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ABSTRACT One of the vital challenges for the binary neural networks (BNNs) is improving their inference
performance by expanding their data representation capabilities for figuring out delicate patterns and
nuances in the data. Addressing the explosive computational demands on neural network training is essential
to guarantee sustainable development and scalable deployment. However, mitigating the increase in the
computational cost during the training phase is critical for ensuring sustainability and scalability during
deployment. In this study, an advanced sign-flipping-aware optimizer (SFAO) that focuses on BNNs was
introduced to diminish the computational burden. SFAO balanced the model performance and computational
cost through sign-flipping-aware updating rules throughout the training of BNNs. SFAO optimizer, tailored
for BNNs with binary weight-specific updating rules, considerably reduced the computing resources needed
for training on the CIFAR-10 dataset. Specifically, it surpassed the conventional full-precision updating rule
by reducing the total instruction count by 21.89%. In contrast, SFAO showed a marginal 0.44% decline in the
image classification accuracy relative to the updating rules for the full-precision parameters. Furthermore,
the implementation of early stopping using the sign flip rate led to a notable reduction of 9.37% in the average
computation time per network for the ImageNet dataset.

INDEX TERMS Artificial intelligence, model compression, optimizer, efficient machine learning, binarized
neural networks, layer freezing.

I. INTRODUCTION
Binarized neural networks (BNNs) have emerged as promis-
ing alternative to lightweight super-sized artificial intelli-
gence (AI) models to ensure sustainability and scalability
in computationally demanding applications [1], [2], [3].
With binary weights and activations, BNNs can cope
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with computational complexities and storage requirements,
making them suitable for resource-constrained devices. How-
ever, aggressive binarization, which is helpful for reducing
hardware demands, causes quantization errors and severely
restrains the representation of the network that the parameters
can express, leading to a decrease in network performance.

Two dominant approaches have been proposed to compen-
sate for the accuracy loss originating from the binarization
in BNNs. The first approach involves amplifying the
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representational capability of each layer by expanding the
diversity of cases that the parameters can represent [4], [5],
[6], [7], [8], [9], [10], [11]. The second method focuses on
refining the gradient mismatch in the backward path [1], [12],
[13]. By employing straight-through estimation (STE) [14]
and scaling factors, Rastegari et al. [2] demonstrated a
notable expansion in the network representation and more
accurate parameter updates. In addition, Liu et al. [1]
introduced the STE transformation of a piecewise polynomial
function from the derivative of the sign function, which
has impulsive features that cause a gradient mismatch in
backpropagation.

Advancements in the inference performance of BNNs
have reached a stage where they can be applied to real-
world, close-to-human image classification tasks, such as the
ImageNet dataset [15]. However, it is crucial to acknowl-
edge the considerable escalation in incidental computations
associated with training these networks to achieve the
desired performance level. Despite notable improvements in
reasoning capabilities within the 1-bit domain for inference,
training BNNs requires compensation for representational
capabilities compared with neural networks with single-
precision 32-bit floating-point (FP32) parameters [1], [2],
[16], [17]. Therefore, efforts must be directed toward
developing sustainable training methodologies that retain
inference performance and reduce computational costs.

The complexity of the learning methods utilized in
BNNs, such as elastic binarization and STE, necessitates the
development of new optimization techniques for lightweight
training [18], [19], [20], [21]. Conventional optimizers
applied to neural networks composed of FP32must recognize
the discrete properties of binary weights, which requires
tailored approaches to address the unique characteristics of
BNNs. Novel optimization strategies are needed to improve
weight the update rules, balance performance and efficiency
to overcome the complex training processes of BNNs. BNN
training with full-precision weights requires more work
to update the weights that remain unchanged because of
the high threshold for the sign function. Therefore, the
optimizers and weight-update methods for full-precision
parameters must be changed to make them more efficient for
BNNs.

One promisingmethodology involves stabilizing the layers
of the BNN according to the sign flip rate (SFR) [22].
Along these lines, it directly addresses the fundamental cause
of the computational burden: backpropagation and weight
updating processes and training becomes faster and more
efficient by reducing computational demands. Moreover, this
approach ensures that any decrease in accuracy, which is
a common trade-off in model simplification, is minimized.
Hence, we balanced computational efficiency and model per-
formance, demonstrating a practical method for overcoming
hardware resource limitations.

The primary contributions of this study are the acceleration
of BNN training by implementing enhancements to the
weight-updating rule.

• We propose a method for calculating the percentage
of unproductive weight updates derived from sign
functions during BNN training with latent weights.

• Computational redundancy was demonstrated by quan-
tifying the change in the binary weight with respect to
the gradient magnitude.

• Enhancing the learning speed of BNNs by minimizing
unnecessary latent weight updates.

• Experiments were conducted on system-level architec-
tural simulator gem5 [23] to corroborate the computa-
tional reduction and quantify the consequent gains in
energy efficiency of the proposed method.

The remainder of this paper is organized as follows:
Section II provides a comprehensive review of the relevant
literature and highlights the knowledge gaps that this study
seeks to address. Section III describes the motivation behind
the weight-freezing updating rule and presents a detailed
description of the training algorithms used to test our
hypotheses. Section IV presents the experimental results
and ablation studies that provide detailed insights into the
effectiveness and limitations of the proposed approach.
Section V discusses the implications of our experimental
results for the sign-flipping-aware optimizer (SFAO) and
future research directions, given the limitations. Finally,
Section VI summarizes the findings.

II. RELATED WORK
Additional training techniques were introduced to enhance
the inference performance of BNNs, with a specific focus on
the backward process. However, these operations come at the
cost of a substantial increase in computational requirements,
thereby limiting the scalability of deployment for training.

A. BNN TRAINING WITH LATENT WEIGHT

FIGURE 1. BNN training methods with latent weights.

Since the pioneering investigation by Courbariaux et al.
[24], [25], BNNs have emerged as a promising approach
that offers benefits, such as reduced memory usage and
computational cost compared to 32-bit full-precision neural
networks. The BNN training methodology, which employs
latent weights to establish mappings from continuous values
to binary representations, facilitates rapid computation and
the efficient utilization of computing resources, making it
a compelling option for many applications. In particular,
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Liu et al. [3] employed techniques involving the reshaping
and shifting of weight distributions within parameterized sign
and activation functions, as depicted in Fig. 1. The ReAct
Sign function is currently learning the optimal channel-wise
threshold to binarize the input featuremap properly. The input
distribution can be easily shifted using ReAct PReLU, and
the best place to use coefficients to fold the distribution can
be determined.

B. BNN PERFORMANCE IMPROVEMENTS: GRADIENTS
REVIVAL
To enhance the accuracy of BNNs, various attempts have
been made to lessen the gradient mismatch of the sign
function and decreasing the prevalence of ‘‘dead weight,’’
referred to as weights that do not update due to zero gradient.
Xu et al. [26] successfully reduced the quantization error
and improved weight utilization during updates by reviving
the dead weight through the implementation of a rectified
clamp unit. Liu et al. [22] quantified the stability of a
BNN for optimization by employing the flip-flop (FF) rate,
which represents the percentage of weights that change
signs during training. They observed that a high FF ratio
indicates frequent weight flipping, which adversely affects
performance. First, a real-valued network is trained with
weight decay to establish a solid initialization for the binary
network, followed by the application of a weight decay of
zero to the latent weights.

C. WEIGHT TRANSFER AND FREEZING
Owing to the sheer scale and complexity of convolutional
neural networks (CNNs), lightweight methods (quantiza-
tion [27], [28], [29], [30], pruning [31], [32], and low-rank
approximation [33]) are required. Xiao et al. [34] proposed
layer freezing training based on the gradient magnitude,
which aims to shorten the training time of CNNs. By nor-
malizing the freezing rate of the frozen layer and calculating
the layer to start freezing at a fixed epoch period, the
computational reduction in backpropagation was maximized.

Moreover, Isikogan et al. [35] introduced a novel approach
for freezing specific parameters within each layer, substitut-
ing multipliers with fixed scalers and replacing the network
with optimized full-pipeline hardware blocks. The proposed
network organization offers a balance between flexibility and
cost because the weights can be configured at various scales
and levels of abstraction, distinguishing it from conventional
layer-by-layer freezing technique.

Another approach to alleviating performance drops
caused by quantization errors is to exploit weight freez-
ing during fine-tuning using binary or ternary weights.
Cavigelli et al. [36] achieved a top-1 accuracy improvement
of approximately 3% over XNOR-Net [2] in image
classification experiments on the ImageNet dataset based
on GoogLeNet. The benefit of weight freezing in boosting
the performance of binary and ternary weight networks
was demonstrated by increasing the accuracy by freezing
randomly selected weights during fine-tuning.

However, considering that the selection of weight freezing
was executed in a stochastic manner without adhering to a
particular reference point, it is posited that employing weight
freezing predicated on the reference point of fine-grained
weight freezing could potentially facilitate the optimization
of computational reduction or enhancement of accuracy.
Furthermore, compared to the parameters in FP32, binarized
weights are expected to change less frequently because of
their insensitivity to value changes during updates when using
a small learning rate (LR) that does not cross the threshold of
the sign function.

III. SIGN-FLIPPING-AWARE OPTIMIZATION
Unlike CNNs, which consist of FP32 parameters, BNNs
employ latent weights and a sign function to convert
them into binary values during the training phase. Early
BNN studies categorized binary mapping into two types:
stochastic and deterministic. However, the computational
cost and complexity associatedwith probabilistic binarization
render this unreasonable, leading to the development of
BNN training primarily based on deterministic approaches.
Thus, we shall outline the problem definition and suggest
a technique for addressing the updating rules during the
training of deterministic binarization.

A. PROBLEM DEFINITION
Latent weights, also known as real-valued or floating-point
weights, play an essential role in BNN training. Although
BNNs use binary weights during forward propagation to
minimize computational and memory requirements, real-
valued latent weights are used during the weight update
process to maintain a higher precision representation of the
weights.

The weight update process in BNNs typically involves the
following steps:

1) The network performs forward and backward prop-
agation with binary weights and activations, thereby
allowing for XNOR operations.

2) Gradient calculation using latent weights: The gradi-
ents were computed using real-valued latent weights to
maintain precision during the update process.

3) The latent weights are updated using the computed
gradients and an optimization algorithm, such as
stochastic gradient descent (SGD) or one of its variants.

4) Binary weights are derived from the updated latent
weights by applying a binarization function that
typically involves thresholding the latent weights to
produce binary values (−1 or 1).

The latent weight update process directly influenced the
SFR change in each binary layer. When the latent weights
are updated, the resulting binary weights cannot change their
signs unless the updated latent weights cross the binarization
threshold. Therefore, understanding the relationship between
latent weights and SFR in BNNs is crucial for optimizing
the training process and enhancing network performance.
Developing strategies to control layer freezing by adapting
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the updating rule based on SFR can contribute to more stable
and efficient training of resource-constrained devices.

FIGURE 2. Tendency investigation with average of absolute gradient
magnitude value for each layer throughout the epoch in ResNet20 model.

As illustrated in Fig. 2, the average of absolute magnitude
for the gradients reaches the saturation point during the
training process, resulting in minimal weight updates during
the latter of training. The first binarized layer undergoes
frequent updates in the early stage of training, manifested as
sign flips. In contrast, as the training extends over a prolonged
duration, the last binarized layer exhibits a higher propensity
for weight updates than the first. In BNNs, the sensitivity to
weight changes is diminished by the sign function, rendering
the weight updates computationally useless unless the sign
changes beyond the zero threshold.

B. SFR IN BNNS
SFR is quantifies the rate at which the binary weights in a
BNN change their signs during the training process. The SFR
of the l-th layer at epoch e is calculated as the ratio of the
number of weight updates that result in a sign conversion to
the total number of weight updates as follows:

SFRel =

∑
(W e

sign ⊕W
e−1
sign )

n(W e
sign)

× 100% (1)

where W e
sign represents the signed weight set W at present

epoch e and W e−1
sign represents the previous epoch weight

set. The increased in the SFR derived from Eq. (1) signifies
that the direction of the weight update undergoes frequent
alterations, which that can potentially engender instability
during training.

As the training progresses, the model converges towards
an optimal point, and as shown in Fig. 3, the difference
in the sign of the weight resulting from the latent weight
update accounted for a negligible proportion at each layer.
Freezing layers with low SFR that have a negligible effect on
the gradient computation during backward propagation and
updates provides an opportunity to significantly reduce the
training computation of BNNs.

FIGURE 3. SFR for ResNet20 on CIFAR-10.

FIGURE 4. Binarized layer freezing flow: (a) only frozen weight updating,
(b) layer freezing when former layers are not to be updated for
diminishing backward computation.

To enhance the computational efficiency of BNN training,
we implemented layer freezing for SFR of 0% or below the
user-defined threshold, as shown in Fig. 4-(a). In addition,
to maximize the computational reduction achieved by the
proposed method, we employed backward blocking when
all previous layers were frozen, as shown in Fig. 4-(b). The
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TABLE 1. Average SFR tendency according to datasets and network sizes.

detailed procedure for freezing the layers is presented in
Algorithm 1.

Algorithm 1 Training Binarized Neural NetworkWith SFAO
Input: W , FP32 weight set; Wb, binarized weight set; A,

activation set; e, number of iterations; l, layer index;
SFRel , SFR for layer l at iteration e; SFRth, do not update
threshold SFR value; LRe, learning rate at iteration e

Output: MB, trained target BNN model
1: for e← 0, iterations do

(1) forward computation.
2: Run forward computation ofMB simultaneously.
3: Wb = sign (W ) · 1n

∑
n |W |.

4: Calculate Ae+1 = popcount(Wb ⊙ Ae).
(2) backward and gradient computation.

5: Calculate SFRel using Eq. (1).
6: Compute network loss L.
7: if SFRel < SFRth then
8: updating flag = False
9: end if

10: if updating flag == True then
11: We+1← We − LRe · ∂L

∂W
12: end if
13: end for
14: return trained BNN modelMB

C. SFR VARIABLES BASED ON DATASET AND NETWORK
SIZE
1) HEURISTIC APPROACH
To examine the fluctuations in the SFR of the baseline
network throughout the training process, PyTorch, a deep
neural network framework based on Python, was employed to
gauge the SFR across 300 epochs on CIFAR-10 and CIFAR-
100 and 128 epochs on the ImageNet dataset [15], [37],
as listed in Table 1.
The SFR value, as ascertained through the experimental

results, exhibited fluctuations contingent on the complexity
of the network and dataset. However, there was a concurrent
convergence of the SFR to a specific value was seen
as the loss value approached saturation, particularly in
the CIFAR-10 datasets, where a notable key point was
achieved at the 160 th epochs, with the SFR registering 0%.

These findings indicate that the network reached a state of
equilibrium concerning the weight updates, indicating the
stabilization of the training.

Furthermore, employing a step LR schedule plays a
pivotal role in determining SFR tendencies. Specifically,
at the juncture of 150 epochs, an LR of 1-e3 is instituted,
substantially diminishing the likelihood of alterations in the
sign flip. This reduction in the propensity for sign flip changes
can be attributed to the significantly small LR, which induces
only minute updates in the latent weights.

By contrast, when considering larger datasets, the SFR
did not reach 0% despite the saturation of the loss values.
Table 1 illustrates this phenomenon, where CIFAR-100 and
ImageNet exhibit loss saturation of 1.2 and 2.2, respectively;
however, the SFR for each layer does not reach 0%. This
result resembles the challenges encountered in the LR on
the CIFAR-10 dataset. Therefore, we experimented with
substantial adjustments to the LR to observe its impact on
the SFR. Although these adjustments influenced the SFR for
each layer, they did not improve accuracy.

2) SFR ADAPTIVE LAYER-WISE EARLY-STOP
To mitigate overfitting and minimize excessive training
iterations, CNNs employ an early-stop mechanism that
terminates training if no significant loss decreases beyond a
predefined patience value. In contrast, BNNs do not require
a precise training continuation factor based on loss values.
Hence, an early-stop approach for BNNs exploiting SFR
is proposed that allows direct insights into weight changes
during training. By monitoring the SFR, we can identify the
optimal stopping point, ensuring effective convergence of
the BNN while avoiding unnecessary iterations that lead to
overfitting.

Rather than relying solely on the loss employed as
the criterion for early-stopping in traditional CNNs, SFR
was introduced as the stopping criterion, quantifying the
frequency at which the binary weights change their signs
during training. Therefore, by monitoring the SFR as it
changes at every epoch, we can identify an appropriate epoch
to halt training, ensuring that the network is closer to a local
minimum.

The customized early-stop approach for BNNs based on
SFR (SFRES) are divided into three main parts:
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Algorithm 2 Training Binarized Neural Network With
SFRES
Input: W , FP32 weight set; Wb, binarized weight set; A,

activation set; e, number of iterations; l, layer index;
SFRel , SFR for layer l at iteration e;MA[l]e, SFR moving
average for layer l at epoch e; LRe, learning rate at
iteration e

Output: MB, trained target BNN model
1: for e← 0, iterations do

(1) forward computation.
2: Run forward computation ofMB simultaneously.
3: Wb = sign (W ) · 1n

∑
n |W |.

4: Calculate Ae+1 = popcount(Wb ⊙ Ae).
(2) backward and gradient computation.

5: Calculate SFRel using Eq. (1).
6: Compute network loss L.
7: if |MA[l]e −MA[l]e−1| < delta then
8: patient ++
9: end if
10: if patient > 5 then
11: updating flag = False
12: end if
13: if updating flag == True then
14: We+1← We − LRe · ∂L

∂W
15: end if
16: end for
17: return trained BNN modelMB

1) Calculate the SFR for each layer.
2) The SFR values calculated for each epoch are com-

pared to determine whether a weight update should be
performed for a specific layer.

3) Perform backward blocking, which increases compu-
tational efficiency when all preceding layers have their
weights frozen.

Explicitly customized for the BNNs, the proposed
early-stop approach considers the distinctive characteristics
of binary weights and determines a training termination
point, at which these weights become marginal and remain
unchangeable. This mitigates the risk of premature ter-
mination or prolonged training beyond the optimal point,
thereby enhancing the convergence and alleviating the overall
computational cost of BNNs.

MA[l]e =
m−1∑
e=0

SFRel (2)

if MA[l]e−MA[l]e− 1 < delta, then patient ++

(3)

Moving averages (MA) have proven effective in smoothing
the metrics over time, delivering a more reliable indication
of when to halt training, mainly when the metric contains
anomalous values. The SFR calculation for layer l in epoch
e relies on a user-defined window size, denoted by m,
as described in (2). The window size determines the range,

over which the MA is computed, thereby contributing to the
overall reliability of the training.

To determine whether the current layer was trained using
the MA value for the SFR, we compare the MA value in the
current epoch, MA [l]e, with the MA value in the previous
epoch, MA [l]e−1, as shown in (3). Subsequently, we choose
updated whether to update the weights based on the specified
SFR and SFRth. The complete training process of the SFRES
is presented in Algorithm 2.

IV. EVALUATION
Through comprehensive analysis and experimentation on
both network performance and hardware perspectives,
we examine the impact of layer freezing on the overall
training process. This evaluation focused on quantifying
the improvements in the training speed achieved by imple-
menting the sign-flipping-aware updating rule in the BNNs.
By comparing the total instruction count of the proposed
layer-freezing method with that of the baseline, we ascer-
tained its efficacy in reducing the training duration. The
results also investigated the potential trade-offs, limitations,
and challenges associated with layer freezing, providing
insights into its applicability and benefits for improving the
efficiency of BNN training.

A. IMAGE CLASSIFICATION
In the context of image classification, we conducted experi-
ments on two of our proposed methods, SFRES and SFAO.
Firstly, the experiments on SFRES are designed to check
the differences with the general optimizer for FP32, and
the experiments on SFAO are compared by referring to the
experimental results of related studies.

1) EXPERIMENTAL SETUP
To assess the efficacy of layer freezing using the sign-
flipping-aware updating rule, we established experimental
environments using PyTorch 1.3.1, CUDA10.2, and CUDNN
7.6.5. The comparative analysis involved renowned datasets,
such as CIFAR-10, CIFAR-100, and ImageNet [d,e]. Addi-
tionally, ReActNet [3] was employed as a state-of-the-art
BNN methodology to benchmark the proposed techniques.

The hyperparameters were carefully configured through-
out the experiments on the image classification applications.
The weight decays were assigned to 1e-4. LRs of 1e-1, 1e-2,
and 1e-3 at the 1st, 150th, and 225th epochs, respectively.
These meticulously selected settings facilitate a compre-
hensive evaluation of the sign-flipping-aware updating rule,
specifically within the context of the considered datasets and
methodologies.

2) RESULTS
As discussed in Section III-C, the SFR exhibited varying
saturation points according to the network depth and dataset.
Hence, we conducted experiments utilizing using various
patience and delta to establish an SFRES that caters to the
specific characteristics of each situation.
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TABLE 2. Experimental results for SFRES based on a given network
model on CIFAR-10 dataset.

TABLE 3. Experimental results for SFRES based on a given network
model on CIFAR-100 dataset.

TABLE 4. Experimental results for SFRES based on a given network
model on ImageNet dataset.

In our experiments with CIFAR-10, SFRES terminated
learning before 300 epochs, which falls short of the specified
breakpoint, as listed in Table 2. Subsequently, we continued
the experiments without applying SFRES, and despite the
increase in top-1 accuracy averaging 0.77%, the performance
degradation caused by SFRES decreased, particularly with an
increase in network depth.

The experiments conducted on CIFAR-100 with the same
network depth as CIFAR-10, as depicted in Table 3, exhibit
a similar performance degradation tendency similar to that of
the CIFAR-10 experiment.

For the experiments on the ImageNet dataset listed in
Table 4, we chose 128 epochs as the final termination
point, owing to the size of the dataset. As the depth of
the network and dataset size increase, the change in the
average SFR became blunted, and the number of epochs that
terminated earlier became faster. This is because as the depth
of the network increases, the representational capabilities of
the network improve, although the probability of gradient
vanishing increases, making it difficult to expect performance
improvement. Within the same epoch, owing to shortcuts
in the network, the first layer of each residual block had a
high SFR, whereas the second layer of the block showed
an average difference of 3.8 times compared to the SFR
of the first layer, which we interpreted as a reason for the
insignificant improvement in accuracy.

The BNN was trained on the ImageNet dataset under the
equivalent condition of using pretrained FP32 weights as
initial weights for a fair comparisonwith other state-of-the-art
techniques. In this experiment, layer freezing was employed
when the SFR reached 1% or less. Unlike the RPR [36]

TABLE 5. Experimental results and a comparison to related work on
ImageNet.

method, which freezes a certain percentage of random
weights without considering the SFR of each layer, SFAO
selectively freezes layers based on their infrequent weight
updates determined by SFR calculations. This approach pre-
vents unnecessary updates by hindering network performance
improvement. The experimental results presented in Table 5
demonstrate the effectiveness of the SFAO in maintaining
performance while reducing unnecessary updates.

B. TRAINING COMPARISON FOR COMPUTATION WITH
LAYER FREEZING
Beyond image classification, we extended our experiment
to include an object detection application utilizing a BNN
as the backbone network. However, our experiment with
object detection on the COCO dataset [39] revealed several
challenges. mAP, a crucial metric for object detection
performance following binarization, is required to improve
its usability. Considering the aforementioned limitations, it is
conceivable to argue that SFR experiments with a binarization
backbone do not result in consistent and reliable findings.
The substantial likelihood of deriving inaccurate inferences
from unreliable data led us to consider the risk unacceptably
high. Given these circumstance, we leave SFR experiments
on object detection for future work and opt for an alternative
approach to evaluate the experiment from a hardware-centric
standpoint.

TABLE 6. Experimental setup for system-level architectural simulator
gem5.

1) EXPERIMENTAL SETUP
Analyzing MAC operations with PyTorch provides valu-
able insight into computational variation. However, actual
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resource utilization, which considers hardware-specific fac-
tors, is also important. Therefore, we identified improve-
ments in layer freezing by using a system-level architectural
simulator, gem5, with an integrated energy model to obtain
hardware-friendly results. Using gem5, the total instruction
count can be assessed in detail by type, thereby enhancing
the validity of the findings.

The experimental environment for gem5 involve
CPU-based training with the system configuration shown in
Table 6. DarkNet [40], a C++-based artificial intelligence
learning framework, was utilized as the benchmark for
implementing the proposed updating rule. The experiments
were conducted on an ARM ISA running Ubuntu 18.04 and
Linux kernel 4.9.92.

2) TOTAL INSTRUCTION

FIGURE 5. The number of instructions for ResNet20 on CIFAR-10 dataset.

TABLE 7. Various frozen layer cases at thresholds below 2% SFR.

The instances in which the SFR dropped below the
2% threshold were categorized into three cases, and the
distribution of instruction types is shown in Fig. 5. Among
these, the most significant reduction was observed for the
Integer ALU instruction type, exhibiting a decline of 22.16%.
Correspondingly, Case 1 demonstrated a 1.96% reduction
in the total number of instructions, Case 2 experienced a
more substantial decrease of 12.24%, and Case 3 exhibited
the most considerable reduction at 21.89%, all relative to
the baseline. Notably, despite these changes, the impact on
Top-1 accuracy, a pivotal metric for network performance,
was minimal, declining by 0.44%, as shown in Table 7,
thereby confirming the marginal extent of the accuracy
reduction.

FIGURE 6. Energy consumption for ResNet20 on CIFAR-10 dataset.

FIGURE 7. Normalized overall accesses for ResNet20 on CIFAR-10 dataset.

3) ENERGY CONSUMPTION
As shown in Fig. 6, the evaluation of the total energy
consumption attributable to L2 cache and DRAM showed an
energy reduction of 25.93% and 21.89%, respectively, and to
further explore the investigation, we plotted the normalized
number of accesses to cache and DRAM for each scenario,
as shown in Fig. 7. Within the memory hierarchy framework,
it is evident that Case 3 demonstrates a significant reduction
in L2 cache accesses, amounting to a remarkable 25.93%
decrease under the specified SFR.

V. DISCUSSION
SFAO for BNNs reveals its potential to reduce the number
of instructions up to 21.89% during training while slightly
dropping 0.44% Top-1 accuracy on the CIFAR-10 dataset.
Based on the sign flip rate, the early stopping mechanism
further optimized the training process, particularly with
image classification. When contrasted with related work,
our approaches, aligning with some established findings,
emerged as a unique and efficient alleviation offering a
25.93% notable energy reduction in L2 cache dynamic power.

While the results are promising, the primary reliance on
the application of image classification may not capture the
complexities of real-world scenarios such as object detection
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and unsupervised learning. The robustness and scalability of
SFAO in more extensive and diverse datasets remain areas for
further exploration. Additionally, integrating adaptive learn-
ing mechanisms, which modulate hyperparameters based on
input data [41], could further enhance the efficacy of SFAO.

Future work includes the amalgamation of SFAO with
adaptive learning and its application in diverse BNN architec-
tures. A particularly intriguing direction is the potential use
of SFAO for training on embedded systems such as mobile,
IoT, and individualized devices for privacy.

VI. CONCLUSION
The increasing number of AI applications and parameters
calls for lighter networks. Typically, BNNs focus on improv-
ing the inference stage performance. Adopting a contrasting
perspective, we implemented an alternative methodology that
concentrated on lightweight BNN training. A new weight-
updating rule was devised that exploits latent weight and
employs the sign function for binarization. We effectively
reduced backpropagation costs by incorporating a sign-flip
threshold and implementing sequential layer freezing. Our
experimental findings revealed that incorporating layer prun-
ing during BNN training led to a marginal accuracy decline
of 0.44% on the CIFAR-10 dataset. However, this strategy
substantially reduced the computational cost, amounting to an
impressive 21.89%. These findings highlight the potential of
the proposed approach for enhancing the efficiency of BNNs
and addressing the need for more computationally efficient
models.

BNNs characterized by binary parameters have been
primarily established using fine-tuning techniques for object
detection applications. Additionally, gradual quantization
methods applied to FP32 parameters have been employed
to overcome the inherent limitations of the representational
capacity compared to FP32 parameters. However, these
approaches incur increased computational requirements and
complexities, exceeding those associated with FP32 neural
networks in binarization. Therefore, there is a pressing need
for further investigation into BNN training methodologies,
particularly in object detection, while accounting for the
unique characteristics of binary parameters.
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