16], [17]. Because of the appli-
cation of fixed-base functions, such analytical approaches
usually cause analytical results that are not meaningful
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enough to capture the inherent characteristics of signals [18],
[19]. Lots of experts at home and abroad have made lots of
researches on how to select basic functions and their param-
eters according to the character of signals. On the basis of
identifying basic functions, this paper classifies the method
as a parameter and a non-parameter.

Based on the characteristic of the signal, the optimumvalue
or coefficient of the base function is defined by using the
parameter adaptation algorithm, and then the optimum value
can be obtained in the decomposition process [20], [21], and
the nonparametric adaptive signal decomposability is based
on its own characteristic, which has no explicit analytical
expression [22], [23], [24].

Based on the characteristics of the signal, it is possible
to choose the basic function and its parameters to obtain
the physical significance. Thus, the intrinsic properties of a
mechanical fault vibration signal can be effectively extracted.
Compared with parameter adaptation, NMI doesn’t have
to build an integrated dictionary database, so it is more
adaptable and can be divided into several parts. Currently,
the most commonly used non parameter adaptive signal
analyzing techniques include Herbert-Huang Transformation
(HHT) [25], LMD [26], LCD [27], and so on. The concept
behind this approach is similar to that of obtaining physical
meaning. Compared with other approaches, the proposed
approaches have better adaptability and physics significance,
but there are two shortcomings. First of all, it is necessary to
match the extremum value of the component, Low Envelope,
Frequency Chaos, and End Effect. Secondly, there is no strict
mathematical explanation for the physical meaning of the
definition of a single component signal.

SGMD is presented by Pan and his colleagues. Through
the decomposition of the signal, we can get some kind of
symplectic geometric parts which have independent modes
[28] The Hamiltonian matrix is computed using the SGMD
method, and then the single component signal is recon-
structed using its characteristic vector. SGMD has no need to
customize the parameters, so it can be used to reconstruct the
current model efficiently and remove the noise. But, SGMD
has a drawback: the computation efficiency decreases rapidly
when the amount of data is increased, and the non-valid
symplectic geometric elements also influence the degradation
precision. In order to solve this problem, this thesis uses
CMFE to efficiently assess the complexity of every original
individual element in SGMD and to overcome the variation of
the original index [29]. First, an RCMFE operator is built to
estimate the complexity of every original individual element
and limit the remaining power to a minimum, and then,
in combination with a built partially reconstructed threshold,
the merger is ended. A new approach to signal de-noising is
presented by using Part Reconstruction Symplectic Geometry
Mode Decomposition. Compared with the previous edition,
PRSGMD [30] is only required to process a portion of the
original single-element, which includes distinct patterns, and
the computational efficiency is not reduced as the number of
data is raised. At the same time, PRSGMD is able to enhance

the degradation precision at the same time by eliminating the
influence of noise and other null patterns on the degradation
results. Compared with other methods, PRSGMD has better
performance in de-noising and extraction of characteristic
information.

GBDT [31] is a typical model in machine learning,
the core ideology of GBDT is to exploit multiple feeble
classifiers to iterate training that continuously reduces the
gap between the target value and the predicted value, and
then, the optimal model with the merits of excellent train-
ing effect, hard to overfitting and so on is gained. While
Light Gradient Boosting Machine (LightGBM) classification
tree [32], as one of the frameworks to implement the GBDT
algorithm, facilitates effective parallel training and offers
benefits like shorter training times, lower running memory
requirements, improved accuracy, distributed support that
can handle massive volumes of data quickly, and better
interpretability.

The paper proposes the RCMFE operator to solve SGMD
training efficiency decreasing with increasing data volume
and decomposition accuracy. Then, to solve the issues of
decomposition efficiency and weak invalid initial single com-
ponent affecting the decomposition accuracy proposes the
Partial Reconstruction Symplectic Geometric Mode Decom-
position method. Lastly, to enhance the interpretation and
diagnosis precision of the model, a LightGBM Tree Model
was applied to identify the failure of the rolling bearing.

The remainder is arranged as follows. In chapter 2,
a PRSGMD approach is suggested based on fundamental
SGMD; Section III, the LightGBM and DET algorithms
are introduced; Section IV, the simulation signals are tested
to contrast the PRSGMD, SGMD, VMD, and EEMD;
Section V, PRSGMD is combined with LightGBM to rec-
ognize the fault type of rolling bearing.

II. THE THEORY OF THE PRSGMD
A. SYMPLECTIC GEOMETRY MODE DECOMPOSITION
The method uses a symplectic geometry similar transforma-
tion to get rid of the Hamilton matrix and then re-constructs
the symplectic geometrical parts according to its characteris-
tic vector so as to get rid of the complicated signal. SGMD
includes 3 main processes.

1) PHASE SPACE RECONSTRUCTIO
Set the time order of the raw signal as x = x1, x2, · · · ,xn,
with n being the length of the data. From Takens embedding
theorem, it is possible to construct a multi-dimension sig-
nal by applying time-series delayed topological equivalence
to a one-dimensional signa X . Where d is the embedding
dimension, is the delay time, τ is the delay time, and m =

n−(d−1)τ .

X =

 x1
...

xm

x1+τ . . . x1+(d−1)τ
...

. . .
...

xm+τ · · · xm+(d−1)τ

 (1)
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2) SYMPLECTIC GEOMETRIC INITIAL SINGLE COMPONENT
OBTAINING
To build the Hamiltonmatrix, we analyze the trace matrix and
get the covariant symmetric matrix A:

A = XTX (2)

Decomposition of the matrix A2 yields the eigenvector
matrix Q, where Qi(i= 1, 2, · · · ,d) is the eigenvector of the
matrix A corresponding to the eigenvalue σi.
The transformation factor matrix Si = QTi X

T obtained
by the characteristic vector of the unitary matrix and the
path matrix is transformed into the original single-component
matrix Z .

Zi = QiSi (3)

The original single-component matrix Z is transformed
by diagonal averaging to get the symplectic geometry ini-
tial single component Yi= [y1, y2, · · · ,yk , · · · ,yn], where
i= [1, 2, · · · ,d].

yk =



1
k

∑k

p=1
z∗p,k−p+1 1 ≤k ≤ d∗

1
d∗

∑d∗

p=1
z∗p,k−p+1 d∗

≤ k ≤ m∗

1
n− k + 1

∑n−m∗
+1

p=k−m∗+1
z∗p,k−p+1 m∗

≤k ≤ n

(4)

3) SINGLE COMPONENT RECONSTRUCTION
d single-component signal is obtained by means of a path
matrix decomposition, but at this point, not all individual
elements are independent of one another, so it is possible
that any set of elements has the same cycle elements, the
same frequency components, and so on. Consequently, it is
necessary to reconstitute each of the original individual parts.
SGMD makes use of cycle similarity to evaluate indicators.
In PRSGMD, SGC1 is defined as the first component con-
taining the symplectic geometrically effective mode of the
signal. G1 is the residual amount obtained after subtracting
SGC1 from the original signal after signal decomposition is
completed. The former SGC1 is obtained by reconstructing
highly similar parts, whereas the latter will not be involved in
the remainder of the rebuild of SGC1 the rest is represented
as, and then a residual signal is generated by summing up the
remaining element matrix to compute an NMSE (Normalized
Average Squared Error) between the remaining signal and the
original signal, and if this value falls below a given threshold
value, then the remaining element matrix is considered to be
an initial matrix so that it can be repeated until the end of the
iteration:

x(n) =

∑N

h=1
SGCh(n) + g(N+1)(n) (5)

B. COMPOSITE MULTISCALE FUZZY ENTROPY
Composite Multiscale Fuzzy Entropy is applied to esti-
mate and sequence the complexity of every initial individual
element.

CMFE uses fuzzy entropy to get rid of the variation of
SGC components’ similarity in signals. In order to reduce
the time order of rough granulating, the average of fuzzy
entropy-entropy was calculated with the same scale factor.
The calculation of CMFE is as follows:

Initially, for a given signal x with N having data points,
compute various coarse granularity time sequences y(ρ)k =

{y(ρ)k,1, y
(ρ)
k,2,K , y(ρ)k,j } with scale factor τ , where:

y(ρ)k,j =
1
ρ

∑jρ+k−1

i=(j−1)ρ+k
xi (6)

where, 1 ≤ j ≤ N
ρ
, 1 ≤ k ≤ ρ.

Then, for every scale factor, the fuzzy entropies
y(ρ)k(1 ≤k ≤ ρ) are computed, and then the average of the
entropies ρ entropy values is computed, making FE(·) as the
fuzzy entropy calculation of the signal, so that the CMFE of
this scale factor is computed as:

CMFE[x(n)] =
1
ρ

∑ρ

k=1
FE(y(k)ρ ,m, n, r) (7)

C. PARTIAL RECONSTRUCTION SYMPLECTIC GEOMETRY
MODE DECOMPOSITION
The original single-component matrix Z is converted by
diagonal averaging, and then SGMD d gets the original
symplectic geometry Yi, which is called the embedding
dimension d , which is generally defined as n/3. So, when
SGMD is applied to deal with the data length n, it is necessary
to repeatedly iterate the original individual parts in order to
compare their similar with those of other original individual
parts. As the number of data increases, SGMD computation
speed will rise quickly, and computing time will be pro-
longed, which will be unfavorable for SGMD’s practicality
and validity. Moreover, the original individual parts with null
patterns, like noise, are not differentiated in the process of
reconstructing, so the precision of the decomposition of SGC .
The PRSGMD iteration procedure for the signal is described
below, with in FIGURE 1.

(1) Set r1 (t) = x (t) .

(2) Construct phase space trajectory matrix X .

X =

 r1(1) r1(1+τ ) . . . r1[1 + (d−1)τ ]
...

...
. . .

...

r1(m) r1(m+ τ ) · · · r1[m+(d−1)τ ]

 (8)

n is the length of the data, d is the normal size of the embed-
ding n/3, and τ is the delay time,. m = n−(d−1)τ Choose
proper embedding size d and delay time τ .

(3) The original single-component matrix Y =

[y1(t), y2(t), · · · , yk (t), · · · , yn(t)] is acquired by means of
diagonal averaging, which comprises yk as indicated in Eq.
(4) Compute RCMFEoperator for every original individual

element.

RCMFE[yk (t)] = ∥CMFE[yk (t)]∥22 + ∥yk (t)∥22 (9)

Of these, CMFE’s scale factor is generally set at 3,
∥CMFE[yk (t)]∥22, and it is possible to evaluate the complexity
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FIGURE 1. The flow chart of PRSGMD.

of the original individual parts at various scales. Characteris-
tic information and noise are usually distributed at various
scales. The original single-component with noise is more
complex than the original one with the defect characteristic
information. The original single-component energy can be
estimated by ∥yk (t)∥22, and the bigger the component energy
is, the less the decomposition residue is.

First, RCMFE re-arranges the original single-component
matrix Yi. Based on the assumption of validity of the compo-
nents of the decomposition, the failure characteristic and the
noise are separated by complex quantizing. Therefore, Y is
sorted by the RCMFE values of yk (t) from largest to smallest
as follows:

Y ′
= [y′1(t),y

′

2(t), · · · ,y′k (t), · · · ,y′n(t)] (10)

(5) Construct u = RCMFE(y′k (t))/RCMFE(r1(t)) as
a partially reconstructed threshold index, choose a por-
tion of the original unit refactor u> 0.001, get a
partially reconstructed original single-component matrix
Y

′′

= [y′1(t),y
′

2(t), · · · ,y′m(t)] which includes the important
pattern of original signal, and leave a lot of weak null
elements which are not involved in rebuilding, so that the
computation load is decreased and the degradation rate is
increased.

(6) Combine y′1(t) with the other original individual ele-
ments, calculate RCMFE, combine them when they grow,
and SGC1(t) delete the combined original individual elements
of Y

′′

.

(7) Compute Iteration End Rule ∥SGC1(t)∥22 / ∥r1(t)∥22 ≤

ε. If End Condition is not met, Return to Step (6) to get
SGCi(t). If Condition Is Met, Stop Iteration and Complete
Decomposition.

III. LIGHT GRADIENT BOOSTING DECISION TREES
A. LIGHT GRADIENT BOOSTING DECISION TREES
LightGBM as a gradient boosting tree based boosting method
in integrated learning proposed by Microsoft in 2017 [30],
is currently one of the best-performing boostingmethods. The
model’s calculation complexity and memory occupancy of
the traditional GBDT method are greatly increased when the
volume of sample data and features grows.

LightGBM utilizes the GOSS algorithm to decrease the
training data volume, which determines the sampling weights
based on the gradient values, retains data with large gradients
(i.e., not yet trained, which contributes more to the improve-
ment of the information gain), randomly samples data with
small gradients, and maintains the original distribution of
the data, which achieves more accurate information gain
compared to uniform random sampling. To reduce the sam-
ple features during training, LightGBM uses the Exclusive
Feature Bundling (EFB) algorithm, which binds mutually
exclusive features (several features that are not zero at the
same time, e.g., unique heat coding) in high dimensional fea-
tures together to form a single feature, thereby decreasing the
feature dimensions and increasing the training rate without
affecting its accuracy.

The samples with gradients lying in the front a × 100%
are categorized as sample A, while the remaining examples
are classed as sample Ac. Then a subset B of dimension
b×|Ac|will be stochastically sampled further from the sample
setAc. In the end, the instances segmentation of subset A∪B is
performed based on the estimated variance gain Ṽj(d), which
is calculated as follows:

Ṽj(d) =
1
n


(∑

xi∈Al gi+
1−a
b

∑
xi∈Bl gi

)2
nji (d)

+

(∑
xi∈Ar gi+

1−a
b

∑
xi∈Br gi

)2
njr (d)

 (11)

where Al =
{
xi ∈ A : xij ≤ d

}
, Ar =

{
xi ∈ A : xij > d

}
,

Bl =
{
xi ∈ B : xij ≤ d

}
, Br =

{
xi ∈ B : xij > d

}
, gi is the

gradient of sample i, d is the segmentation point of feature j,
at the same time nji(d) and n

j
r (d) denote samples where the

value of feature j is less than, greater than or equal to d,
respectively.

High dimensional features tend to be sparse, while many
of them are usually dissimilar in their sparsity properties.
To decrease the feature dimensionality, EFB binds multiple
features that are mutually exclusive into one by devising
the feature scanning scheme. The indexing complexity is
decreased from O(data ∗ feature) to O(data ∗ bundle) by
constructing histograms. Due to feature ≥ bundle, fewer
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TABLE 1. Statistical parameters.

features have to be retrieved significantly.With this approach,
the LightGBM training process is dramatically speeded up
with no loss of features.

B. FEATURE VALUE EXTRACTION AND SELECTION
When rolling bearing faults occur, the time domain signal
is not the same as the regular condition. In this case, the
correspondent spectral distributions and amplitudes are also
different. The statistical parameters of frequency and time
domains are often employed for extracting fault features.
As shown in TABLE. 1.
PRSGMD is an effective method to extract the flaw char-

acteristic from the vibration signal of the rolling bearing by
using adaptive decomposition of the raw signal into sev-
eral intrinsic narrow band components. Each SGC represents
an original intrinsic vibrational modal, and thus, extracting

features from SGCs is occasionally performed more effi-
ciently than extracting features straight from the raw signal.
In order to get more abundant failure information, we can
get both temporal and frequency-field statistics from SGCs
produced by PRSGMD.

Before extracting the statistical parameters from the SGCs,
the most representative SGCs containing rolling bearing fault
information must be identified. Depending on the filtering
properties of PRSGMD, the SGCs with lower signal com-
plexity and higher periodicity are always filtered out first
in the PRSGMD iteration process. Considering these two
factors, the former three SGCs are selected for extracting the
statistic parameter features.

Though the metrics from TABLE. 1 allow the fault classes
to be recognized in various perspectives, the sensitivity to
different faults is not the same. Some parameters are tightly
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correlated with faults as well as being significant, while some
are not. If each of them is used in training classifiers, it will
reduce its recognition accuracy. As a result, to improve the
accuracy, during the calculation there is requirement to pick
the remarkable features that match with the fault information
and delete the uncorrelated or duplicated ones. To choose
important features, the DET method—distance evaluation
technique—is utilized. The basic principle of DET is to
choose the characteristics with low intra class variance and
significant intergrade variability. Set pi,j,k as the jth statistical
parameter for the kth sample in the ith category. C and Ni
are the number of categories and samples, respectively. The
computation of the effective factor is shown below:

First of all the mean distance of the samples in the identical
category is calculated:

di,j =
1

Ni(Ni−1)

∑Ni

k,l=1

∣∣pi,j,k − pi,j,l
∣∣ (k ̸= l) (12)

Then the average distance for all categories is obtained:

dWj =
1
C

∑C

i=1
di,j (13)

The mean values of each parameter for samples in the
identical category are shown below:

ui,j =
1
Ni

∑Ni

k=1
pi,j,k (14)

The average distance between the means of the parameters
for the different categories is shown below:

dbj =
1

C(C−1)

∑C

i,m=1

∣∣ui,j − um,j
∣∣ (i ̸= m) (15)

Finally the effective factor is obtained:

αj =
dbj
dWj

(16)

To make a selection of features, the effective factors are
normalized using the maximum value:

α′
j =

αj

max
({

αj
}) (17)

where αj is the effective factor of the jth statistical parameter,
its value range is 0 to 1. Without a universal fixed value
for selecting the effective factor, and the paper specifies its
value as 0.5, and the statistical parameter with this value
exceeding 0.5 is taken as a significant feature. Various signifi-
cant features differ in their amplitude intervals. Consequently,
significant feature parameters are normalized as follows:

f ′
i,j =

fi,j
max

i=1,2,··· ,l

({∣∣fi,j∣∣}) (j = 1, 2, · · · ,J ′) (18)

where fi,j is ith data sample’s jth significant parameter, J ′

represents the total amount of significant features, and l rep-
resents the total sample amount. The highest absolute value
of the jth significant parameter for all categories is referred to
as max

i=1,2,··· ,l

({∣∣fi,j∣∣}).

TABLE 2. Comparison of assessment metrics for the decomposition
results of y (t) by four methods.

IV. SIMULATION ANALYSIS
First, a simulated signal y(t) is constructed, and obtain
the decomposition results by PRSGMD, SGMD, EEMD,
and VMD. Various verifications and comparisons are per-
formed on the components obtained by the four methods to
demonstrate the superiority of PRSGMD compared to other
methods. {

y (t) = y1 (t) + n (t)

y1 (t) = cos(100π t)e−2t2 (19)

y(t) contains both vibration attenuated signal and Gaussian
white noise. y(t) and its two constituents are represented
in the time domain in FIGURE. 2. Among them, the
SNR of the WGN signal is -20dB. Further, PRSGMD,
SGMD, VMD, and EEMD decompositions are performed
on y (t).
FIGURE 3 presents the decomposition results where sub-

graphs (a), (b), (c) and (d) correspond to results obtained from
the PRSGMD, SGMD, VMD and EEMD decomposition,
respectively. At an SNR of -20 dB, the IMF1 component
amplitude of the EEMD decomposition results fluctuates
significantly outside the amplitude limit of the original sig-
nal y1(t), resulting in the worst decomposition effect. The
IMF1 component of the VMDdecomposition results partially
exceeds the limit and is influenced by noise. The amplitude
of the SGC1 component of SGMD exceeds the amplitude
limit of y1(t), indicating that strong noise has caused some
distortion. However, its waveform is primarily consistent with
that of y1(t). In contrast, the SGC1 component of PRSGMD
is mostly similar to y1(t) in general, maintaining the features
of y1(t) overall.

The instantaneous amplitude and frequency (IA and IF) of
the IMF1 and SGC1 are obtained by Hilbert transform on
them, as shown in FIGURE 4. By comparing these with the
IA and IF of y1(t), we obtain the errors in IA and IF, which are
obtained by subtracting the absolute values of the IA and IF of
x1(t) and x2 (t), respectively. By comparing the IA and IF of
the IMF1, SGC1, and other components obtained by EEMD,
VMD, and SGMD with those of the true signals, it indicates
the PRSGMD decomposition results in more accurate and
stable SGC1 compared with the other three methods, which
in turn illustrates the better decomposition capability of the
PRSGMD.

To further contrast the compatibility of the IMF1 and
SGC1 obtained by PRSGMD, SGMD, VMD, and EEMD
with the true signals, employing energy error Ei and the cor-
relation coefficient ri as assessment metrics. The assessment
metrics for the first component of each method are shown in
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FIGURE 2. The time-domain waveforms of the simulation signal and its components. (a) signal y (t). (b) The vibration
attenuated signal. (c) The WGN with SNR = −20.

TABLE 3. Evaluation metrics of the components of y (t) obtained by
PRSGMD, SGMD, VMD, and EEMD.

TABLE. 2. As shown in TABLE. 2, compared with the other
three methods, the PRSGMD decomposed components have
higher correlation coefficients and lower energy errors, which
are closer to the true signals. Additionally, the computational
time T is used to evaluate the efficiency of the calculation.
Although the PRSGMD decomposition speed is better than
SGMD, it is still lower than the remaining two methods
EEMD and VMD.

In order to verify the performance of the proposed
method’s noise resistance, a signal described in Eq. 20, y,(t),
is developed, which is composed of a damping signal and
a white-Gaussian noise produced when simulating an actual
fault. FIGURE 6 shows the y,(t) and the parts thereof. The
SNR is 5 dB, - 10 dB and - 20 dB. In addition, PRSGMD,
SGMD, and EEMD are divided into y,(t).

FIGURES 7-9 show y,(t) corresponding results. Also, for
quantification of noise immunity, relevant assessment mea-
sures are presented in TABLE. 3. From FIGURES 7-9, it can
be understood that when an SNR is 5 dB, i.e., when the
noise is comparatively low, the 4 signal decompositions can
be efficiently separated from the noise. Though the VMD
has a burr and is not sufficiently smooth, the wave shape of
the active component IMF1 is similar to that of the damping
signal in the simulated signal. From the point of view of the
precision of decomposition, it is determined by the correlative
factors in TABLE. 3.
The analysis shows that SGMD, VMD and EEMD have

better performance than PRSGMD. From the point of time
domain mean, VMD and EEMD are more in agreement
with additive noise. But the PRSGMD is not sufficiently
separated from the signal and noise, so the wave tendency
of the remaining part includes a weak AM feature. As the
Gauss White Noise is enhanced, the efficiency and precision
of these approaches are reduced to different extent. At the
SNR of −10 dB, though the VMD’s components IMF1
are generally oscillating, the whole time domain saw wave
severely suppress the decay characteristic. Meanwhile, the
EEMD component profile IMF10 shows significant wave
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FIGURE 3. The components of the mixed signal. (a) The PRSGMD components. (b) The SGMD components.
(c) The VMD components. (d) The EEMD components.

FIGURE 4. The instantaneous frequency and amplitude of the first component
decomposed by the simulation signal. (a) The IA of SGC1 and IMF1. (b) The IF of
SGC1 and IMF1.

FIGURE 5. The instantaneous frequency and amplitude errors of the first two
components decomposed by the simulation signal. (a) The IA error of SGC1 and
IMF1. (b) The IF error of SGC1 and IMF1.

loss. Both PRSGMD and SGMD are more similar in wave
form, and their relative correlation factor and EOD can be

used to back up the data. Though the precision of decom-
posing is decreased a little, it ensures the efficiency of
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FIGURE 6. Signal y (t) in Eq.(20) and its components. (a)-(c) The mixed signals at SNR=5,
−10, −20, respectively; (d) The vibration attenuation signal; (e)-(g) The noise
decomposition result signals in (a)-(c), respectively.

FIGURE 7. Signal y (t) at SNR=5. (a)The PRSGMD components; (b)The SGMD components;
(c)The VMD components; (d)The EEMD components.

decomposing, and achieves the separation of signal and
noise.

In a VMD of −20 dB, the amplitude fluctuation of com-
ponent IMF1 significantly exceeds the limit of component
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FIGURE 8. Signal y (t) at SNR=−10. (a)The PRSGMD components; (b)The SGMD
components; (c)The VMD components; (d)The EEMD components.

FIGURE 9. Signal y (t) at SNR=−20. (a)The PRSGMD components; (b)The SGMD
components; (c)The VMD components; (d)The EEMD components.

y2(t), leading to more severe signal aliasing. The amplitude
fluctuations of the 10 components in EEMD IMF10 are rel-
atively small, but there are no significant waveform features.

On this basis, an improved SGMD method is proposed.
On the contrary, the SGC1 component in PRSGMD exhibits
slight distortion at certain peaks and valleys, while the
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TABLE 4. Parameters of the bearing experiment bench.

AM/FM characteristics slightly decrease, so it generally
retains the original signal y2(t). The R1 (R1) index of this
algorithm is around 0.8, and E1 (E1) is the smallest. This
algorithm can achieve good results even in strong noise
environments.

Conventional approaches like HHT, LCD, LMD, etc.
have the following issues: overenvelope, underenvelope, fre-
quency chaos, end point effect etc. The SGMD has the
merits that it does not need to be customized, and it can
be used to reconstruct the current model efficiently and
remove the noise. But SGMD has a drawback: the com-
putational efficiency is reduced quickly with the increment
of the number of data, and the non-valid symplectic geo-
metric components can influence the degradation precision.
In order to solve SGMD’s poor computation efficiency,
PRSGMD has been put forward to increase precision and
computation efficiency. However, it is not as efficient as that
of EEMD.

Based on the simulated analysis, it is found that PRS-
GMD is more precise in comparison with the others, but
the efficiency of VMD and EEMD is greatly decreased
when the noise strength is higher. Though SGMD pos-
sesses certain noise-proof properties, its degradation can not
meet the requirements under high-intensity noise conditions.
The PRSGMD algorithm is applicable to the separation
of the signal and the noise, and can get good resolu-
tion in the case of SNR interference. As far as computing
efficiency is concerned, PRSGMD algorithm has lower
degradation time than SGMD, but it is better than VMD or
EEMD. The PRSGMD approach requires optimization of
filter parameters to decrease degradation time and increase

degradation efficiency.{
y, (t) = y2 (t) + n (t)
y2 (t) = e−0.8t sin[30π t + cos(3π t2)]

(20)

V. THE APPLICATION OF THE PRSGMD METHOD IN
ROLLING BEARING FAULT DIAGNOSIS
To further demonstrate the superiority and practicality of the
PRSGMD approach, which is employed in the real mea-
sured bearing vibration signals, and relevant analyses are
being carried out. The bearing failure simulation experimen-
tal bench used is given in FIGURE. 10, which consists of
rolling bearings, motors, acceleration sensors, load pressur-
ization device, BK test module, and so on. A double half
inner ring bearing of model QJ305M was used for failure
simulation, and the vibration sensor was adsorbed on the
bearing housing where the problem bearing was located
through a magnetic holder. In the experiment, the BK vibra-
tion systemwas used for vibration data acquisition, the shaft’s
rotational speed was configured at 1800 rpm, the sampling
frequency of the acquisition card was 8192 Hz, and the
sampling experiment was repeated for ten times, each time
collecting 10 seconds of vibration data. The bearing-related
parameters and the eight different bearing states simulated,
such as shallow/depth failure of the outer ring, shallow/depth
failure of the inner ring, shallow/depth failure of the cage,
ball failure, and healthy state, are given in TABLE. 4. All the
faults are processed by EDM wire-cut machining technique,
in which the shallow and deep failure groove widths are
0.4mm and 0.8mm respectively and the groove thicknesses
are 0.5mm.

For comparison, the decomposition of the signals to extract
feature information is performed by EEMD, VMD, SGMD,
and PRSGMD, respectively, in which to demonstrate the
effectiveness of PRSGMD in the diagnosis of mechanical
failures. The examples of the decomposition of the vibration
signals by PRSGMD, SGMD, VMD, and EEMD can be seen
from FIGURES. 11-14.

First, PRSGMD, SGMD, and EEMD are divided into four
parts: PRSGMD, SGMD, EEMD, and all statistics of the
top 3 SGC parts, IMF parts, and source signals (22 param-
eters in TABLE. 1) are calculated to be a characteristic
vector.

For different types of bearing failure, the sample data of
outer ring depth failure (0.8mm), inner ring depth failure
(0.8mm), cage depth failure (0.8mm), rolling body failure and
failure-free operation are used to select the obtained feature
values using the DET method, and the results of the selection
of the feature value vectors for different failure types are
shown in FIGURES 15 (a)-(d) (the significant features are
markedwith circles). The results of PRSGMDdecomposition
can be obtained with 29 significant features eventually, the
results of SGMD decomposition with 24 significant features
finally, the results of VMD decomposition with 16 significant
features eventually, and the results of EEMD decomposition
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FIGURE 10. Double half inner ring bearing failure diagnosis experiment table.

FIGURE 11. Vibration signal decomposition results by PRSGMD.

FIGURE 12. Vibration signal decomposition results by SGMD.

with 11 significant features eventually, which demonstrates
that the PRSGMD method is capable of extracting more
information about the failure features.

Along the same lines, when analyzing the sample data with
different failure levels, the sample data with deep failure of
the outer ring (0.8 mm), shallow failure of the outer ring
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FIGURE 13. Vibration signal decomposition results by VMD.

FIGURE 14. Vibration signal decomposition results by EEMD.

(0.4 mm), and failure-free operation are used to select the
received feature values with the DET method, and the results
of selecting the feature value vectors with different failure
levels are shown in FIGURES. 15 (e)-(h) (the significant
features are marked with circles). The results of PRSGMD
decomposition have been found to obtain 22 significant fea-
tures, while the other three methods, such as SGMD, VMD,
and EEMD decomposition results have been found to obtain
19, 14, and 13 significant features respectively, which are all
lower than 20 significant features, which also demonstrates
that the PRSGMD method is capable of extracting more
information about the failure features.

After the selection of significant features was performed,
the significant features were extracted according to the sig-
nificant feature number, and the labels were divided evenly
across the dataset on the scale of 80% (96 groups) for
the training set and 20% (24 groups) for the testing set.

Then, the LightGBM tree model, via the significant features
extracted by the four methods of PRSGMD, SGMD, VMD,
and EEMD, is applied to pattern recognition of the data in
TABLE. 5. The recognition results are shown in TABLE. 6
and FIGURE. 16, the mean value of recognition accuracy of
PRSGMD is 98.43%, while the mean value of recognition
accuracy of SGMD, VMD, and EEMD is 96.86%, 95.29%,
and 93.82%, respectively, and the recognition results validate
that the PRSGMD method extracts the failure feature signals
more significantly.

Finally, the validity of the PRSGMD is verified through the
test. The SGMD has the merits that it does not need to be cus-
tomized, and it can be used to reconstruct the current model
efficiently and remove the noise. But SGMD has a draw-
back: the computational efficiency is reduced quickly with
the increment of the number of data, and the non-valid sym-
plectic geometric components can influence the degradation
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FIGURE 15. Significant features applied by DET. (a)-(d) are the results of the vibration data with different failure types generated by
applying PRSGMD, SGMD, VMD and EEMD, respectively. (e)-(h) are the results of the vibration data with different failure levels
generated by applying PRSGMD, SGMD, VMD and EEMD, respectively.
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FIGURE 16. Confusion matrix classification results (a) PRSGMD classification results (b) SGMD classification results (c) VMD
classification results (d) EEMD classification results.

TABLE 5. Experimental data on the failure of double half inner ring
bearings.

precision. In order to resolve the above issues, PRSGMD is
used to enhance the resolution precision at the same time as
SGMD analysis is not affected by noise or other null patterns.

TABLE 6. Recognition results of different methods.

VI. CONCLUSION
Conventional HHT, LMD and LCD have problems of overen-
velope, underenvelope, frequency chaos and end-point. The
SGMD has the merits that it does not need to be customized,
and it can be used to reconstruct the current model efficiently
and remove the noise. But SGMD has a drawback: the com-
putational efficiency is reduced quickly with the increment of
the number of data, and the non-valid symplectic geometric
components can influence the degradation precision. In order
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to resolve the above issues, PRSGMD is used to enhance the
resolution precision at the same time as the SGMD analysis
is not affected by noise or other null patterns. The special
conclusions are as follows:

(1) The RCMFE operator was built to assess the effective-
ness of the original individual parts so that the SGC parts
could be achieved with minimum constraints.

(2) Compared with the original SGMD approach, PRS-
GMD can only deal with a portion of the original individual
elements which include important patterns, without decreas-
ing the operating efficiency with an increase in the number of
data.

(3) Compared with SGMD, EEMD and VMD, PRSGMD
has superior performance in restraining endpoint effect and
mode chaos, resisting noise property, and improving com-
ponent orthogonality and precision, but PRSGMD’s total
time cost is smaller compared with SGMD. Coupled with
LightGBM method, this method can effectively improve the
accuracy of fault identification.

It should be noted that the problem of handling the
vibration data of rolling bearing under varying operation
conditions and its convergence in PRSGMD still remains to
be explored.
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