
Received 17 October 2023, accepted 7 November 2023, date of publication 13 November 2023,
date of current version 20 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3332361

Toward a Low-Resource Non-Latin-Complete
Baseline: An Exploration of Khmer Optical
Character Recognition
RINA BUOY 1, (Graduate Student Member, IEEE), MASAKAZU IWAMURA 1, (Member, IEEE),
SOVILA SRUN2, AND KOICHI KISE1
1Department of Core Informatics, Graduate School of Informatics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
2Department of Information Technology Engineering, Faculty of Engineering, Royal University of Phnom Penh, Phnom Penh 12156, Cambodia

Corresponding author: Rina Buoy (sp22676n@st.omu.ac.jp)

This work was financially supported by Japan Society for the Promotion of Science (JSPS) Kakenhi Grant 22H0054 and RUPP-OMU
Partnership under the Higher Education Improvement Project (HEIP).

ABSTRACT Many existing text recognition methods rely on the structure of Latin characters and words.
Such methods may not be able to deal with non-Latin scripts that have highly complex features, such as
character stacking, diacritics, ligatures, non-uniform character widths, and writing without explicit word
boundaries. In addition, from a natural language processing (NLP) perspective, most non-Latin languages
are considered low-resource due to the scarcity of large-scale data. This paper presents a convolutional
Transformer-based text recognition method for low-resource non-Latin scripts, which uses local two-
dimensional (2D) feature maps. The proposed method can handle images of arbitrarily long textlines, which
may occur with non-Latin writing without explicit word boundaries, without resizing them to a fixed size by
using an improved image chunking and merging strategy. It has a low time complexity in self-attention layers
and allows efficient training. The Khmer script is used as the representative of non-Latin scripts because it
shares many features with other non-Latin scripts, which makes the construction of an optical character
recognition (OCR) method for Khmer as hard as that for other non-Latin scripts. Thus, by analogy with the
AI-complete concept, a Khmer OCR method can be considered as one of the non-Latin-complete methods
and can be used as a low-resource non-Latin baseline method. The proposed 2D method was trained on
synthetic datasets and outperformed the baseline models on both synthetic and real datasets. Fine-tuning
experiments using Khmer handwritten palm leaf manuscripts and other non-Latin scripts demonstrated the
feasibility of transfer learning from the Khmer OCR method. To contribute to the low-resource language
community, the training and evaluation datasets will be made publicly available.

INDEX TERMS Khmer script, non-Latin scripts, character stacking, no explicit word boundaries, text
recognition, image chunking.

I. INTRODUCTION
Optical character recognition (OCR) is the process of recog-
nizing text from images, and has a wide range of practical
applications. The overall OCR pipeline consists of two
subtasks, namely text detection and text recognition, which
can be performed separately or simultaneously [1]. A text
detector locates text regions that are then transcribed by a text
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recognizer. Depending on the imagemodality, the recognition
task can be further categorized as handwritten recognition
(HWR), document OCR, or scene text recognition (STR).

However, the development of OCR for different languages
has been unequal because many existing approaches have
been proposed whose accuracy is maximized on word-level
Latin datasets. This is partially because many text detec-
tion approaches, driven by Latin word-level annotation
datasets [2], [3], are based on words [4]. With word-level
datasets, input images can be reasonably resized to a fixed
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FIGURE 1. Convex hull of languages [5] (redrawn with modifications),
showing relations between the Khmer script and other non-Latin scripts.
Each arrow indicates the existence of one or more shared features with
the Khmer script.

size (e.g., 32 × 100 pixels) for efficient mini-batch training
in which images of the same size are processed in parallel.
However, word-level approaches and practices may not be
optimal for textline images of non-Latin scripts [4], which
can be arbitrarily longer.

As shown in Fig. 1, non-Latin scripts often possess special
features, such as diacritics, character stacking, implicit
word boundaries, connected characters, shape changes, non-
uniform character sizes, and ligatures [5]. As shown in
Fig. 2, some scripts, such as Thai, Khmer, and Vietnamese,
allow characters to be stacked on top of each other; such
stacking makes the information in the height dimension as
rich as that in the width dimension. Other scripts, such
as Thai, Khmer, and Japanese, do not have explicit word
boundaries, and therefore textline images may be arbitrarily
long in comparison to word-level Latin text images. Due to
the complex structure, accurate recognition of all characters
requires spatially rich visual features. These spatially rich
visual features are represented by two-dimensional (2D)
feature maps that capture information in both height and
width dimensions. However, extracting 2D features imposes
an additional computational burden on subsequent processes
and the majority of existing methods [5], [6], [7], [8], [9],
[10], [11], [12], [13] for low-resource non-Latin scripts are
still based on 1D feature maps.

Capturing spatial feature dependencies is a crucial step
in the text recognition pipeline. A self-attention mecha-
nism [14] is an effective architecture for modeling 2D feature
dependencies [4]. However, the self-attention mechanism
exhibits quadratic time and memory complexity in relation
to the width and height of 2D feature maps. As mentioned
earlier, in the case of non-Latin scripts where explicit
word boundaries are absent, a textline image can have an

FIGURE 2. Illustrations of character stacking and no explicit boundaries.
(1) Scripts with character stacking: Khmer, Thai, and Vietnamese. (2)
Scripts without explicit word boundaries: Khmer, Thai, and Japanese.

arbitrary length. This, combined with 2D feature modeling,
creates a significant computational bottleneck. For instance,
in Fig. 3(a), the self-attention complexity is O(C) where
C = (H ′W ′)2 for an input width of W and H ′ and W ′ are
the height and width of 2D feature maps. If we examine
Fig. 3(b) and consider an input five times wider (represented
as 5W ), the self-attention complexity escalates to O(52C).
This computational challenge is not particularly serious for
most word-level (i.e., cropped) Latin scene text recognition
methods [15], [16], [17], [18], [19], [20], as they typically
resize the input image to a fixed size. However, the inference
accuracy degrades significantly for long input images [4],
[19]. For non-Latin scripts, resizing long textline images
to a significantly smaller width can potentially impact the
legibility of small-sized characters, such as subscripts and
diacritics. Conversely, resizing images to an excessively large
size is computationally inefficient and impractical for mini-
batch training. This is because shorter textline images require
padding to match the width of other images in the batch,
which adds unnecessary computational overhead during
processing. Therefore, directly applying these methods to
non-Latin scripts without considering their specifications
leads to suboptimal results and inefficiencies.

In this paper, we propose a convolutional Transformer-
based text recognition method for low-resource non-Latin
scripts that have character stacking, diacritics, ligatures, and
implicit word boundaries. This is because Transformer-based
text recognition architectures [17], [18] have been widely
adopted for Latin scene text recognition, thanks to their
flexibility in handling 2D feature maps. However, in contrast
to most Latin scene text recognition methods, the proposed
method uses chunk-level 2D spatial feature maps, where
feature dependencies are modeled only within the local
regions instead of the entire input image. This is achieved
by using a modified image chunking and merging technique.
The proposed technique reduces the training complexity

VOLUME 11, 2023 128045



R. Buoy et al.: Toward a Low-Resource Non-Latin-Complete Baseline

caused by arbitrarily long input images from a quadratic to
a linear relation. This is accomplished by dividing a long
textline image into multiple consecutive overlapping chunks
and processing the features of each chunk independently.
The features are then merged together for character decoding
using a Transformer decoder, which relies on all previous
outputs from all chunks to predict the next character.
To ensure input continuity when a character is located at
the boundary between two chunks, overlapping margins
or regions are introduced to each chunk. With the image
chunking and merging technique, the input images are not
required to be resized to a fixed size and the resolution of
the small-sized characters, such as subscripts and diacritics,
is not undesirably affected.

The proposed method is applied to the Khmer script
because it is representative of low-resource non-Latin scripts.
The Khmer script shares many features with other non-Latin
scripts, such as ligatures, diacritics, stacking, implicit word
boundaries, highly ambiguous characters, and non-uniform
character sizes, as shown in Fig. 1. Therefore, the con-
struction of an OCR method for Khmer is at least as hard
as that for other non-Latin scripts. Thus, by analogy with
the AI-complete concept, a Khmer OCR method can be
considered as one of the ‘‘non-Latin-complete’’ methods
and can be used as a low-resource non-Latin baseline
method.

Approximately 2.8 million images of synthetic document
and scene text of various Khmer fonts were generated for
training. We compared our proposed approach with the
representative Latin baseline methods trained on the Khmer
script by using the Khmer ID card dataset, the KHOB dataset,
and the historical handwritten palm leaf dataset [21]. In all
cases, our proposed method achieved lower character error
rates (CERs), compared to the baseline methods. By transfer
learning on small-scale datasets, the proposed approach was
further fine-tuned on other low-resource non-Latin scripts,
including Thai, Laos, Burmese, Vietnamese, and Hindi. The
fine-tuning results demonstrated the feasibility of transfer
learning from the Khmer script to other non-Latin scripts with
similar features.

Our contributions can be summarized as follows:
1) We propose a convolutional Transformer-based text

recognition method that uses chunk-level 2D spatial
feature maps for low-resource low-attention non-Latin
scripts that have complex features, such as character
stacking, non-uniform character sizes, implicit word
boundaries, and diacritics.

2) We incorporate a modified image chunking and merg-
ing technique into the proposed Transformer-based
text recognition system to reduce the self-attention
complexity caused by arbitrarily long input images
from a quadratic to a linear relation and capture 2D
spatial dependencies. The input images are not required
to be resized to a fixed size and thus, the resolution of
the small-sized characters, such as subscripts, vowels,
and diacritics, is not undesirably affected.

FIGURE 3. Self-attention complexity as a quadratic function of input
width. (a) The self-attention complexity of a short text image is O(C)
where C = (H ′W ′)2. (b) The resulting self-attention complexity of a five
times longer textline image is O(52C). Let H and W be the height and
width of the input image and H ′ and W ′ be the height and width of the
resulting feature maps.

3) We found that our proposed 2D models for the
Khmer script achieved superior performance on the
real evaluation datasets in comparison to the baseline
models.

4) The experimental results demonstrated that OCRmeth-
ods for other low-resource non-Latin scripts, including
Thai, Laos, Burmese, Vietnamese, and Hindi, can be
efficiently trained by transfer learning from the Khmer
OCR method.

II. KHMER SCRIPT AS A REPRESENTATIVE OF
NON-LATIN SCRIPTS
Khmer is the official language of Cambodia and is spoken
by approximately 17 million speakers. The Khmer script
is an abugida system in which each consonant is attached
to an inherent invisible vowel [22]. In the Khmer writing
system, there are 33 consonants, 14 independent vowels,
23 dependent vowels, and eight diacritics. The Unicode
Standard code points from U+1780 to U+17FF are assigned
to these symbols [23]. According to the Guinness World
Records, the Khmer script has the largest alphabet [24], and
the Khmer language is considered to be one of the most
complexwriting systems [21], [23]. Fig. 4 presents theKhmer
alphabet inventory and the corresponding Unicode points.

Depending on the fonts used, some pairs of characters
in Figs. 5(1) and (3) are highly ambiguous. The only
distinction between these sets of characters is a single
stroke. In some extreme cases, some subscript forms are
almost identical, as shown in Fig. 5(2). Although some
characters have one connected glyph, some are composed of
multiple disconnected glyphs, each of which is a separate
character, as shown in Fig. 5(3c). Thus, a sophisticated
contextual 2D recognition system is required for recognizing
and distinguishing these characters [24].

Khmer text is written from left to right with optional
spaces for readability purposes. The text is composed of
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orthographic syllables or character clusters. Each cluster
comprises a base consonant or an independent vowel,
up to two consonant subscripts, a dependent vowel, and
a diacritic [24]. Depending on their roles in a cluster,
consonants can take one of two different shapes, namely
the base and subscript forms. Unlike Latin script, the sizes
of characters in a cluster vary significantly as the sizes
of subscripts, diacritics, and some vowels are considerably
smaller, compared with a base consonant. Some examples
of character clusters are illustrated in Fig. 6(1) showing
disproportionate sizes of the contributing characters in the
clusters. The character resolution is significantly sensitive
to image resizing, as shown in Fig. 7 showing diminishing
resolution of the small-sized characters in red boxes with
increasing downsizing factors. In addition, Figs. 6(1a),
(1b), and (1c) also show several possible sequences of
the same word, which make it difficult to compare two
identically-looking words without knowing the underlying
sequences. The character normalization scheme [25] can
normalize these sequences to a canonical sequence. This is
achieved by decomposing each character cluster into smaller
units (e.g., subscripts and vowels), applying rule-based
corrections at the unit level, and recombining the corrected
units into a normalized cluster.

In addition, some consonants and subscripts can form lig-
atures with dependent vowels, diacritics, or both. Some
ligatures are recognizable, whereas others are nontrivial.
Ligatures are also font-dependent, and those caused by the
popular calligraphic Khmer Muol font are hard to recognize.
Fig. 6(2) shows some examples of ligatures. Because of
the complex structure of the Khmer script as described
above, capturing rich 2D spatial dependencies is crucial for
recognizing individual characters correctly [26].

The Khmer script is closely related to the scripts of Thai,
Laos, and Burmese in many respects. The Khmer and Hindi
scripts are both abugida but the latter uses spaces as a word
delimiter. Conversely, the Vietnamese script is based on Latin
and, like the Khmer script, uses additional diacritics for
functional and tonal purposes. Therefore, the Khmer script
was used as the representative of low-resource non-Latin
scripts in this study.

III. RELATED WORK
A. WORK ON LATIN TEXT RECOGNITION
In this section, we present a brief review of the most
recent seminal deep learning-based work on Latin text
recognition. Text recognition methods can, broadly, fit
into a unified segmentation-free framework, consisting of
rectification, visual feature extraction, sequence modeling,
and transcription [4], [10], [15], [16], [27], [28], [29].
Some of these methods can handle textlines of arbitrary
lengths, while others require resizing to a fixed size.
However, resizing a long textline input to a fixed size can
negatively impact the resolution of small-sized characters
as discussed earlier. Similarly, segmenting a long textline

FIGURE 4. The Khmer alphabet inventory and the Unicode points. U+17 is
removed from each Unicode point. The light gray dotted circle indicates
characters that must be attached to a base consonant.

FIGURE 5. Ambiguous characters: (1) consonants, (2) subscripts, and (3)
vowels.

FIGURE 6. Samples of Khmer character clusters and ligatures: base
consonants (red), consonant subscripts (blue), diacritics (purple), and
vowels (green). Best viewed in color.

input into smaller independent units using rudimentary image
processing techniques is particularly challenging for complex
backgrounds and can also result in discontinuity in linguistic
context during character decoding.

For regular text images, rectification is optional.
Shi et al. [30] proposed a convolutional recurrent neural
network (CRNN) architecture for extracting visual-temporal
features, and used a connectionist temporal classification
(CTC) decoder for transcription. Other variants of the
CRNN architecture include GRCNN [31], which uses
the gated recurrent convolution layer (GRCL) for context
modulation, and Rosetta [32]. Conversely, for irregular
text images, the input image is first transformed by using
the spatial Transformer network (STN) [33] to correct
distorted text geometries for subsequent downstream stages.
Shi et al. [19] proposed an attention-based sequence-to-
sequence (seq2seq) recognition network (ASTER) that uses
an STN rectification layer. ASTER also uses a CRNN
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FIGURE 7. Effect of image downsizing by preserving an aspect ratio on
the small-sized characters in red boxes. (1) Original size
(122 × 941 pixels). (2) Downsizing factor of two. (3) Downsizing factor of
four. (3) Downsizing factor of eight. All images are displayed with the
same scale for illustration purpose. Best viewed in color.

encoder and an attention-based decoder. Similarly, Zhan and
Lu [20] proposed an attention-based recognition network
named ESIR, which uses an iterative image rectification
layer and a modified ResNet-53 as a visual feature extractor.
Baek et al. [16] experimented with various model design
choices and found TRBA (TPS-ResNet-BiLSTM-Attention)
to be the best-performing model, followed by TRBC
(TPS-ResNet-BiLSTM-CTC). Sheng et al. [34] proposed a
no-recurrence seq2seq model (NRTR), consisting of a
modality-transform block (MDT), Transformer encoders,
and Transformer decoders. The MDT module maps a 2D
input to a one-dimensional (1D) sequence. Methods, such as
ASTER, ESIR, TRBC, and TRBA, require input images to
be resized to a fixed size to apply STN rectification, whereas
rectification-free methods, such as CRNN, GRCNN, and
Rosetta, do not necessarily impose such a restriction. The
latter methods are therefore capable of handling arbitrarily
long input images. In addition, compared with the basic
Transformer or attention-based decoder, the CTC decoder
used by CRNN, GRCNN, Rosetta, and TRBC is less sensitive
to input width [4].

The methods cited above are based on 1D feature
maps, which may fail to recognize irregular texts [28].
Therefore, Lee et al. [17] introduced a self-attention STR
network (SATRN) that uses 2D self-attention encoders and
Transformer decoders. Ly et al. [35] proposed a 2D self-
attention convolutional recurrent network (2D-SACRN) for
the HWR task, in which 2D self-attention layers are injected
into the convolutional neural network (CNN)module directly.
Taking advantage of the pretrained vision Transformer
(ViT) models, Atienza [15] proposed ViTSTR, a ViT-based
approach for STR. ViTSTR directly maps an input image

to output tokens by using only an encoder. Similarly,
Li et al. [18] proposed TrOCR, a Transformer-based OCR
method using a pretrained ViT model. The Transformer-
based approaches, such as SATRN, ViTSTR, and TrOCR,
are segmentation-free methods that do not possess prior
knowledge of character boundaries before recognition. As a
result, these methods typically require input images to be
resized to a fixed size. However, this restriction may not
be suitable for handling non-Latin scripts without explicit
boundaries, where textline images can be arbitrarily long
and have a low height-to-width ratio. This poses a challenge
as it may result in distortion or loss of information in the
textlines, potentially affecting the accuracy of recognition for
such scripts.

B. WORK ON KHMER AND LOW-RESOURCE NON-LATIN
TEXT RECOGNITION
Sok and Taing [36] proposed a Khmer printed text recog-
nition system that is composed of three steps: character
segmentation using edge detection, character classification
using a support vector machine (SVM), and rule-based
character assembly. Valy et al. [21], [24], [26] proposed text
recognition methods and applied them to the historical
handwritten Sleuk Rith dataset. These methods use both
a CNN and a 2D recurrent neural network (RNN) to
extract 2D spatial-visual and sequential features. Recently,
Buoy et al. [6] proposed an attention-based seq2seq approach
that uses both a CNN and an RNN for Khmer printed text
recognition, achieving an improved CER, compared with that
of Tesseract [5].

Fujii et al. [8] proposed a textline recognition framework
with script identification for multilingual scripts including
Khmer, which uses only a CNN feature extractor and CTC
transcription. The photo OCR performance is significantly
higher on Latin and Cyrillic than on non-Latin scripts.
Similarly, Ignat et al. [37] performed an OCR benchmark for
60 languages including the Khmer script on both synthetic
and real datasets by using Tesseract 4.0. It achieved the
highest OCR accuracy for Latin and Cyrillic scripts, but
relatively poor OCR accuracy for Perso-Arabic, North and
South Indic, and Southeast Asian scripts, indicating that more
training data and considerable attention are needed.

Variants of the CRNN architecture or the basic CRNN
model have been applied to other non-Latin languages,
including Vietnamese [13], Indian languages [9], [10],
Arabic [9], [12], Urdu [12], and Chinese [7]. Le et al. [11]
proposed an attention-based seq2seq approach that uses both
a CNN and an RNN for the Vietnamese HWR task. Thus, the
existing methods of non-Latin text recognition are dominated
by CRNN and attention-based seq2seq architectures using 1D
visual feature maps.

IV. DATASETS
Following a practice that is common in large-scale OCR [38]
and considering the scarcity of real labeled data of the
low-resource Khmer script, we synthetically generated

128048 VOLUME 11, 2023



R. Buoy et al.: Toward a Low-Resource Non-Latin-Complete Baseline

FIGURE 8. Textline length (number of characters) distribution of the
synthetic training scene text and document OCR datasets. The training
text corpus exhibits a bimodal distribution of textline lengths,
encompassing both shorter numbers and longer texts.

datasets of document OCR text and scene text. In both cases,
source textline data were converted to textline images and we
used the Khmer corpus and fonts provided by Tesseract [5].
Since the source text data lacks numerical content, additional
random short textlines containingKhmer andArabic numbers
were included as well. The resulting bimodal distribution
of textline lengths (number of characters) is shown in
Fig. 8, illustrating two categories: numbers and texts.
Several samples from the training, validation, evaluation, and
fine-tuning datasets are presented in Fig. 9. The list of the
used datasets in this study and their sizes is summarized in
Table 1.
For the synthetic document OCR training dataset, we used

TextRecognitionDataGenerator1 to generate 1.5 million
textline images with plain white backgrounds. We applied
random data augmentation to a mini-batch during training.
The data augmentation techniques that we applied include
erosion, addition of noise blobs, text thinning and thickening,
blurring, perspective distortion, rotation, deformation, and
image concatenation.

For the synthetic scene text training dataset, we used
SynthTIGER [38] to generate 1.3 million randomly aug-
mented images. During training, the scene text images were
randomly concatenated with the augmented document OCR
text images to increase text diversity, complexity, and length.

To identify the optimal models and configurations, we used
a synthetic scene text validation dataset, consisting of 10,000
images. This validation dataset was generated by using
SynthTIGER [38] and the KHPOS corpus.2 The textline
length (character count) distribution of the KHPOS corpus
is shown in Fig. 10, and Fig. 11 provides some examples of
short and long textline images from the validation dataset.

For performance benchmarking, we used the Khmer
ID card dataset, consisting of 1,500 images captured by

1https://github.com/Belval/TextRecognitionDataGenerator
2https://github.com/ye-kyaw-thu/khPOS

TABLE 1. List of the used datasets and their sizes. *: machine printed. **:
historical and handwritten.

smartphone cameras. The images in this dataset are heteroge-
neous with respect to condition, quality, resolution, blurring,
and lighting. Perspective distortion, deformation, erosion,
pixelation, and noise are common. Each ID card image was
manually labeled by extracting field data, such as the ID
number and full name, and the CRAFT text detector3 was
used for extracting the bounding boxes of text.

In addition, we also evaluated our proposed 2D models’
performance on the publicly available KHOB dataset,4

which comprises manually annotated textline images of
PDF documents. Compared to the Khmer ID card dataset,
the images in the KHOB dataset have relatively clean
backgrounds but poorer quality due to compression that
significantly affects the resolution of small-sized characters,
such as subscripts, vowels, and diacritics. After excluding
images with insufficient resolution or those containing Latin
text, the resulting collection comprises 336 textline images.

To assess the robustness of the proposed approach on other
input modalities, we fine-tuned our proposed 2D models on
the historical Sleuk Rith dataset5 and compared the CER
with that achieved by the state-of-the-art (SOTA) model [21].
This dataset consists of 657 manually annotated rectangular
pages, and contains the equivalent of 75,000 word images.
Each page is made of a dried palm leaf on which letters
in the ancient Aksar Kham font were carved with a sharp,
pointy stylus. Additional ink was applied to make the text
and background colors distinct. The manuscripts have been
preserved from generation to generation. The writing varies
according to the time of creation and differs significantly
from modern Khmer writing [21]. The Sleuk Rith dataset
does not have a predefined train-test split, so we randomly
divided it into training and test sets. The training set consisted
of 95% of the samples, while the remaining 5% were
allocated to the test set. Therefore, it is important to take this
into consideration when comparing the performance with the
SOTA model [21].

V. PROPOSED TEXT RECOGNITION ARCHITECTURE
In this section, we discuss our proposed unified and modular
convolutional Transformer-based approach for Khmer text
recognition. Our proposed approach is unified because it
can handle both the 2D and 1D feature maps produced by
the CNN module without changing the architecture. It is
modular because certain modules, such as the CNN module,

3https://github.com/clovaai/CRAFT-pytorch
4https://github.com/EKYCSolutions/khmer-ocr-benchmark-dataset
5https://github.com/donavaly/SleukRith-Set
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FIGURE 9. (a) Some preview images. (b) A sample Khmer ID card. (c) A sample palm leaf manuscript page.

FIGURE 10. Textline length (number of characters) distribution of the
validation text corpus (KHPOS).

can be included or excluded. Nevertheless, for vision tasks,
the CNN module is usually included because it can suppress
background artifacts by extracting more abstract features
and can reduce the computational burden on the subsequent
Transformer encoders [17]. The proposed approach can be
used as a baseline method for other low-resource non-Latin
scripts with similar features.

A. TRANSFORMER-BASED RECOGNITION MODEL
Similarly to TrOCR [18] and SATRN [17], the Transformer-
based architecture used in this study consists of an encoder
and a decoder, as shown in Fig. 12. The encoder is composed
of a CNN module, a patching module, and Transformer
encoder units. For 2D feature maps, the CNN module pro-
duces the feature maps by downsampling the input width and
height by a factor of four, whereas for 1D feature maps, the
input height is downsampled to a unit height. Mathematically,
the feature maps, F = (F1,1, . . . ,F1,W ′ , . . . ,FH ′,W ′ ), Fi,j ∈

RD, are given by

F = CNN(I), (1)

FIGURE 11. Examples of short and long textline images in the validation
dataset.

where I is a grayscale image of (H ×W ) pixels and CNN is a
CNNmodule.H ′

=
H
4 ,W

′
=

W
4 , andD are the height, width,

and dimension of the resulting feature maps, F. In case of 1D
feature maps, the CNNmodule reducesH ′ to one through the
convolutional or pooling layers.

The patching module converts the feature maps from
the CNN module to a position-aware sequence of vectors
by splitting the feature maps into small non-overlapping
patches. These patches are then linearly projected and
position embeddings are added before they are passed to the
Transformer encoders. The resulting patched feature maps,
P = (P1, . . . ,P H ′

k1
W ′

k2

), P i ∈RD, are given by

P = PATCHENC(k1, k2)(F), (2)

where PATCHENC(k1, k2) is a patching function which takes
a ViT-like patch size (k1, k2) as an input. The patchingmodule
reduces the feature maps, F, by k1 and k2 in the vertical and
horizontal directions, respectively. To extract spatial feature
dependencies, P are fed to a stack of standard Transformer
encoder units to produce T = (T1, . . . ,T H ′

k1
W ′

k2

), T i in RD,
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FIGURE 12. The overall Transformer-based encoder-decoder architecture.
The CNN module takes an input image, I , and outputs 2D feature maps, F,
that are downsampled by the PATCHENC module to generate P. To capture
spatial feature dependencies, P are fed to the Transformer encoder units,
TRENC, to obtain T . T and a context sequence, Z, are fed to the
Transformer decoder units, TRDEC, to obtain the predicted characters, Ŷ .

as given by

T = TRENC(P), (3)

where TRENC is a stack of standard Transformer encoder
units.

The decoder module consists of Transformer decoder
units; however, in contrast to a basic Transformer decoder,
it uses static position encoding for predicting the output of
variable length. The autoregressive decoder module takes
T as input and outputs a probability distribution sequence
over 131 characters, including Khmer characters, common
foreign symbols (such as hyphen, space, and period), and
three special tokens (namely PAD for padding, EOS for
end of sentence, and SOS for start of sentence). The class

distribution sequence, Ŷ = (Ŷ1, . . . , ŶL), Ŷ i ∈RC , and Loss
are given by

Ŷ = TRDEC(T ,Z) (4)

Loss = CE(Ŷ ,Y ), (5)

where TRDEC is a stack of Transformer decoder units
and Y = (y1, . . . , yL ,EOS) is a target sequence. Z =

(SOS, y1, . . . , yL) is a context sequence. L is the prediction
length andC is the number of prediction classes which is 131.
CE is a cross-entropy loss function.

B. IMAGE CHUNKING AND MERGING METHOD
The position embedding in the patching module requires
a maximum length, which is usually derived from training
data. In the context of the Khmer script and other languages
without explicit word boundaries, there is no notion of
maximum text length: the text can be arbitrarily long. Using
a fixed maximum text length leads to two drawbacks: (1) the
inability to generalize to textline images longer than the
training images, and (2) high self-attention complexity in
TRENC for long textline images.
The chunking and merging technique was originally

introduced by Diaz et al. [4] as a strategy to handle arbitrarily
long Latin textline images by splitting each input image into
overlapping chunks. Additional paddingwas added to the first
and last chunks to make all chunks in the batch share the
same width for mini-batch training. However, Diaz et al. [4]
limited this chunking strategy to the 1D CTC-based models
only.
We adopted, adapted, and incorporated the chunking and

merging technique into the 2D Transformer-based Khmer
text recognition to reduce the self-attention complexity for
arbitrarily long textline images from a quadratic to a linear
relation. As depicted in Fig. 13, if we consider an input
that is five times wider (denoted as 5W ), the self-attention
complexity isO(52C) as compared toO(C) for an input width
of W . However, if we divide the input with a width of 5W
into five consecutive chunks, each having a width ofW and a
self-attention complexity ofO(C). The features of each chunk
are then processed independently and subsequently merged
together. This approach results in the overall self-attention
complexity of only O(5C), effectively reducing the compu-
tational burden by five times. As quantitatively shown in
Fig. 14, the encoder complexity is reduced from 32.3 billion
floating-point operations (FLOPs) to only 16.8 billion FLOPs
when the chunking technique is applied at a textline width
of 2000 pixels. Therefore, by employing the chunking and
merging technique, it becomes feasible to handle input of
arbitrary length without the need for resizing it to a fixed
size and the resolution of the small-sized characters is not
undesirably affected.
The proposed 2DTransformer-based architecture, incorpo-

rating the chunking and merging technique, is illustrated in
Fig. 15. The figure depicts an image, denoted as I , divided
into two overlapping chunks: Chunk (1) and Chunk (2).
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FIGURE 13. Self-attention complexity reduction by the image chunking
technique. By splitting a long textline image (e.g., 500 pixels) with a width
of 5W into five smaller chunks, each of which has a width of W (e.g.,
100 pixels), the self-attention complexity is reduced from a quadratic
relation, O(52C), to a linear relation, O((5 + ϵ)C) where ϵ is a tiny
overlapping margin (e.g., zero pixel). Vertical dashed lines denote chunk
boundaries. Best viewed in color.

FIGURE 14. The encoder complexity comparison: chunking vs.
no chunking. The graph is based on a VGG feature extractor with a patch
size (k1, k2) of (3,1). A chunk width of 100 pixels is used, assuming an
overlapping margin, ϵ, of 0. Best viewed in color.

The features of Chunk (1) and Chunk (2) are processed
independently and finally merged together before decoding,
as indicated by the blue and green components in the figure.
By consolidating the features of the chunks before character
decoding, rather than decoding characters independently in
each chunk and then merging the resultant characters, the
Transformer decoder gains the ability to utilize all previously
decoded characters across all chunks for predicting the next
character. Additional overlapping margins are introduced
to mitigate image discontinuity and counteract undesirable
boundary effects, as illustrated in the same figure.

Unlike in NLP tasks, such as machine translation, where
long-range feature dependencies are crucial, local visual

feature dependencies play a more significant role in accu-
rately predicting characters in text recognition. By dividing
an image into smaller independent chunks, we effectively
mitigate long-range dependencies and focus on modeling
local dependencies instead.

In addition, the chunking technique also enhances effi-
ciency of mini-batch processing during training, as shown
in Fig. 16. When the chunking technique is applied, the
input images in a mini-batch do not require padding to the
maximum width, as in Fig. 16(a), but only to a much smaller
chunk width, as in Fig. 16(b). Self-attention computations are
performed at the chunk level instead of the whole image level.
This leads to enhanced localized spatial connections and
a decrease in unnecessary computations within the padded
regions.

VI. DESIGN OF EXPERIMENTS, RESULTS, AND ANALYSES
In this section, we discuss the experimental setup, present
the results, and provide the analyses. We use the synthetic
validation dataset to identify the optimal chunk width (i.e.,
W ) and patch size (i.e., k1, k2) and to assess the impact of
the chunking technique in Section VI-A. The baseline models
were also set up for performance benchmarking in the same
section.

To assess the model accuracies on the real Khmer datasets
and other scripts, we compare the proposed 2D approach
with the baseline models on the Khmer ID card and KHOB
datasets, followed by transfer learning on the Sleuk Rith
dataset in Section VI-B and other low-resource non-Latin
scripts in Section VI-C. Finally, we provide two crucial
analyses: performance versus textline length and failure cases
in Section VI-D.
Following Baek et al. [16], we used two modified CNN

backbones, namely VGG [39] and ResNet [40], in our
experiments. In principle, any published CNN architectures
can be employed as a feature extractor, and enhancing a
backbone’s complexity typically results in a moderate recog-
nition gain [4]. Nevertheless, VGG, characterized by its lower
complexity, and ResNet, known for its higher complexity,
are commonly used as a CNN feature extractor in text
recognition. Using the VGG and ResNet backbones allows
the recognition assessment of the backbone complexity on
the Khmer script in this study. The detailed specifications
of the modified VGG and ResNet architectures are provided
in Tables 2 and 3, respectively. In all cases, input images
were resized to a fixed height by preserving the aspect ratio
and allowing the images to be arbitrarily long, to handle
writing without explicit word boundaries. No assumption
was made about the maximum image width, which is often
assumed in most Latin scene text recognition methods. As
a result, a long textline image will have a higher number of
chunks, compared with a short textline image. For a textline
image that is shorter than a chunk width, zero padding is
added.

As for model training, we used the Adam optimizer with
an initial training rate of 10−4 for the first 15 epochs for fast
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FIGURE 15. The proposed 2D Transformer-based encoder-decoder architecture, incorporating the chunking and
merging technique. An input image, I , is split into two smaller chunks (i.e., Chunk (1) and Chunk (2) in this case).
The chunks (blue vs. green) are independently processed by the PATCHENC and the TRENC. However, the contextual
features, T , are merged and position-encoded in the MERGE module. The merged T and a context sequence, Z, are
fed to the Transformer decoder units, TRDEC, to obtain the predicted characters, Ŷ . Best viewed in color.

convergence, followed by cyclic learning between 10−4 and
10−5 for another 15 epochs for stabilization, and then cyclic
learning between 10−5 and 10−6 for the remaining epochs.
In each epoch, random samples comprising 100,000 images
were selected. The training lasted for 100 epochs. A standard
multi-class cross-entropy loss was used in all experiments.

Regarding the evaluation metric, in contrast to the Latin
script, computing a CER on the Khmer script requires
an extra conditioning step because of the non-canonical
order of characters mentioned earlier. Therefore, we applied
the character normalization described in Section II before
computing a CER. Since the Khmer script does not have any
explicit word boundaries, only CER is used as an evaluation
metric. Although it is feasible to apply a word segmentation
algorithm to both the predicted and ground-truth texts
before calculating a word error rate (WER), errors arising
from word segmentation can distort the accuracy of the
resulting WER. It should be mentioned that a WER is

always greater than or equal to a CER for a given Khmer
text.

A. OPTIMAL MODEL CONFIGURATIONS AND BASELINE
MODELS
1) EXPERIMENT SETUP
We begin by evaluating the impact of the chunking and
merging technique and determining the optimal settings,
namely patch size (i.e., k1, k2) and chunk width (i.e.,W ).
For this purpose, we utilize the synthetic validation dataset,
as previously described in Section IV. In addition to our
proposed 2D models, we also set up the 1D baseline models
to assess the effect of the chunking technique, determine the
optimal chunk width, and make performance comparisons.
We also set up other baseline models based on the existing
CTC-based and attention-based methods for the purpose of
performance comparisons.
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FIGURE 16. Illustration of image chunking operation. There are four
textline images of different widths. Without image chunking (a), the four
input images are padded to the maximum width. This results in
unnecessary computations in the padded regions. With image chunking
(b), the four input images are split into eight smaller chunks, only the first
and last of which are padded to a much smaller chunk width for efficient
mini-batch training. Best viewed in color.

TABLE 2. The modified VGG architecture [16].

For the 1D baseline models (i.e., those using 1D CNN
feature maps), the resulting feature maps from both CNN
architectures (VGG and ResNet) have a unit height, with a
fixed height of 42 pixels. For each CNN architecture, we set
up three models using three different chunk widths (W): 64,
100, and 128 pixels.

For our proposed 2D models (i.e., those using 2D CNN
feature maps), we dropped the last two MaxPooling layers
(i.e., Pool3 and Pool4) from the VGG architecture, and
the last MaxPooling layer (i.e., Pool3) and the last two
convolutional layers (i.e., Conv6 and Conv7) from the ResNet
architecture. The resulting feature maps from the VGG and
ResNet have 12 units of height, using a fixed height of

TABLE 3. The modified ResNet architecture [16].

FIGURE 17. Image chunks with different overlapping margins. (a) Input
image. (b) Eight pixels. (c) 16 pixels. (d) 32 pixels. The red lines represent
margin boundaries. A fixed height of 48 pixels and a chunk width of
100 pixels are used.

48 pixels. For each CNN architecture, we set up three models
using asymmetric patches (i.e., k1, k2) of (2,1), (3,1), and
(4,1), which downsample the feature maps in the height
dimension by factors of two, three, and four, respectively.
Only asymmetric patches were used because textline images
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generally have a low height-to-width ratio. The optimal chunk
width from the 1D baseline experiments was used. As for
the overlapping margin, Fig. 17 shows that an overlapping
margin of 16 pixels can sufficiently cover aKhmer character’s
width while the margins of eight and 32 pixels are too
small and too large, respectively. For both the 1D and 2D
experiments, an overlapping margin of 16 pixels was, thus,
used. Nonetheless, an overlapping margin of 32 pixels or
larger can also be employed to enhance feature continuity
and context at chunk boundaries, although this may lead to
additional complexity.

As for the other baseline models, we set up three repre-
sentative baseline CTC-based and attention-based models:
CRNN [30], TRBA (TPS-ResNet-BiLSTM-Attention) [16],
and TRBC (TPS-ResNet-BiLSTM-CTC) [16]. To avoid
resizing input images to a fixed size, thin-plate spline
(TPS) transformation was dropped from TRBA and TRBC.
Chunking was not applied to these baseline models.

2) RESULTS AND ANALYSES
In this section, we present the performance results of
different model configurations on the synthetic validation
dataset to identify optimal configurations for the subsequent
evaluations on the real datasets. As shown in Table 4, the
1D baseline models consistently outperformed the baseline
CRNN, TRBA, and TRBC on the synthetic validation dataset.
Compared with a VGG backbone, using a ResNet backbone
further improved the CERs at the cost of a large increase in
the number of FLOPs and the number of parameters. This is
because the ResNet backbone has a greater receptive field and
can extract richer semantic features than theVGG. The results
also indicate that localizing self-attention by means of the
modified image chunking and merging strategy consistently
led to a further reduction in the CERs (up to 0.3%). The
choice of chunk width had a marginal impact (≤ 0.1%) on
the resulting CERs, although a chunk width of 100 pixels
appeared to be optimal.

By using the optimal chunk width from the 1D baseline
experiments, Table 4 shows that our proposed 2D models
achieved lower CERs, compared with the baseline CRNN,
TRBA, and TRBC. Compared with the 1D baseline models,
our proposed 2Dmodels achieved improved CERs regardless
of the backbone, which suggests that explicitly capturing
local 2D spatial dependencies is beneficial for Khmer
character recognition. The performance of our proposed 2D
models using a VGG was comparable with that of the 1D
baseline models using a ResNet. This shows that a deep
CNN implicitly encodes local spatial dependencies through
its depth, whereas a shallow CNN needs to explicitly model
spatial relations through self-attention layers. Nevertheless,
the former is computationally more expensive: the 1D
baseline models using a ResNet performed approximately
more than twice as many FLOPs as our proposed 2D models
using a VGG. For 2D cases, the choice of patch size had only
a marginal impact (≤ 0.1%) on the CERs, although a (3,1)

patch appeared to be optimal. Therefore, a patch size of (3,1)
was used in the subsequent experiments.

B. PERFORMANCE ON THE KHMER ID CARD, KHOB, AND
SLEUK RITH DATASETS
1) EXPERIMENT SETUP
In the previous section, we identified the optimal 1D baseline
models as well as our proposed optimal 2D models. In this
section, we assess the performance of thesemodels on various
real Khmer datasets, encompassing different modalities, such
as the Khmer ID card, KHOB, and Sleuk Rith datasets
described in Section IV. For the Khmer ID card and
KHOB datasets, we directly applied the optimal models from
Section VI-Awithout any fine-tuning training. Evaluating the
performance on these real datasets is crucial, as it provides
insights into how well the models, trained solely on synthetic
data, can generalize in real-world settings. This becomes
particularly significant for low-resource non-Latin scripts,
where only limited labeled data is available for fine-tuning.

Regarding the historical, handwritten Sleuk Rith dataset,
both the baseline models and our proposed optimal 2D
models underwent fine-tuning using transfer learning. The
experiments were conducted with two main objectives. The
first objective is to evaluate our proposed 2D approach on
historical handwritten modality in comparison to the baseline
models and the SOTA model by Valy et al. [21]. The second
objective is to demonstrate the effectiveness of transfer
learning from the printed text modality to the handwritten text
modality.

2) RESULTS AND ANALYSES
Regarding the Khmer ID card dataset, the text boxes
containing full names inKhmer and ID numbers in Latin were
detected and cropped using the CRAFT text detector, without
any manual correction. The average height of the cropped
images is 154 pixels, with a standard deviation of 36 pixels.
In Fig. 9, the textline for the Khmer name field is depicted,
written in two calligraphic fonts known for their inherent
difficulty in reading, often due to ambiguous characters
and ligatures. Furthermore, since the ID card images were
captured using smartphone cameras, they exhibit diverse
conditions, varying in quality, resolution, blurring, and
lighting. Due to the nature of the Khmer script not being
explicitly trained in the CRAFT text detector, there are
instances where the text detector partially misses certain
characters, such as subscripts, vowels, or diacritics, either
below or above the base characters. Notwithstanding these
challenges, our proposed 2D models achieved CERs that
were approximately 50% or more lower than those of the
baseline Tesseract OCR, CRNN, TRBC, and TRBA for both
the name and number fields, as demonstrated in Table 5.
The substantial disparities in CERs between the full name
in Khmer and the ID number in Latin can be attributed to
the inherent complexity of the Khmer script compared to
Latin. Once again, the enhancements in CERs accomplished
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TABLE 4. Results of our proposed 2D models and the baseline models on the synthetic validation dataset. Bold: highest/lowest. Italic: second
highest/lowest.

TABLE 5. Character error rate (CER in %) results on the Khmer ID card,
KHOB, and Sleuk Rith datasets. Bold: lowest. Italic: second lowest.

by the proposed 2D models over the 1D baseline models
highlight the robustness obtained from capturing local 2D
spatial dependencies in this real dataset.

Unlike the Khmer ID card dataset, the KHOB dataset
benefits from relatively clean backgrounds as it is derived
from PDF documents. However, the dataset suffers from
lower resolution caused by image compression, which
disproportionately affects small-sized characters, such as
vowels, subscripts, and diacritics. The average height of the
cropped images in this dataset is merely 27 pixels, with
a standard deviation of 6 pixels. Our proposed 2D models
demonstrated a significant reduction of approximately 50%
or more in CERs compared to the baseline Tesseract OCR,
CRNN, TRBC, and TRBA, as indicated by the data presented
in Table 5. Our proposed 2D-VGG model exhibited superior
performance in terms of CER when compared to the
1D-VGG baseline model. However, the 1D-ResNet baseline
model outperformed our proposed 2D-ResNet model. This
is because unlike the shallow or 1D models, the deep 2D
model with a large receptive field requires enough vertical
resolution to extract meaningful feature dependencies. In
other words, 2D feature modeling can be likened to zooming

TABLE 6. Failure cases of the 2D-ResNet model due to low resolution
caused by image compression and double scanning. The first row
contains the input images. The second row is the corresponding
ground-truths. The 3rd until the 6th rows are the predicted texts from the
different models. CERs are provided in the bracket. The errors are
highlighted in red. Best viewed in color.

in on the details of visual features, which is useful for accurate
recognition when there are enough vertical details (i.e.,
resolution). In the case of low resolution images, zooming
out, akin to 1D modeling, is more useful for recognition.
In addition, the legibility of certain Khmer characters, such
as diacritics, vowels, and subscripts is very sensitive to
image resolution as illustrated in Fig. 7. Table 6 presents
sample failure cases of the 2D-ResNet model caused by
low resolution caused by image compression and double
scanning, along with recognition results from other models.

So far, we have observed that our proposed 2D models
trained solely on synthetic data can effectively generalize on
the real printed text modality without requiring fine-tuning,
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FIGURE 18. The cross-plot of image-level CERs vs. textline length (i.e.,
character count) for our proposed 2D model using a ResNet and the
1D-ResNet baseline models. The chunking technique was applied in both
the 1D-ResNet baseline and Our proposed 2D-ResNet models. Best
viewed in color.

as demonstrated in comparison to the baseline models. In this
part, we focus on evaluating the performance of our proposed
2D models on the Sleuk Rith dataset. Due to the unique
characteristics of the Sleuk Rith dataset, which comprises
historical handwritten palm leaf documents, the modality of
the dataset differs significantly from the synthetic training
data. Consequently, the models trained on synthetic data
cannot be directly applied without undergoing the process of
fine-tuning. Both the baseline models (excluding Tesseract)
and our proposed 2D models underwent fine-tuning using
a small training set specific to the Sleuk Rith dataset. Sub-
sequently, the performance of these fine-tuned models was
evaluated on a randomly selected test set. As demonstrated
in Table 5, both the fine-tuned baseline models and our
fine-tuned models achieved lower CERs compared to the
current SOTA model by Valy et al. [21]. Furthermore, our
proposed 2D models exhibited superior performance to the
baseline CRNN, TRBC, and TRBA models by a margin of
up to 2.4%, while also attaining slightly lower CERs when
compared to the 1D baseline models. The results highlight the
robustness of our proposed 2D approach and the feasibility
of transfer learning from Khmer printed text to historical
handwritten text with a limited labeled dataset.

C. PERFORMANCE ON OTHER RELATED SCRIPTS: THAI,
LAOS, BURMESE, VIETNAMESE, AND HINDI SCRIPTS
1) EXPERIMENT SETUP
The preceding sections focus on evaluating the performance
of our proposed 2D models specifically on the Khmer
script. In this section, we shift our attention to assessing the
robustness and transferability of the proposed 2D models
beyond the Khmer script.We accomplished this by evaluating
the fine-tuning performance on other low-resource scripts
that share similar features with the Khmer script and have
limited labeled data available for training.We performed fine-
tuning on the baseline models and our proposed 2D models
using Thai, Laos, Burmese, Vietnamese, and Hindi scripts.

FIGURE 19. Some examples of recognition failures in the KHOB dataset.
(a) Missing characters due to erroneous cropping (annotation). (b) Low
resolution textline images.

These particular scripts were selected to represent the diverse
range of low-resource non-Latin scripts that share similar
features with the Khmer script. For each script, we created a
small-scale dataset consisting of 200,000 images containing
document OCR and scene text. From this dataset, a randomly
selected 5%was reserved as a test set for evaluation purposes.
The performance of our proposed 2D models was then
compared against Tesseract and the fine-tuned baseline
models. It is worth noting that since Tesseract 4.0 already
supports the selected scripts, no additional fine-tuning was
required for Tesseract.

2) RESULTS AND ANALYSES
Despite Tesseract being trained with data augmentation
techniques [5], the resulting CERs for all the scripts were
approximately one order of magnitude higher compared
to the CERs achieved by the fine-tuned baseline models
and our fine-tuned models. This performance difference is
demonstrated in Table 7. A similar observation was made
by Namysl and Konya [41] in their study on distorted Latin
text images. However, the results indicate that Tesseract
achieved significantly lower CERs for scripts that have
explicit word boundaries, such as Vietnamese and Hindi,
compared to scripts without explicit word boundaries. This
suggests the recognition challenge caused by implicit word
boundaries. Among the baseline TRBC and TRBA, the
outcomes indicate a preference for a CTC-based decoder
(TRBC) over an attention-based decoder (TRBA), given the
same backbone. Across all the scripts evaluated, our proposed
2D models consistently outperformed the baseline Tesseract
OCR, CRNN, TRBC, and TRBA and achieved lower CERs
compared with the 1D baseline models. This emphasizes the
efficacy of our proposed 2D approach in achieving robust
generalization beyond the Khmer script. Despite the limited
fine-tuning labeled data available for each script, the results
presented in Table 7 demonstrate the transfer learning’s
robustness from the Khmer script to other low-resource non-
Latin scripts with similar characteristics. Consequently, the
Khmer OCR method can serve as a valuable baseline method
for low-resource non-Latin scripts.
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TABLE 7. Character error rate (CER in %) results on the test sets of Thai, Laos, Burmese, Hindi, and Vietnamese scripts. Bold: lowest. Italic: second lowest.

TABLE 8. Some failure cases associated with the failure of the text detector to capture the entire textlines and image distortions. The first row contains
the input images. The second row is the corresponding ground-truths. The 3rd until the 6th rows are the predicted texts from the different models. CERs
are provided in the bracket. The errors are highlighted in red. Best viewed in color.

D. ADDITIONAL ANALYSES
Finally, we conducted two crucial analyses: performance
versus textline length and failure cases. Evaluating the CERs
in relation to the textline length (character count) is vital
as it helps us determine whether our proposed 2D models
can effectively recognize textline images of varying lengths,
even those that are arbitrarily long. Similarly, the analysis
of failure cases allows us to identify the weaknesses of the
models and training data, providing valuable insights for
further improvements. Regarding the analysis of performance
versus textline length, the KHOB dataset was employed due
to its inclusion of longer textline images, providing a suitable
basis for evaluation when compared to the Khmer ID card
dataset. On the other hand, for the analysis of failure cases,
the Khmer ID card dataset was utilized. This dataset contains
particularly challenging textline images in natural scenes,
making it suitable for assessing the models’ weaknesses and
areas for improvement.

1) ANALYSIS OF CERS VS. TEXTLINE LENGTH
The correlation between image-level CERs and textline
length on the KHOB dataset for our proposed 2D model
using a ResNet and the 1D-ResNet baseline models, with and

without the application of the chunking technique, is depicted
in Fig. 18. According to the figure, it can be inferred that the
chunking technique does not negatively impact model per-
formance, even when dealing with long textline images. This
suggests that the integration of the chunking and merging
technique in the proposed 2D Transformer-based Khmer text
recognition method can effectively reduce model complexity
when dealing with arbitrarily long input, without sacrificing
accuracy.

However, Fig. 18 also demonstrates that higher CERs
are observed for textline images containing between 25
and 45 characters. Two primary root causes were iden-
tified: (1) missing characters caused by erroneous crop-
ping and (2) low resolution textline images caused by
image compression and double scanning, as illustrated in
Figs. 19(a) and (b), respectively.

2) ANALYSIS OF FAILURE CASES
We identified the failure cases on the Khmer ID card dataset,
some of which are shown in Table 8, as well as the causes.
The predicted texts, along with the corresponding CERs
from the proposed 2D models and the baseline 1D models,
are presented in rows 3 to 6 for each example failure
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case (column). Two findings can be derived from these
results. Firstly, the ResNet-based models outperformed the
VGG-based models on these challenging cases. Secondly, the
2Dmodels achieved lower CERs, compared to the 1Dmodels
in this dataset.

Two main causes of performance degradation were iden-
tified. The first is that the text detector failed to detect
some subscripts, below or above vowels, and diacritics,
as shown in the first and third cases of Table 8. The second
is image distortions caused by light reflection, scratching,
and blurring, as shown in all cases of Table 8. While the
latter cause is common for general scene text images in
natural scenes, the former happens only with the Khmer and
non-Latin scripts with complex features.

VII. CONCLUSION AND FUTURE WORK
We present a convolutional Transformer-based text recog-
nition approach for low-resource non-Latin scripts with
character stacking, diacritics, ligatures, and writing without
explicit word boundaries. Coupled with a modified chunking
and merging strategy, the proposed method can handle
arbitrarily long textline images without resizing them to a
fixed size, reduce the complexity of model training, and
model local 2D spatial dependencies. Using the Khmer script
as our case study, our proposed 2D models outperformed
the baseline models across multiple input modalities. The
fine-tuning results on other low-resource non-Latin scripts
suggest that OCR methods for other related scripts can
be efficiently fine-tuned from the Khmer OCR method
by transfer learning, even with limited labeled data. Thus,
by analogy with the AI-complete concept, a Khmer OCR
method can be considered as non-Latin-complete and can be
used as a low-resource non-Latin baseline method.

Future work will involve including additional non-Latin
scripts to further validate the proposed approach, and
improving feature extraction, particularly for distorted inputs.
The design of a joint text detection and recognition system
for the Khmer and other non-Latin scripts will also be
investigated. In addition, we will perform experiments with
real Khmer handwritten data collected from different age
groups and professions to further validate the proposed
method.
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