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ABSTRACT Fuzzy clustering and routing protocols have been proven to improve energy efficiency, extend
network scalability, increase network throughput, balance network load as well as prolong network lifetime.
However, rules defined manually according to field experts are impossible or impractical to achieve the
optimal solution for a Fuzzy Inference System (FIS). Therefore, a Novel Fuzzy Clustering and Routing
Protocol called NFCRP is proposed in this paper by using an improved Particle Swarm Optimization (PSO)
algorithm to tune the fuzzy rules. Firstly, one FIS is used to complete clustering based on effective input
parameters including residual energy, node degree deviation, and distance to centrality, thereby forming
optimal clusters and minimizing the intra-cluster energy consumption. Secondly, the other FIS is adopted to
perform routing with descriptors residual energy, distance to BS, and data load deviation, hence addressing
the inter-cluster energy consumption. Finally, the rules of both FISs are tuned by an improved PSO algorithm
whose parameters are updated by introducing chaotic mapping and adaptive inertia weight. Simulation
experiments were conducted to verify the performance of NFCRP against LEACH, EFUCA, EEFUC, FBCR
and FMSFLA. According to the results, the average network lifetime of NFCRP increased by 79.59%,
47.99%, 50.35%,15.66 and 13.04%, compared to LEACH, EEFUC, EFUCA, FBCR and FMSFLA. For
the average standard deviation of CH’s traffic load, NFCRP decreased it by 29.29% over EEFUC, 31.42%
over EFUCA, and 25.28% over FMSFLA. For network throughput, NFCRP outperformed LEACH, EEFUC,
EFUCA, FBCR and FMSFLA by 16.87%, 46.52%, 48.18%, 29.97 and 71.79%. In addition, NFCRP also
reduced energy consumption by 53.95%, 23.76%, 38.72%, 15.71 and 27.18% as compared to LEACH,
EEFUC, EFUCA, FBCR and FMSFLA, respectively.

INDEX TERMS Clustering and routing, fuzzy inference systems, particle swarm optimization, energy
balance, wireless sensor networks.

I. INTRODUCTION
Wireless sensor network (WSN) is amajor technology used in
Internet of Things (IoT), which has been used for tremendous
applications such as military, industry, agriculture, aerospace,
transportation, and so on [1]. Usually, a WSN consists of
many tiny inexpensive sensor nodes deployed in hostile or
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inaccessible environment with non-rechargeable and irre-
placeable batteries, whose purpose is to collect information
from the environment of interest. Accordingly, energy sav-
ing to maximize the network lifetime is highly required for
practical applications of WSNs. During the last decades,
lots of clustering and routing protocols have been proposed
to resolve the problem, which are considered as the most
efficient method till now [2]. Clusters are formed to orga-
nize the randomly deployed nodes in clustering and routing
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protocols, which contain Cluster Heads (CHs) and Cluster
Members (CMs). Generally, CHs are much more important
for the network because of their extra capabilities such as data
collection, aggregation, forwarding and cluster management
than CMs. For a CM, it only transfers the sensed data to its
nominated CH in allotted timeslot, or else it enters a sleep
state to save energy [3]. Typically, source data is sent to
the Base Station (BS) in multi-hop or single hop communi-
cation mode. Of course, the multi-hop mode is popular for
its advantages such as low transmission range equipment,
low contention and attenuation losses, scalability and energy
efficiency [4].

Clustering and routing protocols are considered as
Non-deterministic Polynomial (NP)-hard optimization prob-
lems, whose optimal or near optimal solutions can be
determined by using intelligent computing methods such as
fuzzy logic [5], genetic algorithm [6], particle swarm opti-
mization [7], or hybridization of fuzzy logic and particle
swarm optimization [8], fuzzy logic and grasshopper opti-
mization [9], honey badger and African vulture optimization
[10], calf search algorithm and ant colony optimization [11],
cuckoo search and rider optimization algorithm [12]. Espe-
cially, fuzzy logic can handle the uncertainties inherent in
clustering and routing better than its alternatives [4], [5]. Fur-
thermore, fuzzy logic can obtain more flexibility than crisp
logic, and achieve the optimal solution by providing a better
combination of input parameters as well. Therefore, fuzzy
logic has been widely used for CH selection [8], maintenance
cycle determination [13], competition radius calculation [14],
routing [15], or hybrid [16]. Usually, in fuzzy clustering
and routing protocols, FIS is used to form best clusters and
find optimal routes simultaneously by integrating different
parameters, which includes inputs, inference engine, fuzzy
rule, membership function, output, and so on.

In order to make better decision, the parameters in FIS
should be well integrated by assigning appropriate member-
ship functions and reasoning the result(s) by setting different
fuzzy rules. Residual energy, node degree, distance to central-
ity are usually used for input parameters to make decision on
CH selection, while residual energy, distance to BS, data load
are always utilized to find the optimal routes. As for infer-
ence engine, Mamdani inference system is the most popular.
In addition, trapezoidal and triangle membership functions
with different ranges are used to represent the fuzzy inputs
and output. Especially, fuzzy rules have a significant impact
on decision results. Therefore, traditional manual rule gener-
ation based on expertise and practice is almost impossible to
make the best decision, and especially not suitable for differ-
ent applications. Thus several optimization algorithms such
as squirrel search algorithm [17], shuffled frog algorithm [4],
artificial bee colony [18], and PSO [19] have been adopted
to tune the rules. Due to its simplicity, fast convergence and
easy implementation, the PSO algorithm can provide a more
optimized solution for WSNs than the others [7], [19], [20].

PSO is a commonly used optimization algorithm whose
inspiration comes from birds’ searching food [21]. In PSO,

a population of candidate solutions is represented by a swarm
of particles which moves in a search space to solve a problem.
The performance of the particle is based on its position.
Initially, the position of each particle is randomly generated.
In each iteration, a particle updates its position and velocity
according to its local best and global best of all the particles
so as to reach the global optimum. Moreover, a fitness func-
tion is defined to evaluate each particle considering different
parameters. In WSNs, PSO has been used for clustering [22],
routing [23], clustering and routing [24], target localization
and tracking [25], sleep scheduling [26], intrusion detection
[27], congestion control [28], and so on [20], [29], [30].
In existing clustering and routing protocols based on PSO,
it is used to reach two objectives, i.e. selecting best CHs and
finding optimal routing paths. In the end, the total energy
consumption is reduced and the network lifetime is extended.
PSO has many advantages over other alternatives optimiza-
tion techniques to solve NP-hard problems [7]. In addition,
Compared with the other optimization approaches, PSO has
shown greater excellence in exploration and exploitation
applications [19]. Moreover, PSO has also been widely used
to solve the optimization problems for membership function
adjustment and fuzzy rules tuning for FISs, with many advan-
tages such as easy implementation, availability to escape
from local optima, and quick convergence [30], [31].

In this paper, a novel fuzzy clustering and routing protocol
with rules tuned by an improved particle swarm optimization
algorithm called NFCRP is proposed to enhance the energy
efficiency, extend the network lifetime as well as resolve the
hot-spot issue. In NFCRP, clusters are formed by using one
FIS with descriptors residual energy, node degree and dis-
tance to centrality. Moreover, the other FIS uses parameters
such as residual energy, distance to BS, and data load to find
the optimal routes for each CH. Remarkably, the rules of
both FISs are generated by an improved PSO algorithm with
adaptive inertial weight adjustment. The major contributions
of the proposed protocol NFCRP are listed as below.
1. Optimal clusters and routes are generated by using FISs

integrated with different parameters to improve energy
efficiency, balance energy consumption and mitigate hot-
spot issue.

2. Optimal fuzzy rules are determined by using an improved
PSO algorithm with chaotic mapping and adaptive iner-
tial weight adjustment so as to maintain the population
diversity and balance the capabilities of exploration and
exploitation at the same time.

3. Simulations are conducted to demonstrate the superiority
of NFCRP over some existing up-to-date protocols in dif-
ferent scenarios and performance metrics, simultaneously.
The rest of this paper is organized as follows: Litera-

tures about fuzzy clustering and routing protocols are briefly
reviewed in Section II. The system model including net-
work model and energy model is addressed in Section III.
Section IV introduces the proposedNFCRP protocol in detail.
In Section V, simulation analysis and comparison with the
existing protocols are presented to evaluate the proposed
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protocol. Finally, conclusion is stated and future directions
are indicated in Section VI.

II. LITERATURE REVIEW
Clustering and routing protocols have demonstated strong
capabilities in energy efficiency, scalability, throughput, and
other aspects since the first proposing of LEACH [3].
In LEACH, two phases, i.e. setup phase and steady phase, are
used to form clusters and transfer data, respectively. In setup
phase, each node makes decision to be CH based on proba-
bilistic model, in other words, the sensor node becomes a CH
if its randomly assigned number between 0 and 1 is lower
than the threshold value. Otherwise, it becomes a normal
node. Once the CHs are determined, messages are broadcast
to announce their status. At the same time, each normal node
joins its corresponding CH according to the strength of the
received signal from CHs. Moreover, a request message is
also sent to its CH telling its CM status. After establishing
the clusters, every CH sends to its members a TDMA (Time
Division Multiple Access) schedule for data transmission.
In steady phase, each CM sends its sensed data to its CH using
the nominated timeslot in the TDMA schedule. Afterwards,
the CH fuses the data from its CMs, and forwards these data
to the BS directly by using CDMA (Code Division Multiple
Access) code to avoid the collision. In LEACH, the number
of packets is decreased by forming clusters and selects CHs.
In addition, interference between nodes are also avoided by
using TDMA and CDMA mechanism, which reduces the
network energy consumption as well. However, its disadvan-
tages deteriate the network performance, including random
selection of CHs without considering parameters such as
residual energy and node degree, single-hop data forwarding
between CH and BS, and CM joining the nearest CH to
form cluster based on received signal strength. Therefore,
a good many of improved clustering and routing protocols
have been proposed to enhance the overall performance of
the network [32], [33]. However, as a well known NP-hard
problem, traditional clustering and routing protocol is ineffi-
cient or even impossible to solve this non-polynomial issue,
not to mention the uncertain, dynamic and self-organizing
nature of the network [2], [6]. Exactly, fuzzy logic exploits
the uncertainty and dynamics associated with the factors
that affect the network lifetime of WSNs and improves their
performance in real-world applications [34], [35]. Thus, only
fuzzy based clustering and routing protocols related to the
proposed NFCRP are put into consideration here.

In LEACH-ERE [36], a probabilistic based mechanism
like LEACH is used to select the candidate CHs at first,
then the candidates use fuzzy logic to calculate the chance
of being a CH considering two inputs residual energy and
expected residual energy. The LEACH-ERE protocol can
effectively improve the network lifetime. However, it may
result in non-uniformly distributed clusters due to its proba-
bilistic selection of the candidate CHs and neglect of other
parameters. Accordingly, in FBCR [37], three parameters
including residual energy of the node, node distance to the

center of region, and node angle to the BS are used as the
input of the FIS which can maintain energy balance and
better CHs selection and rotation. Besides, the tasks such
as selecting CHs in regions, determing the region of each
node, calculating the distance of each node to the center of its
region, and the angle of each to the BS are all competed by
the BS so as to reduce the burden of choosing CHs for nodes.
Simulation results show that FBCR can effectively improve
the energy efficiency. However, similar to LEACH-ERE, the
CHs bearing more workload easily lead to premature death.
So in [38], K-means and PSO are used to form appropri-
ate clusters firstly, and then both fuzzy logic systems with
descriptors energy level, distance to cluster’s center, distance
to BS and energy level, distance to PCH respectively are uti-
lized to select primary CH (PCH) and secondary CH (SCH)
for tasks sharing to enhance network lifespan and throughput.
However, the hot-spot issue is still not considered. Therefore,
in MOFCA [39], a multi-objective fuzzy clustering algorithm
is proposed to solve these problems. The CHs are determined
by energy-based fuzzy competition among the candidate CHs
initially selected by using a probabilistic model similar to
LEACH-ERE. Three inputs are used for fuzzy inference sys-
tem in MOFCA, namely residual energy, distance to sink,
and node density, so as to estimate the competition radius
and select the final CHs. However, node’s centrality is not
considered in MOFCA, which may increase the intra-cluster
energy consumption. Accordingly, In OFCA [8], the fuzzy
inference system is used to calculate the confidence factor
for each node which indicates the goodness of its becoming
a CH. Three parameters are considered as inputs of the fuzzy
inference systems, namely residual energy, distance to BS and
concentration. The node with maximum confidence factor
is selected as CH. Furthermore, the communication radius
of CHs are determined by the same fuzzy inference system
based on distance to BS. Similar to MOFCA, the CHs closer
to BS are set with smaller communication radius than that of
the farther ones, because the CHs closer to BS are overloaded
with inter-cluster traffic. In addition, an energy efficient
routing path is established for multi-hop data forwarding by
using PSO with a novel fitness function. Simulation results
prove that OFCA attains longer network lifetime and transfers
more packets to BS. However, quality of transmission link
and the responsibility of node in preceding rounds are not
considered in OFCA, which undoubtedly affects its practical
application and reduces the overall performance of the net-
work. Thus, In FLEAC [9], fuzzy inference system with five
descriptors residual energy, average intra-cluster distance,
compaction degree, packet drop probability and node history
is utilized to select appropriate CHs. Then, the node having
the best output is selected as a CH. Moreover, improved
grasshopper optimization algorithm is employed to select the
optimal relay nodes for data forwarding, in order to alleviate
excessive energy consumption of CHs. FLEAC outperforms
other comparative clustering protocols, and it minimizes and
balances the energy consumption among the nodes, and the
network lifetime is largely extended. However, the fuzzy rules
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are fixed, which are not suitable for different applications.
Hence, in DPFCP [30], a fuzzy logic system with rules tuned
by PSO is presented to select the optimal CHs. Its input
parameters include residual energy, node degree, distance
to BS, and distance to the centrality. Moreover, on demand
re-clustering mechanism is adopted to maintain clusters so as
to further save energy consumption. Simulation results show
that DFPCP can efficiently balance energy consumption and
extend network lifetime.

In MLSEEP [40], fuzzy logic system is utilized to select
the best next-hop CH for each CH from its neighbor CHs
so as to extend the network lifetime and decrease the net-
work overload. The following three descriptors queue length,
distance to the BS and residual energy are used for inputs
of the fuzzy logic system. Then, the CHs closer to the BS
with higher residual energy and queue length has bigger
probability to be selected for next-hop CH. However, prob-
ability based CH selection is apt to nominate inappropriate
CHs to form clusters in MLSEEP. Accordingly, unbalanced
energy consumption occurs in clusters and the network life-
time is decreased in the end. So, in E-FEERP [41], the PSO
algorithm instead of probability based method is used to form
clusters considering distance to neighbors, average energy
of neighbors and number of neighbor clusters. Once the
clusters are formed, a fuzzy logic system with descriptors
battery power, average node density, average distance, com-
munication quality is adopted to determine the optimal next
hop of CHs. E-FEERP has been demonstrated to improve
the network lifetime, throughput, and packet delivery ratio.
However, the hot spot issue is not considered in E-FEERP.
Accordingly, in DAPFL [15], a fuzzy logic system is used
to find the optimal next-hop CH for each CH, whose inputs
includes residual energy, distance to BS and data length. The
neighbor CH with the best chance value is selected as the
final next-hop CH. Moreover, DAPFL solves the hot-spot
issue by adjusting the energy consumption among the CHs
according to their data load. In addition, affinity propagation
rather than probability based mechanism in MLSEEP is used
to determine the number of clusters and select the appropri-
ate CHs simultaneously based on residual energy, distance
between nodes. Simulation results reveal the effectiveness of
DAPFL with respect to network energy consumption, stan-
dard deviation of residual energy, network throughput and
lifetime. But centralized decision on cluster formation may
reduce the overall performance of the network. Consequently,
in EFUCA [14], fuzzy logic is used to take intelligent decision
for each node to become a CH. Besides the remnant power,
nearness to BS, average distance to communicating nodes are
considered as inputs to the fuzzy logic system for calculating
rank and competition radius in the clustering stage. To further
prolong the network lifetime, another fuzzy logic system
is utilized to complete the next-hop choice for efficient
data forwarding, whose inputs are next-hop rank, nearness
to next-hop and distance reduced to BS. The experimental
results prove the improved performance of EFUCA with its

comparatives in extended lifetime, protracted stability period,
and decreased average energy consumption. However, a nor-
mal node joins a cluster only considering its distance to CH,
resulting in decreased network lifetime due to the unbalanced
intra-cluster energy consumption. Hence, in EEFUC [16],
different fuzzy logic systems are used to make decisions
on CH selection, competition radius calculation, joining the
appropriate CH, and finding next-hop CH based on various
input parameters. Residual energy, node density and distance
to BS are taken as fuzzy inputs to calculate the competition
radius. For CH selection, residual energy of a node is the
decisive factor. When the residual energy of nodes is the
same, the second fuzzy logic system is employed to select
the best one as the final CHwith descriptors node density and
distance to BS. Moreover, the third fuzzy logic system with
inputs residual energy and distance to CH is adopted to make
a node join an appropriate CH, so as to form optimal clusters.
Once the clusters are established, the forth fuzzy logic system
is used to find the proper next-hop CH for each CH, whose
inputs include residual energy of neighbor CH, distance to
neighbor CH and DOP which is the distance to the line from
CH to BS. Simulation results in various scenarios show that
EEFUC can not only extend the network lifetime largely
but also effectively reduce the network energy consumption.
However, the fuzzy rules are defined manually, resulting in
fixed and nonadjustable performance.

In SIF [42], fuzzy c-means and fuzzy logic system are
utilized to form balanced clusters and select appropriate
CHs, respectively. Moreover, a hybrid swarm intelligence
algorithm based on firefly algorithm (FA) and simulated
annealing (SA) is utilized to optimize the fuzzy rules of SIF.
Firefly algorithm is employed to obtain the optimal fuzzy out-
put for each rule in the search spacewith its global exploration
ability. And then, the final best solution of firefly algorithm
is used for initial solution of simulated annealing. Iteratively,
based on its local search ability, simulated annealing can
achieve the optimal solution in the end. In addition, the fitness
function is defined to evaluate the solution based on network
lifetime FND (First Node Dies), HND (Half Nodes Die) and
LND (Last Node Dies). Specifically, the FA-SA algorithm is
performed to tune SIF once before the network operation.
Therefore, the optimization procedure does not boost any
computational complexity and delay in the data transmission
phase. Experimental results over different networks show that
SIF is superior to the comparative protocols in terms of form-
ing balanced clusters and extending the network lifetime.
Similar to SIF, LEACH-SF [18] also uses fuzzy c-means
and fuzzy logic system to form balanced clusters and select
the appropriate CHs. And the difference is that the artificial
bee colony (ABC) algorithm is presented to adaptively tune
the fuzzy rules in LEACH-SF so as to prolong the network
lifetime for each application. The feasible solutions in ABC
algorithm are represented as strings of length as same to
the number of controllable parameters. A fitness function is
constructed to evaluate the quality of each bee based on the
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network lifetime FND, HND and LND. Through population
updating based on the randomly generated initial population,

the best solution will be reached in the end. Same as SIF,
the iteratively-based optimization algorithm is performed to
tune fuzzy rules only once before the network operation in
LEACH-SF. Simulation results validate that LEACH-SF can
minimize the intra-cluster distances, maximize the network
lifetime and throughput at the same time. In SF-MPSO [19],
the differences from SIF and LEACH-SF are the used opti-
mization method and the defined fitness function. PSO with
excellent exploration and exploitation ability is utilized to
tune the controllable parameters. Each solution represented
by a particle undergoes the evaluation process by optimizing
the fitness value. The fitness value of each particle is calcu-
lated by the designed fitness function consideringminimizing
the intra-cluster distance, maximizing the network residual
energy and the correlation coefficient. Iteratively, the global
optimal solution with the greatest fitness value is reached
by updating the position and velocity of each particle. It is
observed that SF-MPSO performs outstandingly under all
simulation scenarios and has longer network lifetime com-
pared with its comparatives. However, fuzzy rules are tuned
only for clustering in above mentioned protocols. Therefore,
in FMSFLA [4], CHs are selected from the nodes with higher
residual energy rates, shorter distance to BS, and shorter dis-
tances to neighbors by using a fuzzy logic system. Similarly,
the relay nodes are also selected from the CHs with respect
to higher residual energy rates, shorter real distances, and
lower path loads by employing another fuzzy logic system.
Moreover, the rules in both fuzzy logic systems are tuned by
using shuffled frog leaping algorithm (SFLA) with a novel
fitness function considering network lifetime, average num-
ber of packets received by the BS, and average delay of the
number of hops. Therefore, the fuzzy rules can be adjusted to
meet the application features. Once the CHs and relay nodes
are determined, the non-CH nodes join respective cluster with
the nearest CH to form clusters. And then non-CH nodes
send their data to the corresponding CHwhich aggregates the
data and forwards it to the BS directly or through their relay
nodes. Simulation results show that FMSFLA can achieve
steady network workload, decrease the network energy con-
sumption, and extend the network lifetime. Comparison of
different protocols related to the proposed NPSOP is shown
in Table 1.

III. SYSTEM MODEL
A. NETWORK MODEL
In NFCRP, the network consists of n sensor nodes with
limited power, storage, computational and communicational
capabilities, which are homogeneous. Moreover, the nodes
are randomly deployed over the target field with unique ID
numbers. Additionally, the nodes and the BS are immobile
once being deployed, and the BS has no constraints in terms
of power, processing, storage and other resources. The dis-
tance among nodes and BS can be obtained by received

FIGURE 1. The network model of the proposed NFCRP protocol.

signal strength, and the transmission power of nodes can be
adaptively determined to communicate with each other. For
simplicity, only symmetric links are considered for commu-
nications among nodes and BS.

All the nodes are formed into clusters, and a CH is selected
to manage each cluster, while the BS is responsible for
management of the network at the same time. Besides, the
BS can locate inside or outside of the field of interest. Like
LEACH, round is used for periodic data collection, in which
all source nodes send their sensed data to the BS. Round by
round, a certain node will die when its energy is fully drained.
Similarly, the network dies when all the nodes are lifeless.
Therefore, the network lifetime in this paper is also measured
by FND, HND, and LND as traditional approaches [4], [18].
The network model can be shown in Fig. 1.

B. ENERGY MODEL
Energy of the nodes is usually consumed for data sensing,
transmitting, receiving, fusing, and processing. However, the
energy drained in sensing and processing can be negligible
[1], [43]. Then the energy dissipated for data transmitting
from nodes i to j with k bits over distance d can be given
in Eq. (1) [30], [44].

ETij(k,d) =

{
k×Eelec+k×εfs×d2, d <d0
k×Eelec+k×εmp×d4, d ≥d0

(1)

where d is the Euclidean distance between nodes i and j. d0
denotes the threshold used to determine either free space (εfs)
or multi-path (εmp) model adopted, which can be estimated
by d0 =

√
εfs/εmp. Eelec means the electronics energy con-

sumption required to transmit or receive 1-bit. εfs and εmp
are the amplifier coefficients used for free space and multi-
path model, respectively. Similarly, the energy consumption
of node i for receiving k-bit data from node j is given in Eq. (2)
[30], [44].

ERij(k) = k×Eelec (2)

Additionally, the energy dissipated for fusing k-bit data can
be calculated according to Eq. (3) [15], [30].

EDA= k×EpDb (3)

where EpDb is the energy consumed for fusing 1-bit data.
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TABLE 1. Comparison of related protocols.
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TABLE 1. (Continued.) Comparison of related protocols.

Accordingly, the total energy exhausted of a cluster with
CH i and m CMs in a round can be given as follows:

ECHi =

m∑
j=1

ERij(k)+
m∑
j=1

ETij(k,dij) + EDA (4)

IV. THE PROPOSED NFCRP PROTOCOL
The NFCRP is a distributed energy balanced and efficient
clustering and routing protocol used to maximize the net-
work lifetime and mitigate the hot-spot issue. To this end,
fuzzy clustering and fuzzy routing with rules generated by
improved PSO are utilized to select the best CHs and find the
optimal routes, respectively. Especially, the rules only need to
be tuned at the first time performing the fuzzy computation
for each CM or CH in a specific application. The framework
of FISs in NFCRP is given in Fig.2.

As seen from Fig.2, fuzzy logic is an efficient human
decision-making behaviour modelling tool, and relatinal
expressions or set of linguistic variables can be used to
express the input-outp relations. Usually, FIS comprises of
fuzzifier, fuzzy inference engine, a rule base and defuzzifier.
The inference engine forms inferences that help to draw infer-
ence from the fuzzy rules. The defuzzification unit receives
the output and maps fuzzy actions space into a crisp actions
space [4], [9]. The detail introduction of NFCRP is described
as follows, including fuzzy clustering, fuzzy routing, fuzzy
rules optimization, and time complexity analysis.

A. FUZZY CLUSTERING
Here, the FIS is employed to select candidate CHs.Moreover,
only the nodes with residual energy higher than the mean
energy of the network perform fuzzy computations so as
to reduce the computational complexity. Three parameters
residual energy, node degree deviation, and distance to cen-
trality are regarded as fuzzy inputs. In order to put the data
of different input parameters from different domains in the
same domain, the normalization is adopted to map the crisp
input data onto another value ranging in [0, 1], which can be
expressed as follows:

v′

in =
vin − vin−min

vin−max − vin−min
(5)

where vin−max and vin−min are the maximum and minimum
of input data vin. Generally, the input parameters have a key
role in a FIS, which are described as follows:

-Eres(i): indicates the residual energy of node i, and the
fuzzy linguistic variables for Eres(i) are ‘‘very less’’, ‘‘less’’,
‘‘medium’’, ‘‘much’’, and ‘‘very much’’. Without loss of
generality, the nodes with more residual energy have a greater
chance of being selected as candidate CHs.

-Vnd(i): indicates the deviation of node i’s node degree
to the mean number of neighbors of all the nodes, and
its fuzzy linguistic variables are ‘‘small’’, ‘‘medium’’, and
‘‘big’’. Obviously, the smaller the deviation, the greater of
the chance of a node to being selected as candidate CH. More
importantly, this parameter is used to form uniform clusters.

-Dtoc(i): indicates the distance of node i to the centrality
of its neighbors, and ‘‘very near’’, ‘‘near’’, ‘‘normal’’, ‘‘far’’,
and ‘‘very far’’ are considered as its fuzzy linguistic variables.
Moreover, the nodes with smaller distance have a better
chance to become candidate CHs.

Similar to the traditional approaches [14], [45], trapezoidal
and triangular member functions are used for boundary and
intermediate fuzzy linguistic variables, respectively, because
of their capabilities of providing faster calculation and sim-
pler implementation. After the process of fuzzification of
the crisp input values by using the membership of corre-
sponding fuzzy linguistic variables, the variables are fed to
the fuzzy clustering inference system which is a Mamdani
inference model with simplicity and characteristics. Then,
the IF-THEN rules are utilized to calculate the fuzzy out-
put ‘‘chance’’ with fuzzy linguistic variables ‘‘very low’’,
‘‘low’’, ‘‘medium’’, ‘‘high’’, and ‘‘very high’’. Usually, the
rules are manually adjusted according to the experts’ knowl-
edge and empirical data of a specific application, which is
impossible to make optimal decisions on different appli-
cations. Therefore, the rules are adaptively tuned by an
improved PSO algorithm in NFCRP which will be discussed
in subsection C. Based on the generated rules optimized
by PSO, the crisp output chance′ of node i is determined
by performing defuzzification with Center Of Area (COA)
method. The corresponding membership functions for input
and output variables are depicted in Fig.3.
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FIGURE 2. Framework of the FISs in the proposed NFCRP protocol.

After the calculation of the crisp output chance′ of each
node, a message containing node ID and value of chance′

is broadcasted by every node. Then the node with higher
chance′ and appropriate distance with neighbor CHs is deter-
mined as final CH. The possible distance between two
adjacent CHs for proper communication is ranging in [0, R],
where R is the communication radius of the nodes. Moreover,
the final selected CHs announce their CH status by broad-
casting messages, and each non-CH node joins its nearest
CH as a member while receiving the messages. Otherwise,
the non-CH node will make itself as CH in the worst case.
Additionally, TDMA is adopted to prevent loss of data in a
collision among the clusters. Thus, the energy efficient and
uniformly distributed clusters are formed. The processes for
fuzzy clustering are described in Algorithm 1.

Algorithm 1 Pseudo Code for Fuzzy Clustering
• Input
- S={S1, S2, . . . , Sn}
- number of CHs: m
• Output
- An assignment S–>CH
• Begin
1: Calculate Eres, Vnd, Dtoc
2: Step 1:
3: Normalize Eres, Vnd, Dtoc between 0 to 1 using Eq. (5)
4: Step 2:
5: Fuzzify by using correlate membership functions
6: Step 3:
7: Fuzzy inference by using rules generated by Algorithm 3
8: Step 4:
9: Defuzzify the fuzzy values generated by the FIS using COA
10: m = max(chance′)
11: Declare the mth sensor node as a CH
12: Assign the sensor nodes from each cluster to the respective

CH
• End

B. FUZZY ROUTING
Once the clusters are formed, the member nodes send their
sensed data to their respective CH in allotted timeslot, and
the CHs aggregate the received data before transferring it to

the BS. Usually, single-hop data forwarding of CHs depletes
much more energy than multi-hop. In addition, unbalanced
energy consumption and hot-spot issue exist in many tra-
ditional routing approaches due to the determination of
improper relay CHs. In NFCRP, the other FIS is used to make
decision on optimal routes finding.

The objectives of fuzzy routing are improving energy
efficiency, balancing energy consumption and mitigating
hot-spot issue, simultaneously. For any CH, its energy con-
sumption mainly comes from completing three tasks: one
is to transfer the fused data within the cluster, the other is
to receive data from its adjacent CHs as a relay, and the
third is to forward these data, which can be elaborated in
Fig. 1. Hence, residual energy, distance to BS and data load
deviation should be considered carefully to achieve the above
mentioned objectives. Similar to fuzzy clustering, the input
parameters are normalized to range in [0, 1] at first. And the
fuzzy linguistic variables applied to residual energy Eres are
also ‘‘very less’’, ‘‘less’’, ‘‘medium’’, ‘‘much’’, and ‘‘very
much’’. For distance to BS DtoB, the applied linguistic vari-
ables are ‘‘very near’’, ‘‘near’’, ‘‘normal’’, ‘‘far’’, and ‘‘very
far’’. Besides, the input parameter data load deviation VDL
uses ‘‘small’’, ‘‘medium’’, and ‘‘big’’ as its fuzzy linguistic
variables. Accordingly, the fuzzy output prob has fuzzy
linguistic variables ‘‘very low’’, ‘‘low’’, ‘‘medium’’, ‘‘high’’,
and ‘‘very high’’. Also, the boundary and intermediate fuzzy
linguistic variables are also use trapezoidal and triangular
member functions, respectively. The membership functions
used for input and output variables for fuzzy routing are given
in Fig. 4.

The IF-THEN rules are also tuned by the improved PSO
algorithm discussed in subsection C , and each CH calculates
the eligibility of its adjacent CHs in the direction of BS based
on the optimized rules. Certainly, the crisp output prob′ can
be obtained by using defuzzification of COA method. Thus,
the candidate relay with the maximum prob′ is selected as the
final relay CH, and the CH forwards its data to the selected
relay CH, till to the BS in the end. The processes for fuzzy
routing are described in Algorithm 2.
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FIGURE 3. Membership function for input and output variables in fuzzy
clustering.

C. FUZZY RULES OPTIMIZATION
According to the inputs and outputs of the FISs for clustering
and routing, their rules can be listed as Table 2.

FIGURE 4. Membership function for input and output variables in fuzzy
routing.

In the table, the preceding variables in the first line are
for fuzzy clustering, and the following ones are for fuzzy
routing. Different from traditional fuzzy based approaches,
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Algorithm 2 Pseudo Code for Fuzzy Routing
• Input
- H={CH1, CH2, . . . , CHm}
• Output
- An assignment H–>next_hopCH
• Begin
1: Calculate Eres, VDL, DtoB
2: Step 1:
3: Normalize Eres, VDL, DtoB between 0 to 1 using Eq. (5)
4: Step 2:
5: Fuzzify by using correlate membership functions
6: Step 3:
7: Fuzzy inference by using rules generated by Algorithm 3
8: Step 4:
9: Defuzzify the fuzzy values generated by the FIS using COA
10: next_hopCH=max(prob′)
11: Assign next_hopCH to the respective CH

• End

TABLE 2. IF-THEN rules.

the outputs chance/prob o1-o75 are generated by using PSO
in NFCRP. Each particle pi = {xi1,xi2, . . . , xin} indicates
a possible solution for the outputs. Furthermore, the chaos
theory and adaptive inertial weight adjustment are used to
guarantee the population diversity and keep the balance
between exploration and exploitation, so as to avoid falling
into local optima as much as possible.

Random initialization is adopted to generate the initial
population, and the particles’ position xtik and velocity v

t
ik are

updated as Eqs. (6) and (7) [21], [23].

xtik = xt−1
ik + vtik (6)

vtik = ω×vt−1
ik + c1×r1(pbesti − xt−1

ik )

+ c2×r2×(gbest−xt−1
ik ) (7)

where n denotes the number of particles, and k indicates the
dimension of a particle which equals the number of rules. t
means the number of iteration, r1, r2 are uniformly distributed
random numbers ranged in [0, 1]. c1 and c2 called learning
factors, and ω denotes the inertial weight. pbesti and gbest
represent the best position visited by particle i and overall
particles.

In order to increase the probability of finding the optimal
solution, the learning factors and inertial weight are opti-
mized by chaos theory and adaptive adjustment, respectively.
Firstly, the chaos search is used to obtain the optimal values

of c1 and c2 by introducing a logistic chaotic function given
in Eq. (8) [46], [47].

ct1 = µ∗ct−1
1 ∗(1−ct−1

1 )

ct2 = µ∗ct−1
2 ∗(1−ct−1

2 ) (8)

where µ∈ (0, 4] is the logistic function parameter, and the
logistic chaotic function is in a completely chaotic state once
the value of µ is taken as 4 [46], [47]. Secondly, the inertial
weight ω is adaptively adjusted to balance the capabilities
of exploitation and exploration, which can be calculated as
Eq. (9) [30].

ωt
= ωmax −

ωmax − ωmin

tmax
× (t − 1) (9)

where tmax denotes the maximum number of iteration,
ωmax, ωmin are the maximum and minimum inertia weights.
Moreover, ωmax, ωmin are usually set to 0.9 and 0.4, respec-
tively for the balance between global and local search [30],
[48], [49]. Iteratedly, the positions and velocities of the parti-
cles are updated, and a fitness function is defined to calculate
the values of the updated particles, obtaining the optimal
pbesti and gbest in current rotation, which can be given in
Eq. (10) [19], [30].

fitness =

∑k
i=1 rui × µi∑k

i=1 µi
(10)

where rui is the output of rule i, k denotes the number of
rules, and µi indicates the centroid of the fuzzy output mem-
bership function. Obviously, the global optimal solution can
be reached when the number of iterations equals the preset
tmax or the new updated gbest is not greater than the old
one any more. Then, the optimal rules for fuzzy cluster-
ing can be obtained by decoding gbest, which are listed as
follows:

Rule 1: if Eres = very less, Vnd = small, Dtoc = very near,
then chance = low
Rule 2: if Eres = less, Vnd = small, Dtoc = very near, then

chance = low
Rule 3: if Eres = medium, Vnd = small, Dtoc = very near,

then chance=medium
Rule 4: if Eres = much, Vnd = small, Dtoc = very near,

then chance=high
Rule 5: if Eres = very much, Vnd = small, Dtoc = very

near, then chance=very high
Rule 6: if Eres = very less, Vnd = medium, Dtoc = very

near, then chance=low
Rule 7: if Eres = less, Vnd = medium, Dtoc = very near,

then chance=low
Rule 75: if Eres = very much, Vnd = big, Dtoc = very far,

then chance=medium
For the same reason, the rules for fuzzy routing can also be

obtained in the end. The processes for fuzzy rules optimiza-
tion are described in Algorithm 3.

Similar to [19] and [30], the population size Np=30.
Decoding the corresponding gbest , the output chance/prob
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Algorithm 3 Pseudo Code for Rules Optimization
• Input
- Population size=Np
• Output
- Fuzzy rule set
• Begin
1: Initialization of population
2: Initialize particles pi = {xi1,xi2, . . . ,xin} using Eq. (2), n =number of
3: nodes for clustering, or else =number of CHs for routing
4: for i = 1 to Np do
5: Calculate Fitness(pi) using Eq.(10)
6: pbesti =Fitness(pi)
7: end for
8: gbest = max( pbesti) 1 ≤ i ≤ Np
9: while (t<tmax) do
10: for i = 1 to Np do
11: update ω using Eq. (9)
12: update pi using Eqs. (6) and (7)
13: if (Fitness(pi) > pbesti) then
14: pbesti =Fitness(pi)
15: end if
16: if (pbesti > gbest) then
17: gbest = pbesti
18: end if
19: end for
20: end while

• End

for fuzzy clustering and fuzzy routing can be obtained,
respectively. The overall workflow chart of the proposed
NFCRP protocol is depicted in Fig. 5.

In the figure, r denotes the current round, and rmax is the
maximum round.

D. TIME COMPLEXITY ANALYSIS
In NFCRP, the overall time complexity includes the time
complexity of fuzzy clustering, fuzzy routing and fuzzy rules
optimization. For CHs selection in fuzzy clustering, a FIS
is used to determine the CHs, whose time complexity is
O(n × nrule), where n is the number of sensor nodes, and
nrule denotes the number of fuzzy rules which equals 75 in
NFCRP. In addition, during the process of clusters formation,
m messages are broadcast by CHs to announce their status,
and (n-m) acknowledge message are sent to the CHs by
CMs, where m is the number of CHs. Accordingly, the time
complexity of fuzzy clustering is O(n× nrule + n). For fuzzy
routing, the other FIS is used to find the optimal relay CH
for each CH, so the time complexity is also O(m × nrule),
where m is the number of CHs. Besides, m messages are
needed to broadcast the relay CH information. Hence, the
time complexity of fuzzy routing is O(m× nrule +m). More-
over, PSO is adopted to tune the fuzzy rules in NFCRP, and
the PSO has time complexity O(k × np), where k is the
number of sensor nodes or CHs, and np is the population
size. Then, the time complexity of fuzzy rules optimization is
O((n + m) × np). Therefore, the overall time complexity of
NFCRP is O((n+ m+ 2) × nrule + (n+ m)×np). Generally,
m,np, and nrule are much less than n, thus, the time complexity
of NFCRP is O(n2).

FIGURE 5. The overall workflow chart of the proposed NFCRP protocol.

V. SIMULATION RESULTS
In this section, the performance of the proposed NFCRP pro-
tocol is evaluated and compared with LEACH [3], EFUCA
[14], EEFUC [16], FBCR [37] and FMSFLA [4]. The simu-
lations are performed in MATLAB 2022a which is installed
and operated over Windows 10 operating system with the
hardware configuration of Intel Core, 4-GB RAM, i5-6300
CPU with a speed of 2.3 GHz. Fair comparisons are made by
using the same parameters in all scenarios. Four simulation
scenarios are considered and the parameters are given in the
Table 3.
The results obtained in these four scenarios are averaged

from 50 runs in each scenario. Four metrics network lifetime,
standard deviation of CH’s traffic load, network throughput
and energy consumption are used for performance validation.

A. NETWORK LIFETIME
Firstly, network lifetime is tested in all scenarios. The net-
work lifetime is directly related to the number of surviving
nodes and its performance is usually measured in terms of
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TABLE 3. Network parameters.

FND, HND, and LND. The results of NFCRP compared to
LEACH, EFUCA, EEFUC, FBCR and FMSFLA are shown
in Table 4, Table 5 and Fig. 6.

It can be seen from Table 4 that NFCRP outperforms
FMSFLA, EFUCA, EEFUC, FBCR and LEACH in terms
of network lifetime. From scenario #1 to #4, the network
lifetime of NFCRP is 14.67%, 17.83%, 8.67% and 11.00%
higher than FMSFLA, 11.29%, 12.93%, 16.83% and 21.62%
higher than FBCR, 33.89%, 61.53%, 55.10% and 50.89%
higher than EFUCA, and 40.97%, 44.40%, 49.48% and
57.14% higher than EEFUC,71.66%, 79.37%, 78.06% and
89.28% higher than LEACH.

As can be seen from Table 5, in large-scale networks, the
energy consumption of all the protocols increases because
the inter-cluster distance also increases, which leads to a
much shorter network lifetime. However, even in large-scale
networks, the proposed NFCRP protocol in this paper slightly
outperforms the FMSFLA, EFUCA, EEFUC, FBCR, and
LEACH protocols. Therefor, NFCRP also has better scala-
bility.

As can be seen from Fig.6, FBCR uses a single FIS for
CHs selection using network partitioning and three indicators
as fuzzy inputs, but using single hop for data transmis-
sion reduces network lifetime. Although both EFUCA and
EEFUC use multiple FISs to select the best CHs and the
optimal relay CHs based on different input parameters, how-
ever, nodes that are closer to the BS are prone to be elected
as relays multiple times, resulting in premature death due to
being overloaded. To overcome the problem of node’s early
death due to the low energy of the selected CHs, FMSFLA
selects nodes with residual energy greater than the average
energy of the network to participate in CH selection and

FIGURE 6. Comparison of the number of alive nodes.

utilizes an optimization algorithm to adjust the fuzzy rules
in CH selection. However, the traffic load on the parent
nodes in FMSFLA is high, which affects the network lifetime.
NFCRP overcomes the shortcomings of the other protocols
and prolongs the network lifetime, so the quantity of the
network survival nodes is generally more than that of other
protocols.

B. STANDARD DEVIATION OF CH’S TRAFFIC LOAD
To verify the performance of load balancing, the standard
deviation of CH’s traffic load is tested due to the almost
identical loads of the cluster members. Additionally, LEACH
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TABLE 4. Comparison of FND, HND and LND.

TABLE 5. FND, HND and LND in the area of 1000m∗1000m with different nodes.

and FBCR transmit data from CHs to BS in single hop mode,
so only the load deviation of the CHs of NFCRP, EFUCA,
EEFUC, and FMSFLA are tested and the results are depicted
in Fig.7.

As can be seen from Fig.7, in all scenarios, the standard
deviation of CH’s load for the NFCRP protocol is smaller
than that of the FMSFLA, EFUCA and EEFUC protocols
and remains stable. This is because NFCRP considers load
balancing when finding routing paths and uses the number
of times being selected as relay as a fuzzy input for relay
node selection, thus mitigating the hot-spot problem. Due to
its neglect of hot spot problem in EFUCA, it performs the
worst in energy balance. Compared with EEFUC forming
unequal clusters by adjusting the cluster’s radius, FMSFLA
considers the parameter the mean route load as a fuzzy input
so as to balance the load of each route, resulting better energy
balance performance. For NFCRP, data load deviation is
considered as a fuzzy input to balance the inter-cluster energy
consumption. Besides, the balanced intra-cluster energy con-
sumption is also considered. Therefore, it performs best in
energy balance. The experimental results show that the mean
value of the load standard deviation of CHs for NFCRP
is 36.7%, 30.57%, 34.93% and 14.96% lower than that of
the EEFUC protocol, 45.32%, 30.94%, 36.17% and 13.27%

lower than that of the EFUCA protocol, 21.57%, 16.13%,
44.09% and 19.34% lower than that of the FMSFLA protocol,
respectively. Therefore, NFCRP is more effective in solving
hot-spot problems.

C. NETWORK THROUGHPUT
Next, the network throughput is tested in the four scenarios,
which indicates the amount of data transmitted by nodes to
the BS. A higher throughput indicates a higher utilization rate
of energy in the network. The results are shown in Fig.8.

Observed from Fig.8, NFCRP has higher network through-
put than LEACH, EFUCA, EEFUC, FBCR and FMSFLA in
all scenarios. LEACH performs worst because of its single
hop communication mode, resulting in premature death of
the nodes far away from the BS. For FBCR, it performs
much better than LEACH because it divides the network
into four regions to avoid long distance transmission of the
nodes, although it also adopts single hop communication
mode. FMSFLA performs better than EEFUC and EFUCA
because it can adjust its fuzzy rules. Moreover, NFCRP
focuses on fuzzy rules themselves while FMSFLA aiming at
the network lifetime for corresponding fitness function. How-
ever, the network lifetime is dynamic. Therefore, NFCRP
forms appropriate CHs to forward more data to the BS than
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FIGURE 7. Comparison of standard deviation of CH’s traffic load.

FIGURE 8. Comparison of network throughput.

FMSFLA. The network throughput of NFCRP is 60.13%,
70.55%, 79.45% and 86.06% higher than that of LEACH,
32.44%,45.07%, 57.26% and 57.96% higher than that of
EEFUC, and 36.06%, 44.42%, 57.02% and 48.58% higher
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FIGURE 9. Comparison of the network energy consumption.

than that of EFUCA, 9.52%,29.27%, 37.01% and 44.08%
higher than that of FBCR, and 11.35%, 17.20%, 9.29% and
29.65% higher than that of FMSFLA, respectively. Obvi-
ously, NFCRP not only prolongs the network lifetime, but
also increases the amount of data transferred and further
improves the network energy efficiency.

D. ENERGY CONSUMPTION
The total energy consumption in the network is tested to vali-
date the overall performance of the network. The less the total
energy consumption, the better the network performance. The
results are displayed in Fig.9.

As can be seen from Fig. 9, the network energy consump-
tion increases with the number of rounds, and the network
energy consumption curve for NFCRP remains largely below
the other protocols. The using of single hop mode for data
transmission in FBCR affects the network lifetime to some
extent, although it is better than LEACH with single hop
mode as well. Both EFUCA and EEFUC select the next hop
CH during data transmission based on the fuzzy logic output,
which reduces network energy consumption to some extent.
However, both the protocols make nodes close to the BS
or with greater residual energy be selected as relays, which
often results in closer, more energetic nodes being repeatedly
selected as relays causing premature death. However, EEFUC
can form unequal clusters by using a FIS to save intra-energy
consumption. In addition, FMSFLA also reduces intra- and
inter-cluster energy consumption by two FISs with adjustable
rules. NFCRP aims to minimize the total energy consumption
of the network by balancing energy consumption during the
processes of clustering and routing. Hence, NFCRP runs
65.80%, 44.64%, 64.22% and 41.17% more rounds than
LEACH, 10.88%, 10.71%, 29.35% and 44.11% more rounds
than EEFUC, 35.23%, 47.32%, 38.53% and 33.82% more
rounds than EFUCA, 11.91%, 9.82%, 28.44% and 12.69%
more rounds than FBCR, 36.78%, 18.75%, 45.87% and
7.35% more than FMSFLA, respectively.

VI. CONCLUSION
A novel fuzzy clustering and routing protocol NFCRP is
presented in this paper, which is not only energy-efficient, but
also energy-balanced through managing the network energy
dissipation effectively. In NFCRP, the fuzzy rules are opti-
mized by improved particle swarm optimization algorithm
for specific applications. The proposed protocol considers
reasonable parameters including residual energy, node degree
deviation, distance to centrality for clustering, and resid-
ual energy, distance to BS, data load deviation for routing
with the purpose of achieving the global optimal solution.
According to the simulation results, the NFCRP protocol out-
performs LEACH, EEFUC, EFUCA, FBCR and FMSFLA
in all scenarios with respect to network lifetime, standard
deviation of CH’s traffic load, network throughput and energy
consumption. Specifically, the average network lifetime of
NFCRP increased by 79.59%, 47.99%, 50.35%, 15.66%,
13.04%, compared to LEACH, EEFUC, EFUCA, FBCR
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and FMSFLA. For the average standard deviation of CH’s
traffic load, NFCRP decreased it by 29.29% over EEFUC,
31.42% over EAUCA, and 25.28% over FMSFLA. For net-
work throughput, NFCRP outperformed LEACH, EEFUC,
EFUCA, FBCR and FMSFLA by 16.87%, 46.52%, 48.18%,
29.97%, 71.79%. Finally, NFCRP also reduced energy con-
sumption by 53.95%, 23.76%, 38.72%,15.71%, 27.18% as
compared to LEACH, EEFUC, EFUCA, FBCR and FMS-
FLA, respectively. In a word, the proper formation of clusters
and selection of next-hop CHs are simultaneously guaranteed
in the proposed NFCRP protocol with the carefully consid-
ered parameters along with the optimized fuzzy rules.

Although NFCRP achieves good results in terms of net-
work lifetime, throughput, energy consumption, it does not
consider the security and robustness related factors in build-
ing reliable and secure clusters and routing paths. Moreover,
the mobility of the nodes is not addressed, and the tests are
performed only in the ideal network model. Therefore, for the
future research, reliability and security among all the nodes
in the network will be strived for. Furthermore, the mobile
features of the BS will be taken into consideration as well.
Finally, practical scenarios will be used to test the proposed
protocol for applicability verification.
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