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ABSTRACT Road Pavement Condition Monitoring (RPCM) is indispensable for proactive maintenance,
especially amidst increasing traffic and unpredictable weather patterns. The demand for cost-efficient
solutions leveraging emerging technologies such as the Internet of Things (IoT), Machine Learning (ML),
and cloud computing is increasing. This work examines the evolution of RPCM solutions, examines the
challenges, and proposes future improvements. An extensive literature review is presented which exposes
the challenges with existing RPCM solutions. The assessment criteria are the sensory platform, algorithms
employed, detected road deformities, and performance. The approaches employed in RPCM are examined
including their advantages and limitations. A holistic assessment of RPCM methodologies is presented
which includes threshold, dynamic time warping, computer vision, and ML approaches. It is determined
that smartphone-based monitoring solutions incorporating data acquisition and ML are superior to other
methods. Future research directions are presented considering the limitations of existing solutions and the
goal of cost-effective and efficient RPCM solutions.

INDEX TERMS Cloud computing, computer vision, Internet of Things (IoT), machine learning, road
monitoring, sensors.

ABBREVIATIONS
Acc Accelerometer.
AI Artificial Intelligence.
Ard Arduino.
AWS Amazon Web Services.
Cam Camera.
CNN Convolutional Neural Network.
DNN Deep Neural Network.
DT Decision Trees.
EV Ensemble Voting.
GB Gradient Boosting.
GIS Geographic Information System.
GPR Ground Penetrating Radar.
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GPS Global Positioning System.
Gyro Gyroscope.
IoT Internet of Things.
IRI International Roughness Index.
IOVT Internet of Video Things.
ICT Information and Communications Technology.
KNN K-Nearest Neighbors.
LR Logistic Regression.
MLP Multi-layer Perception.
ML Machine Learning.
NB Naive Bayes.
NN Neural Network.
OBD On Board Diagnoistics.
PCI Pavement Condition Index.
PCR Pavement Condition Rating.
RPCM Road Pavement Condition Monitoring.
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RPi Raspberry Pi.
RPN Region Proposal Network.
SP Smartphone.
SVM Support Vector Machine.
TPR True Positive Rate.
USen Ultrasonic Sensor.

I. INTRODUCTION
Roads play a vital role in transportation facilitating safe and
efficient movement of people and goods [1]. Environmental
conditions such as rain, heat, moisture, snow, and water,
flooding, and human factors such as accidents, traffic
volume, overloading, construction quality, and maintenance
contribute to road deterioration [2], [3], [4], [5]. These
factors lead to the formation of cracks in the pavement,
whose size and dimensions vary as shown in Figure 1
[6]. If left unattended, these cracks can widen and deepen,
resulting in road deformities such as longitudinal cracks,
transverse cracks, alligator cracks, road bumps, and dents,
ultimately leading to potholes [7], [8]. Other impediments
such as manholes, bridge joints, railroad crossings, and
road bottlenecks also disrupt normal driving behavior
[9]. Although road deformities can take different forms,
pavement cracks are typically the earliest signs, and their
presence often precludes the development of more severe
deformities [7], [10].
Deteriorated roads contribute significantly to traffic con-

gestion, accidents, driver aggression, and vehicle damage, all
of which disrupt the smooth flow of traffic [8], [10], [11].
Potholes, in particular, have been identified as a major cause
of road accidents [2], [12], [13], [14], [15], [16], [17], [18].
According to the World Health Organization, traffic injuries
are a leading cause of death and disability globally, resulting
in over 1.3 million deaths and 20-50 million injuries annually
[12], [19], [20]. Poor road conditions, including potholes,
cracks, and uneven surfaces, increase the risk of accidents and
contribute to these alarming statistics [21].

Road Pavement Condition Monitoring (RPCM) has safety
implications as well as significant economic and productivity
impacts. Efficient transportation of goods and people relies
heavily on well-maintained roads, and disruptions or delays
can have adverse economic consequences [22], [23]. Poor
road conditions can lead to vehicle damage, increased
maintenance costs, and reduced productivity for businesses
[3], [10], [19], [24], [25], [26]. Moreover, congestion
resulting from road closures or repairs can cause delays and
higher transportation costs, hampering economic efficiency
[27], [28]. Therefore, RPCM is crucial for identifying and
prioritizing repairs, minimizing disruptions, and ensuring the
smooth flow of goods and people.

Data-driven preventive maintenance schedules based on
RPCM can greatly enhance road quality and conserve energy.
For instance, road roughness increases energy losses caused
by Pavement-Vehicle Interaction (PVI). Implementing road
remediation solutions that reduce such losses by 50% would

improve vehicle fuel economy by 2%, thereby decreasing
energy consumption and greenhouse gas emissions [29].
Crowdsensing for RPCM has gained attention due to its
ability to harness diverse technologies and provide cost-
effective solutions. By leveraging crowd-contributed data
and advancements in the Internet of Things (IoT), Artificial
Intelligence (AI), and cloud computing, monitoring and
assessment of road conditions can be enhanced, leading
to improved road safety, fuel efficiency, and environmental
sustainability.

A. RESEARCH CONTEXT
With advancements in Information and Communications
Technology (ICT), RPCM has transitioned from manual
inspection to automated monitoring. The IoT has facilitated
RPCM through the integration of devices including sensors
[30], [31], [32]. The increasing number of IoT devices
which now exceeds 30 billion presents new opportunities
for Intelligent Transportation Systems (ITS) in general [33],
[34], [35], [36] and RPCM in particular [30], [31]. Real-
time information about road conditions can be shared with
authorities to enable timely repair of damaged road surfaces.
RPCM solutions typically employ one of the three data
acquisition methods given below [37].

1) 1D Time-Series Data Acquisition: This method
employs low-cost sensors such as accelerometers,
magnetometers, gyroscopes, and GPS to collect vibra-
tion, tilt, velocity, orientation, and location data. The
widespread adoption of smartphones with embedded
sensors has made it cost-effective to crowdsource
personal sensing platforms for RPCM. These platforms
collect data on road surfaces which is then transferred
to a cloud platform for further processing and storage.
The results can be used to identify road anomalies
such as potholes, cracks, and bumps. GPS data allows
for the precise mapping of these anomalies on mobile
maps, enabling drivers to adjust their routes and speeds
accordingly.

2) 2D Visual Data Acquisition: This method involves
the use of cameras to capture visual data. The
performance depends on the quality and resolution
of the camera used. This approach allows for the
extraction of dimensions, including length, width, and
pattern, of road anomalies [38]. However, it relies
heavily on camera calibration and orientation, which
can be challenging in practice.

3) 3D Depth Data Acquisition: This method utilizes Light
Detection and Ranging (LiDAR), Ground Penetrating
Radar (GPR), laser, and thermal imaging sensors to
acquire 3D depth data [3], [13], [14], [24], [30],
[39]. In addition to the parameters extracted from
images, this method can provide depth information
about road anomalies. LiDAR, in particular, is gaining
in popularity for RPCM due to its high accuracy and
resolution at a relatively low cost. However, weather
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and environmental conditions like rain, snow, and fog
can impact the effectiveness of this method.

Table 1 presents the types of sensors employed. The sensors
commonly used in the literature are camera, thermal, laser,
vibration and GBR, and the advantages and disadvantages are
given in the table. These results indicate that the most cost
effective solution is using vibration sensors.

In the literature, vibration sensors and image processing
are the most commonly employed strategies for RPCM.
However, regardless of the sensor type, GPS data is essential
for locating road deformities [8], [10], [30]. Techniques such
as image and videography analysis, as well as laser spec-
troscopy, are used to detect and analyze potholes, including
depth, size, volume, and shape [14]. This information can be
used to determine suitable maintenance measures. Therefore,
selecting an appropriate sensingmethod is crucial, and should
consider the application requirements and limitations of each
method.

In recent years, crowdsensing has emerged as a promising
solution for RPCM due to the widespread availability of
personal sensing platforms such as smartphones which
have the potential to collect data on a large scale [15],
[40]. Crowdsensing offers a more efficient, cost-effective,
and scalable approach compared to traditional methods for
collecting data on road pavement conditions. Furthermore,
it can be used for real-time data collection and can gather data
from a wider range of locations. Smartphones with GPS can
provide more precise and comprehensive information on road
conditions than traditional methods. Thus, crowdsensing is a
very promising methodology for RPCM by providing real-
time, cost-effective data collection with broad coverage and
detailed information.

B. SCOPE AND OBJECTIVES
Several literature reviews have considered aspects of RPCM
[18], [37], [41], [42], [43], [44], [45], [46], but they have
a narrow focus, i.e. sensor platforms, individual sensors,
and specific road anomalies [18], [41], [45], or software
related to RPCM [42], [43]. Thus, there is a need for a
survey considering the wider applicability of crowdsensing
for RPCM within a real-world context. This study satisfies
this need by providing a comprehensive investigation of
crowdsensing for RPCM. The specific objectives are as
follows.

1) Determine the trends and limitations inherent in the
using crowdsensing for RPCM.

2) Assess the cost-effectiveness and feasibility of employ-
ing crowdsensing for RPCM.

3) Evaluate the performance and reliability of data derived
from crowdsensing in the context of RPCM.

4) Provide recommendations for future development and
deployment of crowdsensing solutions for RPCM.

Addressing these objectives will yield valuable insights to
guide both researchers and practitioners in improving the
efficiency and effectiveness of RPCM. The significance of
this study lies in its potential to contribute to the improvement

of road networks, traffic flow, and transportation systems
in general, as well as the associated societal benefits.
This will alleviate traffic congestion, reduce accident rates,
and decrease vehicle emissions. The cost-effectiveness,
feasibility, and reliability of crowdsensing for RPCM will
also be examined. These results will inform the design and
implementation of precise and efficient solutions, leading to
safer and more sustainable road infrastructure.

The remainder of this paper is organized as follows.
Section II presents an overview of the literature review
conducted including search terms, research questions, and
criteria for selecting articles for inclusion. In Section III, the
methodologies employed in RPCM are discussed, highlight-
ing their strengths and limitations. Section IV presents an
examination of future research directions. Finally, Section V
provides a summary of the results obtained.

II. LITERATURE REVIEW
In this section, a literature review is presented for the
analysis of the research on crowdsensing for RPCM. The
goal is to gain insights into the potential of crowdsensing
for use in real-world scenarios. The review process involves
research questions, search strategy, and paper inclusion and
exclusion criteria. This process will identify relevant studies
that address the research questions and contribute to the
advancement of RPCM using crowdsensing technologies.

A. RESEARCH QUESTIONS
The following questions were considered to guide the
literature review on crowdsensing for RPCM.

1) What types of sensing platforms are used for RPCM
through crowdsensing?

2) Which AI and ML algorithms are being employed with
these platforms?

3) What type of road anomalies are being detected and
what is the performance?

4) What are the challenges, limitations, and opportunities
associated with the current methods used for RPCM?

By answering these questions, the literature review provides a
comprehensive overview of the state-of-the-art technologies
and methodologies used for RPCM.

B. SELECTION CRITERIA
The following criteria were used in deciding to include a
paper in the literature review.

1) The paper must provide answers to the research
questions.

2) The paper must have been published between 2017 and
2022.

3) The paper must be published in English.
4) The paper should be readily available online.
5) The paper should contain a sufficient number of

references from reliable sources.
6) The paper must appear in the Web of Science and/or

Scopus databases.
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TABLE 1. Sensor technologies used for RPCM.

7) Either the IoT or a smartphone must be used for data
collection. Papers that only present algorithms were
excluded.

C. RESULTS
A systematic search was first conducted in pertinent
databases to ensure all relevant work was considered. The
search was confined to papers published between January
2017 and December 2022, and papers whose titles did not
align with the focus on IoT and RPCM were excluded.
A total of 320 papers were initially identified. Then,
39 duplicate studies were removed, followed by the exclusion
of 164 additional papers based on a detailed evaluation of
their titles and abstracts. The full text of the remaining
117 papers was examined and 58 papers were selected.
An additional 17 papers were added through a snowballing
technique resulting in 75 papers being included in this
study. The selection process is illustrated in Figure 2.
The distribution of the selected papers for RPCM using
crowdsensing is given in Figure 3. Although crowdsensing
based RPCMhas been explored in the past, these results show
a significant increase in interest over the last five years with
about 60% of the publications in 2020.

III. SENSING PLATFORMS FOR RPC MONITORING
This section examines crowdsensing for RPCMby leveraging
accelerometer and gyroscope sensors along with IoT solu-
tions. Mobile applications or platforms allow individuals to
capture road vibration andmotion data while in vehicles. This
data can be transmitted to a central server or cloud platform

for analysis to identify and characterize anomalies including
potholes, cracks, and bumps, as illustrated in Figure 4. The
integration of GPS data from smartphones plays a pivotal role
in accurately locating road anomalies on road network maps.
This spatial information allows authorities and maintenance
teams to prioritize areas requiring immediate attention and
repair. Sensing platforms often employAI andML algorithms
to detect road anomalies through crowdsensing as discussed
below.

A. THRESHOLD-BASED MONITORING
Crowdsensing for RPCM using sensors including accelerom-
eters, magnetometers, gyroscopes, and USens has become
popular [22]. Threshold-based methods, known for their
computational efficiency, involve setting limits or thresholds
for parameters such as roughness, texture, and cracking.
By integrating these sensors with personal sensing platforms
like smartphones, real-time monitoring of road surface
conditions becomes possible, enabling the detection of
anomalies such as potholes, cracks, and bumps. The collected
data is then transmitted to a cloud platform for further
processing and storage. While threshold-based monitoring
has its limitations, such as not considering all factors that
affect road surface quality, it enables the monitoring of
a larger number of roads and the efficient detection of
anomalies [22]. The threshold-based methods are presented
in Table 2 and discussed below.
Ultrasonic Sensors (USens) are commonly used tomeasure

the distance between a vehicle and the road for RPCM
applications [22]. In [22], USen data was employed to
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FIGURE 1. The paper selection process.

FIGURE 2. Literature survey distribution for 2017-2022.

detect and measure potholes. The data is streamed to
an AWS platform to alert drivers through a mobile app.
In [47], the location of detected potholes was marked
on Google Maps and shared with drivers via a mobile
app. The height and depth of road abnormalities were
estimated in [48] in addition to detecting potholes. In
[49], an intelligent road damage detection system called
TRACTS-Net was presented that leverages USens for pothole
detection.

Numerous RPCM solutions have been proposed that use
accelerometer vibration data as the primary input [8], [13],
[14], [21], [50], [51]. For example, the vehicle-as-a-sensor
solution presented in [8] was used to classify road pavement
into different categories, e.g. smooth, rough, and bumpy,
and detect potholes. The sensor data is transmitted to the
OneM2M cloud platform. An Android app solution was
proposed in [50] that streams pothole information to a web

application developed in Scala Play to provide information
to drivers. In [51], a road ride quality score was obtained
using accelerometer data in the x, y, and z directions. Data
cleansing and time synchronization with GPS were used
to ensure accurate results. A score was then assigned to
road sections and displayed on a web interface for driver
access. An embedded system with environmental sensors
was used in [13] to monitor vehicle emissions. The data
obtained is streamed to the AWS cloud platform for analysis
and user notification. In [21], smartphone sensors and an
OBD-II device were used to detect vehicle speed, RPM,
vibrations, and orientation. A z axis threshold algorithm was
developed to classify potholes and other anomalies. In [14],
an intelligent real-time pothole detection and warning system
was proposed for two-wheelers. It records the location,
severity, and images of potholes, and this data is sent to a
cloud server for analysis.
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FIGURE 3. Crowdsensing for RPCM using a sensing platform.

TABLE 2. Threshold-based methods for RPCM.

B. DTW
DTW (Dynamic Time Wrapping) is a technique used
in crowdsensing-based RPCM to detect and track road
conditions. It is a distance measuring method that matches
time series data considering variations in speed or timing
between sequences [40], [52]. In the context of RPCM,
DTW is employed to compare vibration signals from vehicles
traveling on a road with reference signals representing a
smooth road surface. Deviations or disparities between the
collected vibration and reference signals can be identified
and labeled as potholes or road anomalies. This facilitates
accurate detection and tracking of potholes in real-time,
allowing road maintenance authorities to promptly address
and repair damaged sections of the road network. The

methods that employ DTW are presented in Table 3 and
discussed below.

A scalable platform for pavement sensing, data analytics,
and visualization was presented in [29]. It employs an
embedded system to collect road condition data, and DTW
is used to detect road anomalies such as potholes, cracks, and
bumps. The collected data is processed and visualized in real-
time on a dashboard to provide a comprehensive overview of
the pavement condition. The data is stored on AWS to allow
further analysis for the detection of road surface anomalies.

A comparison between two types of embedded systems
(ARM Cortex MQ and RPi), and a smartphone-based
Android app was conducted in [31]. The variations in
International Roughness Index (IRI) values obtained from
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these systems were explored, and it was found that the
placement of the monitoring system, with the smartphone
mounted on the vehicle dashboard and the embedded
system mounted on the vehicle axle, affected these values.
This highlights the significance of the placement and
orientation of the monitoring system when assessing road
conditions. An embedded solution for RPCM specifically
designed and installed on a bicycle was introduced in
[55]. To ensure accurate results, the sensed data underwent
cleansing using envelop detection and offset correction
methods. The selected road was divided into distinct seg-
ments, and polynomial curve fitting techniques were applied
to each segment to provide the corresponding pavement
condition.

An SP app to assess and map road surface roughness was
developed in [26]. Road surface roughness was classified into
four categories and an accuracy of over 90% was achieved
compared to data from a vehicle-mounted laser pavement
scanner. These results demonstrate the potential of smart-
phones as cost-effective tools for evaluating road conditions
and assessing road surface roughness accurately. A math-
ematical model for road pavement condition classification
was proposed in [56] to distinguish between good, poor,
and bad conditions. The model employs multiple parameters
including z-axis data from accelerometers, vehicle speed
and width, and tire width. To examine the variations in
accelerometer parameters, a road was selected for field
testing and divided into segments. The segments contained
anomalies such as potholes and road surface irregularities,
as well as raised crosswalks and bridge entry/exit points.
The relationships between speed and z-axis data, and road
elevation and z-axis data, were explored.
A mobile app was presented in [30] that employs a

mathematical model incorporating noise filtering to mitigate
the effects of SP motion. It effectively tracked y axis
accelerometer variations to detect road surface irregularities
and potholes. The app was tested on different road types,
including straight, ascending, and descending roads, and
demonstrated accurate detection of irregularities and pot-
holes. In [58], a method for detecting and classifying road
surface quality was presented which employs an accelerome-
ter mounted on a vehicle. Vibration data was processed using
a Butterworth low-pass filter followed by feature extraction
and classification of road quality. This method was shown
to be effective in identifying road conditions such as cracks,
potholes, bumps, and surface (e.g. dirt, paved, and rough).
Amethod for road condition characterizationwas proposed in
[40] that uses SP gyroscope data. The variance of gyroscope
rotation was shown to be a reliable indicator of road pavement
condition. The DTW algorithm was then employed to detect
potholes by comparing the vibration signals with reference
signals, and real-world data was used to demonstrate the
effectiveness of the proposed method.

An embedded solution for RPCM which focuses on
accident detection and prevention was introduced in [60].
The module is installed in vehicles and data mapping is

used to analyze sensor data, including GPS and accelerom-
eter data, for accident detection and monitoring the road
condition. DTW is employed to classify road anomalies,
such as speeders and potholes, based on vehicle speed
and acceleration. An IoT-based road surface sensing and
communication system was presented in [59] to monitor
and analyze road conditions for safe driving, particularly in
adverse weather conditions like rain, flooding, and snow.
The system incorporates multiple sensor nodes deployed
across the road network. These nodes gather data on road
surface state such as temperature, humidity, and friction
coefficient. This data is transmitted wirelessly to a central
server where it is analyzed to generate road surface state
information. The system enables drivers to be alerted about
hazardous conditions and assists authorities responsible for
road maintenance in making informed decisions. The use
of non-contact microwave sensing for uniform distribution
of salt on icy roads was examined in [57] using Frequency
Modulated Continuous Wave (FMCW) signals reflected by
the road surface. The proposed system has the potential to
improve road safety and reduce maintenance costs for road
infrastructure.

C. MACHINE LEARNING
ML techniques are now widely employed for crowdsensing-
based RPCM. The methods presented in Table 4 highlight
the effective use of crowd-sourced data, SP technologies,
sensors, and ML algorithms to achieve accurate detection
and classification of road anomalies. In this table, the
performance indicated is Accuracy (A), Precision (P), Recall
(R), and F1 score (F1), and the technique providing the best
performance is denoted by *. This table indicates the diversity
of contributions to enhancing road safety and maintenance
practices.

In [24], an embedded system utilizing RPi was employed
to stream sensed parameters to a local server for analysis.
It incorporates the K-means clustering algorithm to classify
road data into two classes, enhancing pothole detection.
Another embedded solution for pothole detection was
proposed in [61] that uses the K-means clustering algorithm.
This solution employs amodule that connects to a smartphone
via Bluetooth to capture images of potholes. The data and
images are then streamed to a central government server for
analysis to support road maintenance. An IoT-based real-time
application for road pothole detection and classification was
introduced in [17]. The system incorporates a data processing
unit that employs the K-means clustering algorithm to predict
road conditions. A mobile app is also provided for users
to report road conditions. The system effectiveness was
evaluated using a dataset collected from sensors placed on
a test road section. A crowdsourcing solution for abnormal
road surface estimation using a Gaussian background model
was proposed in [62]. The solution employs the K-means and
K-medoids algorithms for data clustering, and the K-means
algorithm was reported as more suitable.
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TABLE 3. DTW methods for RPCM.

A method that leverages crowd-sourced data from mobile
devices was proposed in [15]. Low-pass filtering and a lane
detection algorithm are used to eliminate high-frequency
noise and separate data from different lanes. SVM is then
employed to classify road regions with potholes. D&RSense
was proposed in [63] as a solution for bike riders. It uses
four smartphones and two bikes to build the dataset. SVM is
employed for pothole and road surface irregularity detection,
and an impressive accuracy of 95.4% was achieved. In [10],
multiple sensor nodes were mounted on test vehicles to
capture real-world road data. Statistical, time, and frequency
domain features were extracted to distinguish road anomalies,
and SVMwas utilized for classification, yielding an accuracy
of 90%. A Virtual Road Network Inspector (VRNI) was
developed in [64] to continuously monitor, detect, and locate
potholes based on adaptive one-class SVM models with
vertical and lateral acceleration data as inputs. This method
consistently achieved a high detection rate of 97.5% with a
low false alarm rate of 4%. An IoV-fog-cloud framework was
proposed in [16] to detect road anomalies. This framework
combines sensors, edge devices, fog nodes, and cloud servers
to collect and analyze data on road anomalies in real-
time. The SVM-based Non-Linear Anomaly Detection and
Diagnosis (SVM-nAVDD) approach was employed, and the
results demonstrate that it can detect and classify road
anomalies with an average precision of 91% and accuracy of
92% in depth/height detection.

The accelerometer in smartphones was used in [65] to
capture vehicle vibrations and a data mining algorithm
based on Gaussian modeling was employed to detect road
abnormalities. x − z ratio filtering was used for event
classification to distinguish between potholes and humps.
An algorithm was also developed to estimate severity based
on the relationship between vertical acceleration and relative

vertical displacement of the vehicle. An embedded solution
using integrated accelerometers and USens for pothole and
hump detection was presented in [25]. Accelerometer data
was combined with ultrasonic data to address variations in
signal magnitude caused by road roughness. Honey Bee
Optimization was employed to optimize the sensor data.
A pothole detection solution was introduced in [66] and
evaluated using a publicly available dataset. A fast greedy
clustering algorithm was used to group pothole candidates
and an accuracy of 80% was achieved in classifying potholes
into seven classes, namely small potholes, large potholes,
pothole clusters, drain pits, gaps, bumps, and road surface
irregularities. A cost-effective and computationally efficient
model to categorize potholes and bumps using SP data
was proposed in [67]. A CNN approach to analyzing SP
accelerometer data and road images for pothole detection
was proposed in [68]. An impressive F1 score of 89.9% was
obtained. In [69], an edge computing system was introduced
that uses CNN-based real-time classification of acoustic
data from road surfaces. The system classifies road surfaces
as good, ruined, silent, or unknown, and an accuracy of
90% was achieved. A real-time road condition assessment
solution called LiRAwas proposed in [70]. It employs vehicle
sensors to detect road anomalies from abnormalities in
vehicle movement. Although still under development, LiRA
aims to become a comprehensive pavement management
system.

1) COMPARATIVE STUDIES
In [23], a solution for road pavement monitoring in Indonesia
was proposed. A vehicle was driven at various speeds on
a test road to obtain pavement data. Two ML algorithms,
SVM and DT, were employed and it was found that SVM
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TABLE 4. ML-based methods for RPCM.

achieved a higher accuracy of 98%. An Android app for
RPCM was proposed in [71]. Three ML algorithms, namely
SVM, CNN, and MLP, were considered to classify road
sections as normal, patched, bad, pothole, or bumpy. The
results indicated that SVM achieved the highest accuracy
of 98%, outperforming CNN and MLP which had 96% and
68% accuracy, respectively. A low-cost system for RPCM
was presented in [72] that utilizes ML algorithms to classify
road anomalies. GPS and accelerometer sensors were used to
collect road surface condition data which was then processed
using the SVM, RF, and KNN algorithms. The performance
was evaluated using a dataset of road anomalies collected on
a test route, and SVM achieved the highest TPR of 95.2%,
while NB, RF, and KNN achieved TPRs of 92.4%, 78.6%,
and 88.1%, respectively.

An edge computing solution called DeepBus was intro-
duced in [2] for pothole detection and reporting. Eight ML
models were considered including LR, SVM, KNN, NB, DT,

RF, and EV, and RF achieved the highest accuracy of 86.8%.
An SP app was developed in [52] to collect sensor data while
driving to identify potholes using ML algorithms. Features
based on accelerometer and gyroscope data were used to
distinguish between normal road conditions and potholes.
MLmodels including LR, SVM, andRF, were considered and
RF provided the best pothole classification with a precision
of 88.5% and a recall of 75.0%.

In [76], a SP application was presented that utilizes built-in
sensors to classify roads based on their condition, specifically
good, moderate, and poor. The threshold, KNN, and NN
algorithms provided road pavement classification accuracies
of 72.3%, 85.3%, and 90.2%, respectively. Field testing
showed that the NN model achieved an accuracy of 84%.
An IoT-based system was presented in [77] which employs
Ard, an IMU sensor, and GPS to detect road conditions.
Multiple sensor nodes were placed on vehicles to collect data
and transmit it to a central server for analysis. The threshold
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and NN algorithms achieved accuracies of 82% and 86%,
respectively.

In [27], a data mining approach was presented that lever-
ages GPS and accelerometer data to identify road anomalies.
The proposed methodology involves preprocessing the data
followed by feature extraction. The GB, DT, MLP, and
NB algorithms were used to evaluate the performance.
An intelligent IoT-based accident avoidance system was
proposed in [20] for adverse weather and road conditions.
The goal is to use publicly available data to detect hazardous
road conditions such as snow, ice, and heavy rain and
assess their impact on road accidents. Five ML algorithms,
namely NB, Random Forest (RF), LR, SVM, and DT, were
employed to classify the data, and they provided accuracies
of 92%, 91.5%, 91%, 90%, and 86%, respectively. In [19],
the SP application Roadsense was developed to estimate
road conditions using accelerometer and gyroscope data.
Signal processing techniques were employed to extract
features that indicate the road condition. The C4.5 DT,
SVM, and NB algorithms were employed to estimate road
conditions using these features. The reported accuracies for
C4.5 DT, SVM, and NB were 98.6%, 95.3%, and 96.9%,
respectively.

D. COMPUTER VISION ALGORITHMS
The rapidly evolving field of computer vision, combined with
advancements in IoT, deep learning, and image processing
techniques, has opened up new possibilities for RPCM.
These approaches have shown promising results in accurately
identifying and monitoring road anomalies such as cracks,
potholes, and other pavement defects. Table 5 presents the
computer vision-based methods for RPCM and they are
discussed below. In this table, the performance indicated
is Accuracy (A), Precision (P), Recall (R), and F1 score
(F1), and the technique providing the best performance is
denoted by *.

Several computer vision-based solutions have been pro-
posed for road anomaly detection. An IoVT approach
incorporating a deep learning model was utilized in [78] to
detect potholes in road images with an impressive accuracy
of 99%. The system captures road images with a sensor
node and processes them using OpenCV and TensorFlow.
The embedded solution proposed in [38] employs IR images
captured by a Kinect sensor and image processing to estimate
the depth and severity of potholes. The results are then
streamed to Dropbox for further analysis. In [79], an image-
based solution was presented for pothole classification and
open manhole detection. This system uploads images to a
web server for use by the general public. Road anomalies
are classified at predefined intervals and the authorities are
contacted as necessary. In [67], a solution for edge-based
crack detection was introduced. It combines a crack detection
model called Real-time Segmentation using Effective Feature
Extraction (Rsef) with edge computing on the NVIDIA
Jetson TX2 platform. This model is based on EfficientNet

and U-Net, and employs semantic segmentation for crack
detection. The edge-based system, called Rsef-Edge, uses
both an IoT device and an edge server with a powerful GPU.
It was shown to significantly reduce latency by a factor of up
to 17.4 without sacrificing accuracy (reported to be 97.3%).
This makes it an ideal solution for performance-limited IoT
devices that require low latency. In [81], an IoT-enabled
system for pothole and road crack detection was presented.
This system consists of a hardware module that uses image
processing to detect potholes and road cracks. The detected
anomalies are then transmitted to a cloud server via Wi-Fi for
further analysis. A web application is employed for real-time
notification.

Several approaches that leverage the IoT and CNNs
for road crack and pothole detection have been proposed
[11], [82], [83], [84]. In [11], an IoT approach utilizing
BCD-CNN, a bio-inspired co-evolutionary deep-CNN, was
proposed for road crack detection. The model is trained
on road images captured by an SP camera and optimized
using BCD-CNN. The algorithm was evaluated with a
dataset of road images captured under different lighting
conditions and angles. An edge computing solution for
pothole detection employing a CNN was introduced in [83].
The CNN was trained on a large dataset of pothole images
using transfer learning. The system uses a Jenteson Nano and
an AI accelerometer for real-time processing of road images
collected from a moving vehicle. However, the accuracy of
this solution decreases as the vehicle speed increases. In [84],
a 6G-enabled connected vehicle framework was proposed
for intelligent road maintenance using deep learning data
fusion. This framework incorporates various sensing results,
including road images and accelerometer data, to monitor
road conditions. Data fusion is used to integrate data from
multiple sensors to improve the detection of potholes with
different sizes and shapes in a variety of environmental and
lighting conditions. An IoT-based system for road obstacle
detection and identification using a CNN was presented in
[85]. This system captures real-time road images with a
camera. IoT technology is used to notify relevant departments
of the presence of obstacles through a mobile application.
In [82], an IoVT solution mounted on the front of a
vehicle was proposed for road anomaly detection. Road
images captured by an RPi and camera were streamed to an
online database where a CNN algorithm was used to detect
anomalies.

The use of DNNs for pothole and road crack detection
was proposed in [3], [7]. In [3], a DNN learning-based
approach was presented for pothole detection using images
captured by a vehicle-mounted camera. A CNN is used
for image processing and an RPN is employed to identify
potential potholes. Road images were captured at a rate
of 5 to 6 frames per second using an automotive camera
integrated with the Nvidia DrivePX2 platform while the
vehicle was traveling at 60 km/h. Four DNN models, namely
Inception v2, ResNet101, Inception-ResNet v2, and SSD
Mobilenet v2, were considered and ResNet101 provided the
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TABLE 5. Computer vision-based methods for RPCM.

highest precision and accuracy. An embedded solution for
road crack detection and classification was proposed in [7].
Ten models were investigated including both shallow models
(RF, SVM, KNN, NB, and linear discriminant analysis) and
deep learning models (ResNet-50, Inception-v4, Inception-
ResNet-v2, and CapsuleNet). The performance of these
models was evaluated with and without preprocessing of
image data and Inception-v4 was identified as the best choice
with an accuracy of 91.7%.

In [4], an embedded solution for road pavement image
processing was presented. The system transmits road pave-
ment images to a local server via an SP Wi-Fi hotspot.
Image processing is performed on a workstation equipped
with a 2.1 GHz Intel Xeon Silver 4110 CPU and GPU cards,
including NVIDIA GV100 and TITAN V. The GoogLeNet,
VGG, DenseNet, deep convolution generative adversarial
network (DCGAN), LR, NB, and SVM algorithms were
considered, and the accuracy with and without image
preprocessing was determined. VCG achieved the highest
accuracy of approximately 88%.

IV. DISCUSSION AND CHALLENGES
In this section, the above results are examined with a focus on
their implications, limitations, and significance. We present
the trends in crowdsensing-based RPCM and then consider
the challenges identified and give research directions for the
future.

A. TRENDS
Crowdsensing-based RPCM has experienced a significant
increase in interest. The corresponding trends reflect the
evolution of RPCM and its applications. The major trends are
as follows.

1) Sensing Platforms: RPCM using dedicated IoT solu-
tions was previously considered but the widespread
use of smartphones has resulted in the development
of mobile apps for RPCM. This allows the general
public to report road anomalies encountered during
their daily travels. These apps can utilize sensors on
the smartphones such as the camera, accelerometer, and
GPS, to capture relevant data about road conditions.
SP-based RPCM is a cost-effective solution compared
to dedicated IoT-based solutions.

2) Data Aggregation and Analysis: The data collected
from SP users can be aggregated and analyzed to
identify road anomalies. ML and data mining tech-
niques are employed to process the large volumes
of crowdsensed data and extract insights. ML-based
solutions are increasing because of their accuracy and
cost-effectiveness compared to threshold and computer
vision solutions. Public cloud platforms are also being
utilized for data aggregation and analysis.

3) Real-time Monitoring and Alert Systems: One of
the key advantages of crowdsensing-based RPCM is
the ability to provide real-time monitoring of road
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FIGURE 4. Crowdsensing platforms and algorithms in the literature.

conditions. The data collected from a large number
of users can be leveraged by authorities to quickly
detect and respond to road anomalies. Alert systems
are used to notify relevant stakeholders such as road
maintenance teams and drivers about the presence of
road defects.

4) Integration with GIS and Mapping Systems: Crowd-
sensing data can be integrated with GIS and mapping
platforms to create interactive maps that visualize
the distribution and severity of road anomalies. This
integration enables better decision-making to prioritize
maintenance and optimize resource allocation.

5) Citizen Engagement and Participation: Crowdsensing-
based RPCM promotes citizen engagement by involv-
ing the public in monitoring and reporting road
anomalies. Their participation not only improves data
collection but also increases public awareness and
accountability regarding road conditions.

B. LIMITATIONS
While crowdsensing has emerged as a promising approach
for RPCM, it has limitations. In particular, crowdsensing-
based monitoring relies on user participation which can
be inconsistent and may not cover all areas of a road
network, leading to potential gaps in data coverage. However,

crowdsensing-based RPCM using GPS data remains a
valuable tool for identifying and addressing road surface
issues as it allows for the collection of real-time data that
can help authorities prioritize maintenance and repairs for
improved road safety.

1) GPS
GPS technology is commonly used to locate road anomalies
in crowdsensing-based RPCM. It employs a network of
satellites orbiting Earth to provide location information.
There are 27 satellites, with 24 in operation and three spares.
GPS was initially developed for military applications but it
has since been made available for civilian use [47]. A GPS
receiver in a device such as an SP obtains signals from
multiple satellites to calculate its location through a process
called trilateration. Distances from at least four satellites are
required to obtain accurate positions [47]. However, GPS-
based RPCM solutions have several limitations that need to
be addressed.

1) GPS Data Accuracy: The accuracy of GPS data can
vary depending on factors like signal strength and
environmental conditions. As a result, inconsistencies
may arise in the location data collected by different
users, making it challenging to precisely identify and
locate road anomalies [10].

2) Frequency Mismatch Between Accelerometer and
GPS Data: In crowdsensing-based RPCM, accelerom-
eters are often used to measure vehicle acceleration
which provides insights into road surface roughness.
Accelerometer data is typically collected at a frequency
of 100 Hz. In contrast, GPS data is commonly
collected at a much lower frequency, usually once per
second (1 Hz) [26], [52], [68]. This disparity in data
frequency can lead to synchronization issues, leading
to inaccurate road surface condition results [16].

3) Smartphone GPS Accuracy: The built-in GPS in
smartphones is generally less accurate than standalone
GPS devices. While using a separate GPS device
may offer greater accuracy, it also adds complexity
and increases costs. The accuracy of GPS location
data from smartphones can be affected by weather
conditions, the number of satellites available, and
obstructions like tall buildings. It is typical for GPS data
to have an error margin of 5 m or more [26], [27], [41].

2) VEHICLE SPEED
Crowdsensing-based RPCM solutions are limited by factors
such as vehicle speed [24], [65]. It can impact GPS data and
vehicle vibration intensity.

The accuracy of GPS data is influenced by the time interval
between consecutive updates, as they rely on satellite signals.
At higher speeds, vehicles travel greater distances between
GPS updates [16]. For instance, if a vehicle is traveling at
30 km/h with GPS updates every second (1 Hz), there will
be approximately 8.3 m between updates, while at 50 km/h,
60 km/h, and 80 km/h, it will cover approximately 13.9 m,
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16.7 m, and 22.2 m between updates, respectively. Thus,
as the vehicle speed increases, the distance between GPS
updates becomes larger, potentially reducing the accuracy in
locating road anomalies.

Vehicle vibration can also affect the accuracy of road
anomaly detection. Factors such as road condition, and
the vehicle suspension system and dynamics contribute
to these vibrations [8]. The vibration intensity will also
vary with speed. Higher speeds can amplify vibrations
and increase sensor noise, potentially degrading detection
accuracy. Therefore, it is crucial to consider the relationship
between vehicle speed and vibration when analyzing road
anomaly data. Accounting for the impact of vibrations on
sensor data and employing suitable mitigation strategies will
improve anomaly detection accuracy.

The effects of vehicle speed on GPS updates and vehicle
vibrations on detection accuracy should be considered
when developing crowdsensing solutions for RPCM. Under-
standing and addressing these limitations will improve the
accuracy and reliability of road anomaly detection systems.
Sensor sensitivity and data collection frequency should be
adjusted to ensure accurate and reliable data collection
irrespective of vehicle speed. It is also important to prioritize
the safety of the driver and other road users during data
collection by adhering to responsible practices.

3) SENSING PLATFORM PLACEMENT
The placement and orientation of the sensing platform within
a vehicle will affect the performance of crowdsensing-based
RPCM [8], [12], [41], [52]. For example, placing an SP on
the dashboard or a fixed location within the vehicle may
not accurately capture vehicle vibrations and movements,
resulting in incomplete and/or poor results [41]. An effective
strategy to mitigate this issue is to hold the SP or place it in a
specially designed holder attached to the vehicle suspension
system. Directly integrating the sensing platform with this
system will provide data that better reflects vehicle dynamics
thus improving road monitoring [51].
It is important to acknowledge the potential biases

introduced by using smartphones as sensing platforms.
Different SP models possess varying sensor capabilities and
sensitivities which can impact the quality and consistency
of the data collected [30], [41]. Further, accelerometer data
obtained from smartphones often contains noise which can
lead to inaccurate analysis. Thus, it is important to carefully
design the system for data collection and analysis taking into
account potential biases.

4) VEHICLE PARAMETERS
Vibration-based RPCM can provide significant advantages in
assessing pavement conditions. However, several factors can
impact the accuracy and reliability of this technique. These
factors include the test vehicle dimensions, weight, shock
absorbers, tire properties (width, tread, air pressure), and the
test road [86].

The effect of tire properties on vehicle vibrations and
thus RPCM accuracy has been reported in the literature.
Tire width and air pressure have a considerable influence on
these vibrations, so any changes can affect RPCM results.
In [86], an RPCM method was introduced that employs
a non-invasive Dynamic Tire Pressure Sensor (DTPS).
Comparison with results using conventional ground-mounted
accelerometers and directional microphones showed that
DTPS is a promising alternative. It is better at detecting
fluctuations due to tire pressure and eliminating environmen-
tal noise. Moreover, the ground acceleration obtained from
DTPS measurements is close to that with ground-mounted
accelerometers. The importance of tire-pavement interaction
for highway safety was examined in [87], particularly in the
context of autonomous driving and RPCM. In [88], an ANN
was used for RPCM and it was found that including data on
tire properties such as air pressure, tire type, and vehicle load
can improve classification accuracy.

Vehicle dimensions and weight play a role in RPCM since
they determine the force on the road surface. Heavy vehicles
will increase the vibrations while the force of light vehicles
may be insufficient to accurately measure the road condition.
In [89], a smartphone accelerometer was used to measure the
road roughness. It was concluded that the vehicle suspension
system plays an important role in RPCMbecause it affects the
vibrations experienced by the vehicle body. Air suspension
systems can produce different vibration results for a road
surface compared to traditional hydraulic shock absorbers
[90]. They are used in many vehicles because they provide
a more comfortable ride.

Avoiding road anomalies while driving can impact RPCM
as the data will be incomplete. Drivers tend to avoid potholes
as they can cause discomfort and potential damage to the
vehicle. However, this will affect RPCM accuracy, especially
when using accelerometer-based systems that rely on vehicles
passing over road anomalies to detect them [91]. For example,
it was found in [92] that careful drivers typically avoid road
anomalies such as potholes which makes automated RPCM
challenging. This can result in inaccurate road condition
assessment and hinder the ability to prioritize repair and
maintenance.

C. FUTURE RESEARCH DIRECTIONS
Crowdsensing has emerged as a promising approach for
RPCM due to its cost-effectiveness and the ability to collect
data using devices equipped with sensors like accelerometers
and gyroscopes [21], [56], [71]. However, the accuracy of
this data can be affected by several factors as discussed in
Section IV-B. These factors include GPS updates, vehicle
speed, vehicle parameters, and sensor platform placement.
To address the resulting limitations and improve the accuracy
of crowdsensing-based RPCM, it is important to collect
data from a large number of vehicles with different speeds,
types, and sensing platforms. By aggregating data from
multiple vehicles, it is possible to extract information on
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road conditions that is largely independent of an individual
vehicle and thus provide a more comprehensive and accurate
assessment of road conditions.

To mitigate the formation of costly and dangerous road
anomalies like potholes, a shift in focus is needed from
merely detecting specific anomalies to implementing pre-
ventive maintenance strategies. This involves detecting and
addressing the underlying factors contributing to anomalies
such as cracks and depressions. Environmental factors like
rain, humidity, and water seepage in road cracks can worsen
deformities and accelerate pothole formation. Therefore, it is
crucial to prioritize the detection and monitoring of minor
road anomalies such as cracks.

Future research should consider developing road pavement
condition indexing methods, specifically based on the IRI
and PCI. The IRI measures the smoothness of a road, with
lower values indicating better road quality. On the other hand,
the PCI provides an overall assessment of a road section on
a scale from 0 to 100, with higher values indicating better
road quality. Accurately determining road quality requires
considering surface anomalies such as cracks, swelling,
rutting, potholes, and depressions. The PCI incorporates the
type, severity, and number of anomalies present on the road
surface. Understanding and monitoring these factors makes
it possible to predict and prevent potholes and other surface
defects, leading to improved road maintenance practices.

In summary, future research in crowdsensing-based RPCM
should focus on preventive maintenance strategies. By detect-
ing and addressing minor road anomalies, considering envi-
ronmental factors, and leveraging crowdsensing, authorities
can enhance road safety, reduce repair costs, and improve the
overall quality and longevity of road networks.

V. CONCLUSION
The increase in vehicle traffic and its adverse impact on
road quality has created a need for more effective and timely
road maintenance. Conventional road monitoring approaches
suffer from problems such as a lack of real-time capabilities,
often resulting in delayed critical maintenance. Despite sub-
stantial government funding allocated to road maintenance,
the absence of efficient road quality monitoring limits the
utilization of these resources. Furthermore, reliance solely on
pothole detection means most monitoring techniques provide
incomplete and potentially inefficient assessments of overall
road quality. To address this challenge, a comprehensive
systematic literature review was conducted to identify and
evaluate existing road quality monitoring solutions. This
resulted in the selection of 75 research papers. The evaluation
criteria included sensory platforms, algorithms, detected road
anomalies, and performance. Numerous approaches to Road
Pavement Condition Monitoring (RPCM) were examined,
each with merits and limitations. It was determined that
smartphone-based RPCM solutions that incorporate Machine
Learning (ML) techniques and enhanced data acquisition
strategies provided superior performance.

Several issues were identified related to GPS and
accelerometer data synchronization, vehicle speed, and vehi-
cle parameters. Crowdsensing-based approaches can provide
solutions, particularly when combined with indexes such
as the International Roughness Index (IRI) and Pavement
Condition Index (PCI). They can provide comprehensive
insights into overall road quality, moving beyond surface
anomalies to deliver accurate and effective real-time mon-
itoring. In conclusion, existing RPCM methodologies were
examined with an emphasis on pavement quality monitoring
in terms of performance and cost-effectiveness. This work
underscores the potential of an integrated, technology-driven
approach to road monitoring for safer and more sustainable
road infrastructure.
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