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ABSTRACT A novel output-feedback controller is proposed for multi-input multi-output (MIMO)
nonautonomous nonlinear systems with unstructured uncertainties. The control system under consideration
is a non-square MIMO system that may have varying numbers of control inputs and outputs. Apart
from the known relative degrees of each output, the system to be controlled is completely unknown and
nonautonomous. It is also assumed that the dominant control inputs for a specific system output are
unknown. The proposed controller utilizes a higher-order switching differentiator (HOSD) to observe the
time derivatives of composite signals that include output tracking errors. This leads to a low-complexity,
approximation-free, output-feedback controller capable of compensating for unstructured uncertainties. The
controller’s strategy, free from universal approximators, significantly simplifies the control formula and
minimizes the number of design constants. The theory shows that all output tracking errors asymptotically
converge to zero. The effectiveness of the proposed controller is demonstrated through numerical simulations
of three example MIMO systems.

INDEX TERMS MIMO nonlinear systems, uncertain systems, output-feedback controller, approximation-
free, differentiator-based control.

I. INTRODUCTION
Conventionally, the design of stabilizing controllers for non-
linear systems characterized by unstructured uncertainties
has largely leveraged sliding mode control (SMC) methods
[1], [2] and adaptive control algorithms with universal
approximators like neural networks (NN) or fuzzy logic
systems (FLS) [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15]. Although these NNs and FLS approx-
imators have found wide application in addressing system
uncertainties, they require a complex structure to ensure
approximation capabilities. Furthermore, they necessitate
the online updating of a multitude of adaptive parameters,
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thereby leading to a heightened computational load and
increased dynamic order of the controller. SMC algorithms,
on the other hand, encounter certain limitations, such as
the issue of chattering in control inputs and constraints
on the types of nonlinear systems to which they can be
effectively applied. Recently, control strategies aiming to
simplify complex control formulas without compromising
their performance have been proposed. This includes pre-
scribed performance control (PPC) techniques that guarantee
a predefined tracking performance irrespective of system
uncertainties, and without the need for approximation [15],
[16], [17], [18], [19], [20], [21]. The PPC framework
significantly simplifies the controller structure by eliminating
the need for universal approximators. Yet, the steps of
the backstepping design continue to be an integral part of
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PPC methodologies, making them vulnerable to faults or
large disturbances post the transient period. More recently,
the proposal of differentiator-based controllers emerged,
which address system uncertainties by overestimating the
time-derivatives of the output tracking error, eliminating the
need for universal approximations [10], [22], [23], [24], [25].
Despite the surge in research in this field, a large proportion of
the studies target single-input single-output (SISO) nonlinear
systems, leaving multi-input multi-output (MIMO) systems
relatively under-explored.

When designing a controller for a MIMO nonlinear system
with unknown dynamics, if it is discernable which input
predominantly affects a specific output, the MIMO system
could be decomposed into multiple single-input single-
output systems, thus facilitating a simpler controller design.
In general, an output is influenced by several inputs, adding
complexity due to the interconnections between the inputs
and outputs. Let p and q denote the number of inputs and
outputs, respectively. If p = q, the system is referred to
as fully-actuated or square. A substantial part of existing
research in the control of uncertain MIMO nonlinear systems
focuses on square systems (See [26], [27], [28], [29], [30],
[31] and references therein). In scenarios where p > q,
the system is classified as over-actuated, while systems
where p < q are considered under-actuated, with studies
such as [32] and [33] dealing exclusively with this type of
MIMO systems. Both of these scenarios (i.e., p ̸= q) are
collectively identified as non-square systems. The design
of a versatile controller capable of being applied to both
square and non-square systems is of significant importance
in modern control engineering, given the prevalence of
non-square structures in chemical and mechanical systems.

There are relatively few research studies that address
the design of controllers for uncertain nonlinear systems
that can be applied to both non-square and square cases.
In [34] and [35], an adaptive fuzzy controllers for non-square
nonlinear systems are proposed. The systems considered
in these studies are affine-in-the-control nonlinear systems,
with a multitude of FLSs utilized to estimate unknown
system nonlinearities. However, stability analysis has been
performed only for the over-actuated case. Similarly, [36]
discusses a NN controller for non-square nonlinear systems.
Nonetheless, the proposed approach has certain limitations,
such as an increased complexity in the control structure
due to the employment of NNs, and the restriction that the
controlled system must conform to an affine form. Reference
[37] presents a direct adaptive neural state-feedback control
law for non-square nonlinear systems. Nevertheless, the
MIMO nonlinear system under consideration consists of
multiple 2nd-order affine systems, which is a fairly restrictive
condition.

This paper proposes a novel approximation-free output-
feedback controller for non-square nonlinear systems with
unknown dynamics, based on the controller proposed in [22]
and [25]. The system under consideration is significantly

broader in scope than those presented in previous literature,
and the proposed controller is designed to be applicable
to both square and non-square nonlinear systems. The
design heavily relies on higher-order switching differentia-
tors (HOSD) [38], [39] that estimate the differentials of
time-varying signals, enabling compensation for unknown
functions inherent to the controlled system. The approach
first involves designing q pseudo-control terms to stabilize q
outputs, after which p actual control inputs are calculated as
a straightforward linear combination of these pseudo-control
terms. It has been proven that with such control inputs, all
system outputs can be effectively stabilized. The benefits
of the controller presented in this paper, when compared to
existing research, can be summarized as follows:

1) It accommodates a very general MIMO non-square
nonlinear system in the broadest category.

2) The proposed output-feedback control algorithm pro-
vides a unified methodology for designing control laws
applicable to both non-square and square systems.

3) The structure of the controller and the process of
stability proof are relatively uncomplicated due to the
absence of universal approximators.

To the best of our knowledge, there are very few research
findings on the design of output-feedback controllers for
nonautonomous MIMO non-square nonlinear systems as
general as (1). We present three simulation examples to
illustrate the performance of the proposed controller and the
consistency in its design.

II. PROBLEM FORMULATION
In the succeeding sections of this paper, the 2-norm of the
vector x is represented by |x|, and the absolute value of
the scalar v is indicated by |v|. The notation a(t) → 0 is
used as an abbreviation for limt→∞ a(t) = 0, signifying
that as t approaches infinity, the value of a(t) converges to
zero. Likewise, a(t) → b(t) is used to denote that a(t)
asymptotically approximates b(t) as t approaches infinity,
in other words, limt→∞ a(t) = b(t).
The following nonautomonous MIMO nonlinear system is

considered

ẋ = f(x,u, t)
y = h(x, t) (1)

where x ∈ Rn is a state vector and n is the number
of state variables, u = [u1, u2, · · · , up]T ∈ Rp is a
control input vector, and y = [y1, y2, · · · , yq]T ∈ Rq is
an output vector. The p and q are the numbers of inputs
and outputs, respectively. The f(·) and h(·) are unknown
smooth function vectors. The system under consideration is
an exceedingly general nonlinear system, encompassing a
broad range of categories such as strict- and pure-feedback
systems. Most contemporary control systems fall under this
category; examples include robotic arms, chemical processes,
wind energy conversion systems, and car navigation systems,
among others. This system also exhibits nonautonomous
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characteristic since the functions f(·) and h(·) are explicitly
time-dependent. This system taxonomy has the potential
to incorporate systems with time-varying parameters and
disturbances that are either additive ormultiplicative. It is also
assumed that only the output vector y is measurable. In most
real-world engineering systems, all states are typically
confined within certain bounded operational regions due to
various constraints, and the control inputs are also limited
within specific bounds due to physical restrictions.
Assumption 1: The following open set encompasses the

entire operation region of the system (1)

� =
{
x,u

∣∣|x| < λx , |u| < λu
}

(2)

where λx and λu are positive bounding constants, the
knowledge of which is not required.
The primary control objective is to ensure that yi(t) closely
aligns with the desired output, ψi(t), for all i = 1, · · · , q,
while simultaneously guaranteeing that all time-varying
signals are effectively bounded. The output tracking error is
defined as zi ≜ yi − ψi, and its differentials w.r.t. time are
derived as follows:

żi =
∂h
∂x

f +
∂h(x, t)
∂t

− ψ̇i ≜ zi,2(x, t)

z̈i =
∂zi,2(x, t)
∂x

f +
∂zi,2(x, t)

∂t
≜ zi,3(x, t)

...

z(j)i =
∂zi,j(x, t)
∂x

f +
∂zi,j(x, t)
∂t

≜ zi,j+1(x, t)

j = 1, · · · , ri − 1
...

z(ri)i =
∂zi,ri (x, t)

∂x
f +

∂zi,ri (x, t)
∂t

≜ ηi(x,u, t) (3)
for i = 1, · · · , q, where ri is the known relative degree
of the yi, that is, the minimum dynamic order in which at
least one control input appears in the differential equation
of z(ri)i . It is assumed that the time-derivatives of the desired
output ψi(t) are bounded for all t ≥ 0. It is noteworthy
that the information about which inputs appear in the last
equation of (3) is not needed for the proposed controller.
In the following, the tracking error vector of yi is denoted as
zi = [zi, zi,2, · · · , zi,ri ]

T
∈ Rri .

For the controllability of the system under consideration
(3), the following assumption is necessary.
Assumption 2: Denote the set of indices of the inputs

that appear in ηi(x,u, t) as Si. For the control gains, there
exist positive constants λi,j, the knowledge of which is not
required, such that

∂ηi(x,u, t)
∂uj

> λi,j (4)

for all j ∈ Si, i = 1, · · · , q.

From Assumption 2, it can be inferred that all the control
directions are assumed to be positive.

III. CONTROLLER DESIGN
A. BRIEF INTRODUCTION OF THE HOSD
In this paper, the HOSD is employed to observe the
time-derivatives of composite signals, which will be defined
later. To investigate the HOSD dynamics more thoroughly,
we introduce a few important definitions. We denote8 as the
set of all time sequences that ascend indefinitely:

8 ≜ {(tk )∞k=0|t0 = 0, tk < tk+1∀k ∈ N0} (5)

where N0 = {0, 1, 2, · · · }. Given a sequence T = (tk ) that
belongs to8,�T represents a set of functions that have some
or all tk as points of discontinuity.
Definition 1: [39] For T = (tk ) ∈ 8, we define the set of

functions as follows:

�
L
T ≜

f (t)
∣∣∣f (t) ∈ �T , sup

tk≤t<tk+1
∀k∈N0

|f (t)| ≤ L < ∞

 (6)

where L > 0 is a constant. The functions in �
L
T are bounded

in the piecewise sense (BPWS) below L.
Park [39] introduced the original HOSD, while modifications
to its dynamics, which require only a single design constant,
have been presented in another work by the same author [24].
The details are presented in the following lemma:
Lemma 1: [24] Suppose the time-derivatives of a signal

ai(t) are BPWS such that a(j)i ∈ �
L∗
i,j
T for j = 1, 2, · · · , ri +

2 where L∗
i,js are positive constants and T ∈ 8. The HOSD

dynamics are defined as follows

α̇i,j = βjLieαi,j + σi,j
σ̇i,j = Li sgn

(
eαi,j

) }
, j = 1, 2, · · · , ri (7)

where eαi,j = σi,j−1−αi,j with σi,0 = ai. Choosing the design
constants βj > 0 for all j and Li > max{L∗

i,1, · · · ,L
∗
i,ri}

ensures that

σi,j(t) → a(j)i (t), j = 1, 2, · · · , ri. (8)

The comprehensive proof of Lemma 1 can be found in the
work of [39]. In [24], the constants denoted by βi have been
proposed up to i = 6 as follows:

β1 = 10, β2 = 7, β3 = 5.5, β4 = 4.8, β5 = 4.4, β6 = 4.2.

(9)

To improve the HOSD’s estimation capability, the sole design
constant Li in the ith HOSD equation should be increased.
When compared to traditional time-derivative estimators,
such as HGO [40] or HOSMD [1], HOSD has the advantage
due to its asymptotic tracking performance and the absence
of peaking or chattering in its estimates.
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B. CONTROL INPUT FILTERING
In the process of generating the signal ai(t), which is input to
the HOSD as shown in equation (7), a straightforward linear
time-invariant (LTI) filter is utilized. The equations for this
filter related to the ith output yi are given as follows:

ẇi,j = −ciwi,j + wi,j+1, j = 1, · · · , ri − 1

ẇi,ri = −ciwi,ri + vi(t) (10)

In these equations, ci is a positive design constant. The
term vi(t) denotes a pseudo-control that stabilizes yi and is
defined as the linear combination of the actual control inputs,
expressed by

vi(t) ≜
p∑
j=1

mi,juj (11)

where mi,j are the design constant coefficients. Given the
presence of the stabilizing components, −ciwi,j, for j =

1, · · · , ri in equation (10), and considering that ci is positive,
it is guaranteed that the state variables wi,j of the LTI
filter (10) are bounded. This is assured by the boundedness
of all the control inputs uj (j = 1, · · · , p), as stated in
Assumption 1. Now, we introduce the following lemma that
is applicable under Assumption 1:
Lemma 2: Under Assumption 1, the following inequalities

are satisfied:

|wi,j| <
|mi|λu

cri−j+1
i

(12)

for j = 1, · · · , ri where mi = [mi,1,mi,2, · · · ,mi,p]T .
For a detailed proof of this Lemma, refer to [41].

The input signal to the HOSD of (7) is generated as

ai = zi − wi,1. (13)

Based on Lemma 1, we can derive the following equations:

σi,1 = ȧi + di,1(t)

= żi − p1(wi) − wi,2 + di,1(t) (14)

σi,2 = äi + di,2(t)

= z̈i − p2(wi) − wi,3 + di,2(t) (15)
...

σi,ri−1 = a(ri−1)
i + di,ri−1(t)

= z(ri−1)
i − pri−1(wi) − wi,ri + di,ri−1(t)

(16)

σi,ri = a(ri)i + di,ri (t)

= z(ri)i − pri (wi) − vi(t) + di,ri (t) (17)

where wi ≜ [wi,1,wi,2, · · · ,wi,ri ]
T , and di,j(t) are the

estimation errors that tend towards zero over time. The
terms pk (wi), for k = 1, · · · , ri, are linear combinations of
the elements of wi and can be readily calculated for k =

1, · · · , 6 as shown below:

p1(wj) = −ciwi,1 (18)

p2(wj) = c2i wi,1 − 2ciwi,2 (19)

p3(wj) = −c3i wi,1 + 3c2i wi,2 − 3ciwi,3 (20)

p4(wj) = c4i wi,1 − 4c3i wi,2 + 6c2i wi,3
− 4cjwi,4 (21)

p5(wj) = −c5i wi,1 + 5c4i wi,2 − 10c3i wi,3
+ 10c2i wi,4 − 5ciwi,5 (22)

p6(wj) = c6i wi,1 − 6c5i wi,2 + 15c4i wi,3
− 20c3i wi,4 + 15c2i wi,5 − 6ciwi,6 (23)

As stated in [24], the choice of ci does not significantly affect
the performance of the controller. Therefore, for simplifying
the computation of the pk (wi)s, ci is commonly selected to
be 1.

C. PSEUDO-CONTROL INPUT
We can use equations (14) through (16) to estimate the
tracking error vector zi as follows:

ẑi =


zi

σi,1 + p1(wi) + wi,2
...

σi,ri−1 + pri−1(wi) + wi,ri

 ∈ Rri . (24)

According to Lemma 1, ẑi asymptotically tracks zi. Thus,
we can assert the following equality

zi = ẑi − di(t) (25)

where di(t) ≜ [0, di,1(t), · · · , di,ri−1(t)]T . Taking into
consideration equation (17), we can compute the pseudo-
control vi as follows:

vi(t) = −σi,ri − pri (wi) − kTi ẑi (26)

Here, ki = [ki,1, ki,2, · · · , ki,ri ]
T is selected so that the

polynomial

sri + ki,ris
ri−1

+ · · · + ki,2s+ ki,1 (27)

is Hurwitz. To streamline the design process, we select the
elements of the vector ki to satisfy

(s+ κi)ri = sri + ki,ris
ri−1

+ · · · + ki,2s+ ki,1 (28)

where κi > 0. Therefore, upon choosing κi, we can directly
compute the vector ki. As a result, our proposed controller
only requires two design constants, κi > 0 in (28) and Li >
0 in (7), since we typically select the design constant ci in (10)
as 1. The key result of the proposed controller is encapsulated
in the following lemma:
Lemma 3: The pseudo-control input vi defined as (26)

using the HOSD (7) and input filter (10) makes the tracking
error vector zi asymptotically stable.
proof: Starting with (17) and (25), it is clear that the
pseudo-control input (26) can be rewritten as:

vi(t) = −σi,ri − pri (wi) − kTi ẑi

= −{z(ri)i − pri (wi) − vi(t) + di,ri (t)}
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TABLE 1. Selected values of the matrix G in (36) (p is the number of
inputs, and q is the number of outputs).

− pri (wi) − kTi zi − kTi di(t)

= −z(ri)i + vi(t) − kTi zi − di,ri (t) − kTi di(t) (29)

From this, we can deduce the following equality:

z(ri)i = −kTi zi + δi(t) (30)

Here, δi(t) ≜ −di,ri (t) − kTi di(t). In vector form, this can be
expressed as

żi = Aizi + biδi(t) (31)

where

Ai =


0 1 0 · · · 0
0 0 1 · · · 0
...

...

−ki,1 −ki,2 −ki,3 · · · −ki,ri

 ,bi =


0
0
...

1

 . (32)

Positive definite matrices Pi and Qi exist such that AT
i Pi +

PiAi = −Qi. If we define the Lyapunov function as Vi =

zTi Pizi, its time derivative can be expressed as

V̇i = −zTi Qizi + 2zTi Pibiδi(t)

≤ −λmin(Qi)|zi|2 + 2|zi|λmax(Pi)|δi(t)| (33)

where λmin(·) and λmax(·) are, respectively, the minimum and
maximum eigenvalues of the matrix. From this inequality,
it follows that if |zi| > ζi|δ(t)|, where ζi =

2λmax (Pi)
λmin(Qi)

, then
V̇i < 0. Given that δi(t) asymptotically converges to zero, |zi|
is also asymptotically stable. ■

D. CALCULATING REAL CONTROL INPUTS
From equations (11) and (26), we can discern the following
relationship between the control input vector u and the
pseudo-control input vector defined as v = [v1, v2, · · · , vq]T :

Mu(t) = v(t) (34)

where

M =


m1,1 m1,2 · · · m1,p
m2,1 m2,2 · · · m2,p
...

...

mq,1 mq,2 · · · mq,p

 ∈ Rq×p (35)

is a constant matrix. It is evident that if M satisfies the
condition of having left pseudo-inverse matrix which is
denoted as G = [gij] ∈ Rp×q, the control input vector can
be uniquely determined as

u = Gv. (36)

As mentioned in the introduction, there are three possible
scenarios depending on the number of inputs and outputs as
follows.

1) UNDER-ACTUATED SYSTEM
In the case of p < q, if all the columns of M in (34)
are independent, then M has left pseudoinverse matrix.
To simplify the problem, the elements of M are chosen as
given in Table 2 such that its left pseudoinverse matrix, i.e.,
G = (MTM)−1MT becomes

gji =

{
1.1, for j = i
1, for j ̸= i

(37)

for i = 1, · · · , q, j = 1, · · · , p. The rationale for this
decision is to ensure that all pseudo-inputs play an almost
equal role in determining a specific control input uj. For
example, if p = 2 and q = 3, the matrix G is determined
by (37) as

G =

[
1.1 1 1
1 1.1 1

]
(38)

which leads to

u1 = 1.1 v1 + v2 + v3
u2 = v1 + 1.1v2 + v3 (39)

from (36).

2) OVER-ACTUATED SYSTEM
In this case, i.e., p > q theG = [gji] ∈ Rp×q in (36) is directly
chosen as defined in (37). The matrix G with its elements
as defined in (37) evidently has its unique left pseudoinverse
M = (GTG)−1GT as all the columns of G are independent.
For example, if p = 2 and q = 1, i.e., a system with 2 inputs
and 1 output, the matrix G is chosen from Table 2 as

G =

[
1.1
1

]
(40)

and the control input (36) is simply determined as

u1 = 1.1 v1
u2 = v1. (41)

Its left pseudo-inverse matrix M is calculated as

M = (GTG)−1GT
=

[
0.49773756 0.45248869

]
(42)

which is also shown in Table 2 leading to

0.49773756u1 + 0.45248869u2 = v1 (43)

by (34). In the controller design, however, the matrix M is
not used since vis are already obtained by (26) and they
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are directly fed into the LTI filters (10). Hence, vis are not
recalculated using the control inputs and M as in (43). The
value of G is used only and what is crucial is the fact that it
has unique left pseudoinverse matrix M that can reconstruct
pseudo-inputs by linearly combinating actual control inputs.

3) SQUARE SYSTEM
In this case, that is, p = q, the square matrix G in (36)
is directly determined as (37) similar to the case of under-
and over-actuated system. Therefore, the inverse matrix of G
evidently exists, which guarantees the existence ofM in (34).
If p = q = 2, for example, the control inputs are determined
by using G =

[
1.1 1
1 1.1

]
and (36) as follows

u1 = 1.1v1 + v2
u2 = v1 + 1.1 v2 (44)

where the pseudo-control terms v1 and v2 are calculated using
(26). As previously noted, there is no need to calculateG−1(=
M) as the control law only uses the elements of G.

E. MAIN RESULT
The selected matrixes G for all three cases are described in
Table 1 for p = 1, 2, 3 and q = 1, 2, 3. Note that if p =

q = 1, the controlled system is SISO one in which m11 =

1 is chosen, that is, u1 = v1, which eventually becomes the
control formula for the SISO system presented in [10].

The main result is described in the following theorem.
Theorem 1: Consider the system (1) under Assumption 1

and Assumption 2. The control inputs which are the linear
combinations of pseudo-inputs vi obtained by (36) make all
the tracking error vectors zi to be asymptotically stable.
proof: Since G which is chosen as (37) has a unique pseu-
doinverse (or inverse in square system case) matrixM, all the
pseudo-inputs of vis can be described as a linear combinations
of control inputs as (34). Because it has already proven that
respective vi which is idententical to

∑p
j=1 mi,juj stablizes

the Lyapunov function Vi asymptotically in Lemma 3,
it is trivially true that linear combination of control inputs∑p

j=1 mi,juj also drive the Lyapunov function Vi to zeros as
time goes on. Therefore, it can be easily concluded that the
total Lyapunov function, defined as V =

∑q
i=1 Vi, is also

asymptotically stable. ■
Remark 1: By introducing pseudo controls, denoted as vi,

for tracking specific system outputs and by generating the
actual control inputs as linear combinations of these vi terms,
a new, streamlined control algorithm has been presented.
This algorithm is designed to work effectively with both
square and non-square MIMO nonlinear systems. One of the
key merits of our proposed control formula is its systematic
approach that remains consistent, irrespective of the type of
system under consideration. Moreover, the stability analysis
required for this algorithm is notably straightforward.
Remark 2: As elaborated in the introduction, the proposed

output-feedback controller mitigates the impact of unstruc-
tured uncertainties in the system, delineated by equation (1),

through the overestimation of time-derivatives of the signal
ai(t) up to its rith order, using HOSDs. This strategy
not only estimates the time-derivatives of ai(t) but also
approximates the unknown functions inherent to the system
dynamics. As such, the necessity for employing NNs or
FLSs for approximating these unknown dynamics is obviated.
This elimination significantly simplifies both the control
algorithm and the stability analysis. This is particularly
noteworthy when compared to existing methods employing
NNs or FLSs, which significantly increase the system’s
dynamic order and complexity due to the introduction of a
multitude of tuning parameters.

IV. SIMULATIONS
In this section, the performance of the proposed output-
feedback controller, as well as its design simplicity, are
illustrated through three numerical simulation examples. All
the following simulations have been performed using Python
libraries such as NumPy, SciPy, and Matplotlib [42].

A. EXAMPLE 1
Consider the following nonlinear system, which has two
inputs and two outputs [31]:

ẋ1 = x1 + x2 +
x32
5

ẋ2 = x1x2 + x3 + u1 +
u31
7

+ 0.1 cos(0.01t) cos(x1)

ẋ3 = x1x2 + x3 + u1 + u2 +
u32
7

+ 0.1 cos(0.01t) cos(x3)

y1 = x1, y2 = x3 (45)

As observed in (45), the relative degrees of y1 and y2 are
r1 = 2 and r2 = 1, respectively. The desired output for y1 is
ψ1(t) = sin(t) and for y2 it is ψ2(t) = cos(t). The following
LTI filters, with c1 = c2 = 1, are established for y1:

ẇ1,1 = −w1,1 + w1,2

ẇ1,2 = −w1,2 + v1 (46)

and for y2:

ẇ2,1 = −w2,1 + v2 (47)

Values for v1 and v2 will be determined later as per (50). The
following HOSD is also established for y1:

eα1,1 ≜ a1 − α1,1
α̇1,1 = 10L1eα1,1 + σ1,1
σ̇1,1 = L1 sgn

(
eα1,1

)


eα1,2 ≜ σ1,1 − α1,2
α̇1,2 = 7L1eα1,2 + σ1,2
σ̇1,2 = L1 sgn

(
eα1,2

)
 (48)

and for y2:

eα2,1 ≜ a2 − α2,1
α̇2,1 = 10L2eα2,1 + σ2,1

σ̇2,1 = L2 sgn(eα2,1 )

 (49)
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TABLE 2. Calculated values of matrix M in (34).

FIGURE 1. Trajectories of y1(t) and desired output ψ1(t).

where a1 = z1 −w1,1 and a2 = z2 −w2,1, with the constants
L1 = L2 = 40 chosen. From (11), we have:

v1 = −σ1,2 − p2(w1,1,w1,2) − k1T ẑ1
v2 = −σ2,1 − p1(w2,1) − κ2z2 (50)

where the functions p1(·) and p2(·) are defined as per (18)
and (19), respectively. The parameters are chosen as κ1 =

κ2 = 20, with k1 = [400, 40]T derived from (28). Finally, the
control inputs are determined by using the matrix G (for the
case of p = 2, q = 2) as shown in Table 1, and are calculated
as per (39). All initial states for the LTI filters and HOSDs are
set to zero. The initial states for the controlled system (45) are
defined as x1(0) = −1, x2(0) = 1, and x3(0) = 0. Simulation
results are presented in Fig. 1 through Fig. 3. Figures 1 and 2

FIGURE 2. Trajectories of y2(t) and desired output ψ2(t).

demonstrate that the system outputs track the desired outputs
quite well after a brief transient period. The two control inputs
are also depicted in Fig. 3.

B. EXAMPLE 2
In this section, we consider the following nonlinear system,
which has three inputs and two outputs [34]:

ẋ1 = x2
ẋ2 = x1 + x22 + x3 + 3u1 + u2 + u3 + 0.5 sin(t)

ẋ3 = x1 + 2x2 + 3x3x1 + u1 + 2(2 + 0.5 sin(x1))u2
+ 2 sin(x1)u3 + 0.5 sin(t)

y1 = x1, y2 = x3 (51)

128532 VOLUME 11, 2023



J.-H. Park: Novel Output-Feedback Controller for Non-Square MIMO Nonautonomous Nonlinear Systems

FIGURE 3. Trajectories of control inputs u1(t) and u2(t).

The desired outputs are ψ1 =
π
30 sin(t) and ψ2 =

π
30 cos(t).

As observed in (51), the relative degrees of y1 and y2 are
r1 = 2 and r2 = 1, respectively. Consequently, LTI filters
(46), (47) and HOSDs (48),(49) are identical to those in the
previous example. The design parameters are set to c1 = c2 =

1, L1 = L2 = 100, and κ1 = κ2 = 10. Thus, k1 = [100, 20]T

can easily be derived from (28). ThematrixG is selected from
Table 1 as follows:

G =

1.1 1
1, 1.1
1 1

 (52)

This results in:

u1 = 1.1v1 + v2
u2 = v1 + 1.1 v2
u3 = v1 + v2 (53)

All initial states of the LTI filters and HOSDs are set to zero,
as before. The initial states of the controlled system (45) are
x1(0) = 0.1, x2(0) = 0.1, and x3(0) = 1.
Simulation results are shown in Figures 4 through 6.

Figures 4 and 5 illustrate that the system outputs converge to
the desired outputs effectively after a brief transient period.
All three control inputs are depicted in Figure 6.

C. EXAMPLE 3
Consider a ball-and-beam system as depicted in Fig. 7. Its
dynamics are described as follows [33]:

ẋ1 = x2

FIGURE 4. Trajectories of y1(t) and desired output ψ1(t).

FIGURE 5. Trajectories of y2(t) and desired output ψ2(t).

FIGURE 6. Trajectories of control inputs u1(t), u2(t), and u3(t).

ẋ2 = u

ẋ3 = x4
ẋ4 = B(x3x22 − 9.8 sin(x1)) (54)

Here, x1 is the angle of the beamwith respect to the horizontal
axis, x2 is the angular velocity of the beam, x3 is the position
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FIGURE 7. ball-and-beam system.

of the ball, and x4 is the velocity of the ball. The constant B,
used in the simulation, is set to 0.7143. The control objective
is to regulate y1 = x1 and y2 = x3 to zeros using only one
control input, u. The relative degrees of the outputs y1 and
y2 are r1 = 1 and r2 = 3, respectively. Therefore, we define
the LTI filter and HOSD for y1 as follows:

ẇ1,1 = −w1,1 + v1 (55)

eα1,1 ≜ a1 − α1,1
α̇1,1 = 10L1eα1,1 + σ1,1

σ̇1,1 = L1 sgn(eα1,1 )

 (56)

and those for y2 are

ẇ2,1 = −w2,1 + w2,2

ẇ2,2 = −w2,2 + w2,3

ẇ2,3 = −w2,3 + v2 (57)

eα2,1 ≜ a2 − α2,1
α̇2,1 = 10L2eα2,1 + σ2,1

σ̇2,1 = L2 sgn(eα2,1 )


eα2,2 ≜ σ2,1 − α2,2

α̇2,2 = 7L2eα2,2 + σ2,2
σ̇2,2 = L2 sgn(eα2,2 )


eα2,3 ≜ σ2,2 − α2,3

α̇2,3 = 5.5 L2eα2,3 + σ2,3
σ̇2,3 = L2 sgn(eα2,3 )

 (58)

In these equations, the design constants are chosen to be L1 =

L2 = 20. The pseudo-inputs are determined from (11) as:

v1 = −σ1,1 − p1(w1,1) − κ1z1
v2 = −σ3,1 − p3(w2,1,w2,2,w2,3) − kT2 ẑ2 (59)

The values for the constants are κ1 = 40, κ2 = 10
(k2 = [1000, 300, 30]T ). The gain matrix is chosen as
G = [1.1,−1], yielding the actual control input as:

u = 1.1v1 − v2. (60)

Note that the matrix G chosen here differs from the one in
Table 1. The selection of G = [1.1,−1] instead of [1.1, 1]
was made because the control gain for y2 is not strictly
positive. All initial states of the LTI filters and HOSDs are
set to zero. The initial state vector of the system is x =

[ π30 , 0, 0.3, 0]
T . Simulation results are shown in Figures 8

through 10. Figures 8 and 9 demonstrate that the system

FIGURE 8. Example 3: trajectories of y1(= x1).

FIGURE 9. Example 3: trajectories of y2(= x3) and desired output ψ2(t).

FIGURE 10. Example 3: trajectories of control inputs u(t).

outputs y1 = x1 and y2 = x3 are effectively regulated to zero
after a short transient period. The control input u is depicted in
Figure 10. These simulation results suggest that the proposed
controller can be effectively applied to a system where the
control direction is not strictly positive, provided the matrix
G is appropriately chosen.

V. CONCLUSION
This paper introduces a novel output-feedback controller for
MIMO nonautonomous nonlinear systems with unstructured
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uncertainties. The proposed control algorithm is applicable to
both square and non-square MIMO systems in a consistent
manner. Despite the controlled system remaining largely
unknown and nonautonomous, we assume the relative
degrees of each output to be known. Furthermore, we operate
under the assumption that the dominant control inputs
pertaining to specific system outputs remain unknown.
The controller proposed in this study employs the HOSD,
enabling the monitoring of time-derivatives of compound
signals composed of output tracking errors and filtered
pseudo-inputs. The control inputs are computed as uncom-
plicated linear combinations of these pseudo-inputs. As a
result, this design strategy culminates in an output-feedback
controller that not only possesses minimal complexity, but
also effectively compensates for unstructured uncertainties
without resorting to universal approximators such as NNs
or FLSs. Furthermore, the strategy significantly reduces the
number of design constants. Our theoretical analysis reveals
that all output tracking errors asymptotically approach zero.
This finding is further substantiated by numerical simulations
conducted on three representative MIMO systems, thus
effectively highlighting the effectiveness of the proposed
controller.

In future work, the proposed controller could be extended
to systems with more relaxed conditions, such as those with
unknown relative degrees or uncertain signs of input gains.
It could also be applied to the design of controllers for
practical MIMO systems like robotic arms or wind energy
conversion systems.
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