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ABSTRACT This paper investigates equivalences withinmulti-valued systems.We propose a comprehensive
set of concepts related to multi-valued equivalences, such as multi-valued simulation equivalence
and multi-valued bisimulation equivalence. We conduct an in-depth examination of the associated
theorems and lemmas and provide a detailed comparison of these equivalence techniques to highlight
their similarities and differences. To address the issue of state space explosion in multi-valued systems,
we introduce the concept of multi-valued quotients based on multi-valued equivalences. Additionally,
we present a series of related algorithms to implement and apply these multi-valued quotients.

INDEX TERMS Quasi-Boolean algebra, multi-valued systems, equivalences.

I. INTRODUCTION
Model checking [1], [2], [3] has evolved into an essential
technique in formal verification [4], enabling automated
analysis of system designs to ensure their compliance with
desired properties. However, within model checking, two
formidable challenges continue to endure. The first concerns
the precise modeling of the uncertainty system [5], while
the second focuses on the intricate problem of state space
explosion [6], [7].

Confronting the challenge of the precise modeling of
the uncertainty system, some scholars have studied the
uncertainty model checkingmethods. Combining theMarkov
chain, Hart, Sharir, and Baier gave a probabilistic model
checking method [8], [9]. However, the probabilistic model
checking method does not suit some uncertainty systems
that break probabilistic computing characteristics such as
non-contradiction law a ∧ ¬a = 0 and excluded middle law
a ∨ ¬a = 1. As a result, the theory of model checking based
on fuzziness, possibility, and multi-value emerged. Fan et al.
explored fuzzy linear time logic [10], and Pan et al. analyzed
fuzzy computational tree logic [11]. In addition, Fan et al. also
proved the generalization of nondeterministic fuzzy Kripke
structures [12]. Li et al. introduced a possibilistic Kripke
structure rooted in the possibility measure and researched
linear time logic [13], computation tree logic [14], and
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quantitative model checking methods based on the possibility
measure [15]. Chechik made noteworthy contributions to
the multi-valued model checking by seamlessly merging
theoretical insights with practical applications [16], [17],
[18].

In the face of the formidable challenge posed by state
space explosion, equivalences are effective, especially in
some uncertain systems [19], [20]. For probabilistic systems,
Huynh and Tian addressed this challenge by investigating
diverse equivalences within probabilistic labeled transition
systems [21], and Baier and Katoen introduced probabilistic
bisimulation as an equivalence [3]. Focused on the transition
relation, Pan et al. introduced lattice-valued bisimulation
as an equivalence of lattice-valued transition systems [22].
Integrating the cost problem within possibilistic Kripke
structures, Deng et al. introduced the concept of possibilistic
cost bisimulation as an equivalence [23].

However, the equivalences of the multi-valued systems are
still controversial. Recently, some scholars have investigated
the complete residuated lattices [22]. Some well-known
algebraic structures, such as Heyting algebras [24], Boolean
algebras [25], and Lukasiewicz algebras [26], are all specific
cases of complete residuated lattices [27], so complete
residuated lattices are universal algebraic structures. This
perspective has led many researchers to believe that
lattice-valued equivalences cover all equivalences because
of the universality of complete residuated lattices. Nonethe-
less, multi-valued equivalences should be an exception.
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Specifically, a finite quasi-Boolean algebra [28] with oper-
ators → defined as x → y = ¬x ∨ y is not a complete
residuated lattice, but the finite quasi-Boolean algebra is the
truth value of multi-valued systems. Consequently, current
equivalences do not apply to the state explosion in multi-
valued systems. Hence, the exploration of equivalences in
multi-valued systems is the primary effort of this paper.

This paper is structured as follows: The first section
introduces the research background of this paper. The second
section revisits some fundamental concepts to establish a
foundation for our subsequent analysis. The third section
introduces two multi-valued equivalences and clarifies their
similarities and distinctions by a comparison. Additionally,
it delves into the properties of multi-valued equivalences
through related theorems and lemmas and then proposes a
novel concept known as multi-valued equivalence composi-
tion. The fourth section derives the multi-valued quotients
as the minimal form of multi-valued equivalences discussed
earlier. Moreover, it details algorithms for generating these
multi-valued quotients. As a discussion, the fifth section
analyzes the expressions and application of multi-valued
equivalences in modeling, offering a comparison with regular
ones. Furthermore, it provides the time complexities of
multi-valued quotient algorithms across various scenarios.
Finally, the concluding section summarizes the innovations
and contributions, explores the existing challenges, and
proposes the problems for future research.

II. PRELIMINARIES
This subsection offers an overview of the concepts of
quasi-Boolean algebra and multi-valued Kripke structures.
Please see references [16], [17], [18], [29], [30] for further
information.
Definition 1:A quasi-Boolean algebra is a tupleL = (L, ⊑

, ⊔, ⊓, ¬, 0, 1) where(L, ⊔, ⊓) is a distributive lattice, 0 and
1 are the bottom element and the top element, ¬ is negation
operation on L, for any a, b ∈ L following laws holds:

(1) law of de Morgan: ¬(a ⊔ b) = ¬a ⊓ ¬b, ¬(a ⊓ b) =

¬a ⊔ ¬b.
(2) law of involution: ¬¬a = a.
(3) law of anti-monotonic: (a ⊑ b) ⇔ ¬a ⊒ ¬b.

A quasi-Boolean algebra transforms into Boolean algebra
by two additional laws that apply to each element x within
the set S. Firstly, the law of non-contradiction asserts that
a ⊓ ¬a = 0, ensuring that an element cannot simultaneously
possess true and false. Secondly, the law of excluded middle,
expressed as a ⊔ ¬a = 1, guarantees that for any element,
it must either affirm a proposition or its negation, leaving no
room for an intermediate truth value.
Definition 2: Given a quasi-Boolean algebra L and a set S,

a multi-valued set on S is defined as a multi-valued function
S : S → L, the value of S(s) denotes the membership of s in
S, represented as s ∈ S.
The multi-valued function satisfies the following

operations:

(1) Multi-valued intersection: (S1 ∩ S2)(s) ⇔ S1(s)⊓ S2(s).
(2) Multi-valued union: (S1 ∪ S2)(s) ⇔ S1(s) ⊔ S2(s).
(3) Multi-valued set inclusion: S1 ⊆ S2 ⇔ ∀s,

(S1(s) ⊑ S2(s)).
(4) Multi-valued equality: S1 = S2 ⇔ ∀s, (S1(s) = S2(s)).

In these operations, ⊓ represents the meet operation,
⊔ represents the join operation, and ⊑ represents the partial
order relation in the quasi-Boolean algebra L.
Definition 3: A multi-valued relation R on sets S and T

over a quasi-Boolean algebra L is a function R : S×T → L.
R assigns a value in L to each pair (s, t), where s ∈ S and
t ∈ T . The value R(s, t) represents the relationship between s
and t according to the multi-valued relation R.
The multi-valued Kripke structure serves as an essential

model of multi-valued systems that expands the formal
representation of the traditional Kripke structure. It allows
multiple truth values instead of being restricted to binary truth
values.
Definition 4: A multi-valued Kripke structure X =

(S, I ,R,L,AP,L) is a six-tuple, where:
(1) L = (L, ⊑, ⊔, ⊓, ¬, 0, 1) is a quasi-Boolean algebra that

serves as the underlying structure for all multi-valued
sets in the model.

(2) AP is a finite set of atomic propositions.
(3) S is a finite set of states.
(4) I ⊆ S represents the set of initial states.
(5) R is the multi-valued transition relation, which maps

(s, t) ∈ S × S to e, e ∈ L.
(6) L is the label function, which maps (s, a) ∈ S×AP to e,

a ∈ AP and e ∈ L.
A multi-valued Kripke structure X , let si ∈ S where

0 ≤ i ≤ n. Post(s) = {ś ∈ S|R(s, ś) = e} denotes the set
of successors of state s in X that satisfy the membership e.
Pre(s) = {ś ∈ S|R(ś, s) = e} denotes the set of predecessors
of state s in X that satisfy the membership e. A finite path
from state s0 to sn is denoted as ρ̂ = s0s1s2 . . . sn. An infinite
path from state s0 is denoted as ρ = s0s1s2 . . . ∈ s∞.
Pathsfin(s) represents the set of all finite paths originating
from state s in X . Paths(s) represents the set of all infinite
paths originating from state s in X . Pathsfin(X ) is the set of
all finite paths in X , regardless of the starting state. Paths(X )
is the set of all infinite paths in X , regardless of the starting
state. The finite trace of a finite path ρ̂ can be represented as
trace(ρ̂) = L(s0, a) ⊓ R(s0, s1) ⊓ L(s1, a) ⊓ R(s1, s2) ⊓ . . . ⊓

R(sn−1, sn)⊓L(sn, a). Similarly, the infinite trace of an infinite
path ρ is given by trace(ρ) = L(s0, a)⊓R(s0, s1)⊓L(s1, a)⊓
R(s1, s2) ⊓ . . ..

III. EQUIVALENCES IN MULTI-VALUED SYSTEMS
Multi-valued systems are more susceptible to state explosion
due to their inherent multi-valued uncertainty. The common
approaches for resolving state explosion are abstraction and
equivalence. Abstraction simplifies the system by reducing
its inherent complexity, which may necessitate omitting
specific details, but equivalence is not. It is essential that
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FIGURE 1. Comparison of two multi-valued equivalences.

modeling with a smaller model retains as many critical
details as possible for multi-valued systems. To balance
simplification and retention, we extend equivalence to multi-
valued systems.

A. MULTI-VALUED SIMULATION EQUIVALENCE
Multi-valued simulation equivalence is the strengthening of
multi-valued simulation.
Definition 5: Given two multi-valued Kripke structures

Xi = (Si, Ii,Ri,Li,APi,L), where i = 1, 2 and AP2 ⊆ AP1,
A multi-valued simulation between X1 and X2 is a binary
relation ‘‘⪯’’ must meet the following conditions:
(1) L(s1, a) = L(s2, a) = e for all a ∈ AP and e ∈ L.
(2) If ś1 ∈ Post(s1), then there exists ś2 ∈ Post(s2) with

ś1 ⪯ ś2.
If X1 ⪯ X2 and X2 ⪯ X1, X1 and X2 are multi-valued

simulation equivalence, denoted X1 ≃ X2.

B. MULTI-VALUED BISIMULATION EQUIVALENCE
Multi-valued bisimulation equivalence is a refinement of
multi-valued simulation equivalence. It requires that the
satisfaction of each condition must be reciprocal.
Definition 6: Given two multi-valued Kripke structures

Xi = (Si, Ii,Ri,Li,APi,L), where i = 1, 2 and AP2 ⊆ AP1,
A multi-valued bisimulation between X1 and X2 is a binary
relation ‘‘∼’’ must meet the following conditions:
(1) L(s1, a) = L(s2, a) = e, a ∈ AP, e ∈ L.
(2) If ś1 ∈ Post(s1), then there exists ś2 ∈ Post(s2) with

ś1 ∼ ś2.
(3) If ś2 ∈ Post(s2), then there exists ś1 ∈ Post(s1) with

ś1 ∼ ś2.

If there exists a relation ‘‘∼’’ from X1 to X2, then X1 and
X2 are multi-valued bisimulation equivalence, denoted as
X1 ∼ X2.

C. COMPARISON OF MULTI-VALUED EQUIVALENCES
Multi-valued bisimulation equivalence is a more stringent
equivalence relation when compared to multi-valued simula-
tion equivalence. In the context of two multi-valued Kripke
structures denoted as X1 and X2, the establishment of a
multi-valued bisimulation equivalence X1 ∼ X2 naturally
leads to the conclusion thatX1 can simulateX2 (X1 ⪯ X2), and
conversely, X2 can simulate X1 (X2 ⪯ X1). Consequently, this
implies multi-valued simulation equivalence between X1 and
X2 (X1 ≃ X2). However, it’s essential to note that the reverse
does not hold true. Simply being multi-valued simulation
equivalence (X1 ≃ X2) does not guarantee multi-valued
bisimulation equivalence (X1 ∼ X2). To illustrate this
distinction, we provide an example that showcases a scenario
where two structures exhibit multi-valued simulation equiv-
alence but do not meet the stricter criteria of multi-valued
bisimulation equivalence.

Consider the multi-valued Kripke structures, denoted as X1
(on the left) and X2 (on the right), illustrated in FIGURE 1.

In examining these structures, we first define the
multi-valued label functions and multi-valued transition
relations:

Multi-valued label functions as follows:

L(s0, a0) = L(t0, a0) = e;

L(s1, a1) = L(s2, a1) = L(t1, a1) = e;

L(s3, a2) = L(t2, a2) = e;
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L(s4, a2) = L(t3, a3) = e.

Multi-valued transition relations as follows:
In X1, R(s0, s1) = e and R(s0, s2) = e, which can be

mirrored by R(t0, t1) = e in X2;
In X1, R(s1, s3) = e and R(s2, s3) = e, which can be

mirrored by R(t1, t2) = e in X2;
InX1,R(s2, s4) = e, which can bemirrored byR(t1, t3) = e

in X2.
Now, let’s explore the reverse direction:
In the reverse direction, we note that the multi-valued tran-

sition R(t2, t4) in X2 cannot replicated by any multi-valued
transition in X1. Consequently, X1 and X2 fail to satisfy the
conditions necessary for multi-valued bisimulation equiva-
lence. However, since X2 is a subgraph of X1 and meets
the criteria for multi-valued simulation, we have X2 ⪯ X1.
Moreover, when considering individual states, we observe
that s1 ⪯ t1, s2 ⪯ t2, s3 ⪯ t2, s4 ⪯ t3, and s5 ⪯

t4 which implies X1 ⪯ X2, we can conclude that X1 ≃

X2, signifying that X1 and X2 are multi-valued simulation
equivalence.
This comparison and analysis demonstrate that multi-

valued bisimulation equivalence is more stringent and
meticulous than multi-valued simulation equivalence.

D. PROPERTIES OF MULTI-VALUED EQUIVALENCES
Based on the definitions and discussions provided earlier,
we can delve into some properties and characteristics of
multi-valued equivalences.
Theorem 7: Reflexivity, Symmetry and Transitivity of

multi-valued equivalences.
Proof: Reflexivity, Symmetry, and Transitivity are

fundamental properties of multi-valued equivalences. Let’s
discuss each of these properties in the context of multi-valued
equivalences:
Reflexivity: In the context of multi-valued equivalences,

reflexivity means that every multi-valued Kripke structure is
equivalent to itself. For any multi-valued Kripke structure X ,
we have X ∼ X .
Symmetry: Symmetry in multi-valued equivalences

implies that if one multi-valued Kripke structure is equivalent
to another, the reverse is also true. Formally, if X1 ∼ X2, then
it follows that X2 ∼ X1.
Transitivity: Transitivity means that if one multi-valued

Kripke structure is equivalent to a second, and the second is
equivalent to a third, then the first is also equivalent to the
third. Formally, if X1 ∼ X2 and X2 ∼ X3, then it implies
X1 ∼ X3.
In summary, multi-valued equivalences satisfy reflexivity,

symmetry, and transitivity.
Lemma 8: IfX1 andX2 satisfiedmulti-valued equivalences,

and s0,1 and s0,2 represent the multi-valued equivalence states
in X1 and X2, we can demonstrate that for each finite or
infinite path ρ1 = s0,1s1,1s2,1 . . . ∈ Paths(s0,1) within the
set of paths originating from state s0,1 in X1, there exists a
corresponding path ρ2 = s0,2s1,2s2,2 . . . ∈ Paths(s0,2) within

the set of paths originating from state s0,2 in X2 with the same
length, such that si,1 and si,2 are the multi-valued equivalence
states, and this holds for all i ≥ 0.

Proof: We can prove this statement using an inductive
argument:
Base Case: For i = 0, both paths ρ1 and ρ2 start at their

respective multi-valued equivalence states, so s0,1 and s0,2 are
the multi-valued equivalence states for both paths. Given that
X1 and X2 are multi-valued equivalence structures, s0,1 and
s0,2 are indeed the multi-valued equivalence states.
Inductive Step: Assume that for some k ≥ 0, the statement

holds for all i up to k , i.e., si,1 and si,2 are the multi-valued
equivalence states for all i from 0 to k .
For i = k + 1, consider ρ1 and ρ2 as follows:

ρ1 = s0,1s1,1s2,1 . . . sk,1sk+1,1.

ρ2 = s0,2s1,2s2,2 . . . sk,2sk+1,2.

Since we assumed that the statement holds for i = k ,
we know that sk,1 and sk,2 are the multi-valued equivalence
states for both paths.
Now show that sk+1,1 and sk+1,2 are the multi-valued

equivalence states. Since X1 and X2 are multi-valued equiv-
alence structures, and sk,1 and sk,2 are multi-valued equiv-
alence states, we can apply the definition of multi-valued
equivalence to conclude that sk+1,1 and sk+1,2 are also the
multi-valued equivalence states.
By induction, we have shown that for any i ≥ 0, si,1 and

si,2 are the multi-valued equivalence states. It demonstrates
that for any finite or infinite path starting from s0,1 in X1,
there exists a corresponding one starting from s0,2 in X2 with
the same length, and the states along these paths are the
multi-valued equivalence states.
Theorem 9: If X1 and X2 satisfied multi-valued equiv-

alences, it follows that the trace of X1 is multi-valued
equivalent to the trace of X2, expressed as trace(X1) =

trace(X2).
Proof: If X1 and X2 satisfied multi-valued equivalences,

we have established the following:
1. Any path ρ1 = s0,1s1,1s2,1 . . . in X1 can deduce a same

length path ρ2 = s0,2s1,2s2,2 . . . in X2.
2. L1(si,1, a) = L2(si,2, a), and R1(si,1, si+1,1) =

R2(si,2, si+1,2) by the conditions of multi-valued equivalence.
Now, let’s apply this to the traces of X1 and X2, consider

the trace trace(X1) of X1. It represents the set of all possible
traces generated by X1 during its execution. By the first point,
for every path ρ1 in X1, there exists a corresponding ρ2 in
X2 such that si,1 and si,2 are multi-vauled equivalence states,
and by the second point, we have L1(si,1, a) = L2(si,2, a) and
R1(si,1, si+1,1) = R2(si,2, si+1,2) for all i, it implies that for
any path ρ1 in X1, there exists a corresponding ρ2 in X2 such
that the traces are equivalent. By symmetry, for any path ρ2 in
X2, there exists a corresponding ρ1 in X1 such that the traces
are equivalent.

In conclusion, if X1 and X2 satisfied multi-valued equiva-
lences, then trace(X1) = trace(X2).
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FIGURE 2. Multi-valued simulation quotient.

E. MULTI-VALUED EQUIVALENCE COMPOSITION
Definition 10: For two multi-valued Kripke structures Xi =

(Si, Ii,Ri,Li,AP,L), i = 1, 2 that satisfy the multi-valued
equivalences, the multi-valued equivalence composition X1⊕
X2 = (S1 ⊎ S2, I1 ∪ I2,R1 ∪ R2,L,AP,L).
Here, ⊎ represents the disjoint union operation, L(s, a) =

Li(s, a) if s ∈ Si. In the multi-valued equivalence
composition, the state space is the union of the state spaces of
X1 and X2, the initial states and the transition relation consist
of the initial states and the union of the transition relations of
both, respectively, and the labeling function is determined by
L(s, a) which depends on the corresponding structure.

IV. MULTI-VALUED QUOTIENTS
To simplify complex structures and highlight the essential
behavioral characteristics of multi-valued systems, multi-
valued Kripke structures can be transformed into a more
concise form using multi-valued equivalences, known as
multi-valued quotients. The multi-valued quotients divide
the state space into several equivalence classes and treat
each equivalent class as a single state. Depending on
the specific multi-valued equivalences used, multi-valued
quotients divide into a multi-valued simulation quotient and
a multi-valued bisimulation quotient. This section focuses
on defining the multi-valued quotients and developing some
algorithms for generating them.

A. MULTI-VALUED SIMULATION QUOTIENT
Definition 11: In a multi-valued Kripke structure X =

(S, I ,R,L,AP,L) with multi-valued simulation equivalence

≃, the multi-valued simulation quotient is defined as X/≃ =

(S/≃, I≃,R≃,L≃,AP,L).
The components of the multi-valued simulation quotient

are defined as follows:

(1) S/≃ = {[s]≃|s ∈ S} represents multi-valued simulation
quotient space, where [s]≃ = {ś ∈ S|s ≃ ś}.

(2) I≃ = {[s]≃|I ⊆ S} denotes multi-valued simulation
equivalent initial states of I in X .

(3) R≃ is multi-valued simulation equivalent transition
relation defined as R(s1,s2)=e

R≃([s1]≃,[s2]≃)=e
, where e ∈ L.

(4) L≃([s]≃, a) = L(s, a) = e represents multi-valued
simulation equivalent labeling function, where a ∈ AP
and e ∈ L.

(5) AP is a set of atomic propositions.
(6) L is a quasi-Boolean algebra.

The multi-valued simulation quotient provides a simplified
representation of the original multi-valued Kripke structure
by multi-valued simulation equivalence, preserving relevant
properties while reducing the complexity of the multi-valued
system.

Let’s explore an illustrative example of a multi-valued
simulation quotient. Based on the updated information, the
multi-valued Kripke structure X2 (on the right) can be
considered as the multi-valued simulation quotient of the
multi-valued Kripke structure X1 (on the left), as depicted in
FIGURE 2.

Consider the multi-valued label functions:

L(s0, a0) = L(t0, a0) = e;

L(s1, a1) = L(s2, a1) = L(t1, a1) = e;
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L(s3, a2) = L(s4, a2) = L(t2, a2) = e.

Now, let’s consider the multi-valued transition relations:
R(t0, t1) = e in X2 can be mimicked by R(s0, s1) = e and

R(s0, s2) = e in X1;
R(t1, t2) = e in X2 can be mimicked by R(s1, s3) = e and

R(s2, s4) = e in X1.
Since X2 is a subgraph of X1 and satisfies the conditions

of multi-valued simulation, and since each state in X1 can
mimicked by a state in X2 and X2 cannot be further reduced,
we can conclude that X2 is the multi-valued simulation
quotient of X1.

B. MULTI-VALUED SIMULATION QUOTIENT ALGORITHM
The process for implementing the multi-valued simulation
quotient is Algorithm 1.

Algorithm 1 Multi-Valued Simulation Quotient Algorithm
Input:X = (S, I ,R,L,AP,L)
Output:X/≃ = (S/≃, I≃,R≃,L≃,AP,L)

1: initialize E = {(s1, s2) | L(s1)(a) = L(s2)(a) = e};
2: while E is not a multi-valued simulation do
3: select (s1, s2) ∈ E such that R(s1, ś1) = e, and there is

no successor state ś2 of s2 satisfying R(s2, ś2) = e and
(ś1, ś2) ∈ E ;

4: E = E \ {(s1, s2)};
5: end while
6: restructure X into X/≃ by AP and L;
7: return X/≃ = (S/≃, I≃,R≃,L≃,AP,L);

The basic idea of the multi-valued simulation quotient
algorithm can be summarized as follows:
(1) Initialization(step 1): Commence by establishing the

initial equivalence relation E = {(s1, s2) | L(s1)(a) =

L(s2)(a) = e}, where a ∈ AP and e ∈ L.
(2) Iterative(steps 2-5): Continuously execute the subse-

quent loop as the relation E fails to fulfill the criteria of
a multi-valued simulation relation. Choose a pair (s1, s2)
from the set E such that R(s1, ś1) = e, and there exists
no successor state ś2 of s2 that satisfies R(s2, ś2) = e
and (ś1, ś2) ∈ E , where e represents an element within
the provided quasi-Boolean algebra L. Eliminate the
selected pair (s1, s2) from the relation E .

(3) Restructure(step 6): Provide the resultant relation E as
the state space of the multi-valued simulation quotient,
and combine AP and L restructure as a multi-valued
Kripke structure.

(4) Outcome(step 7): Return a new multi-valued Kripke
structure, as a result of the process, as the multi-valued
simulation quotient.

The time complexity of the multi-valued simulation
quotient algorithm isO(|M |·|S|

3
·|N |

2), where |M | represents
the number of edges in the states graph G(X ), |S| represents
the number of states in the state space, and |N | represents the
number of memberships in L.

C. MULTI-VALUED BISIMULATION QUOTIENT
Definition 12: In a multi-valued Kripke structure X =

(S, I ,R,L,AP,L) with multi-valued states bisimulation
equivalence ∼, the multi-valued bisimulation quotient is
defined as X/∼ = (S/∼, I∼,R∼,L∼,AP,L).
The components of the multi-valued simulation quotient

are defined as follows:
(1) S/∼ = {[s]∼|s ∈ S} represents multi-valued

bisimulation quotient space, where [s]∼ = {ś ∈ S|s ∼

ś}.
(2) I∼ = {[s]∼|I ⊆ S} denotes multi-valued bisimulation

equivalent initial states of I in X .
(3) R∼ is a multi-valued bisimulation equivalent transition

relation defined as R(s1,s2)=e
R∼([s1]∼,[s2]∼)=e

, where e ∈ L.
(4) L∼([s]∼, a) = L(s, a) = e represents multi-valued

bisimulation equivalent labeling function, where a ∈ AP
and e ∈ L.

(5) AP is a set of atomic propositions.
(6) L is a quasi-Boolean algebra.
The multi-valued bisimulation quotient also offers a

simplified representation of the original structure, preserving
relevant properties while reducing the complexity of the
multi-valued system. Let’s delve into an illustrative example
of a multi-valued bisimulation quotient. FIGURE 3 depicts
the multi-valued Kripke structure X1 (on the left) and its
multi-valued bisimulation quotient X2 (on the right).
Let’s consider the multi-valued label functions:

L(s0, a0) = L(t0, a0) = e;

L(s1, a1) = L(s2, a1) = L(s3, a1) = L(t1, a1) = e;

L(s4, a2) = L(t2, a2) = e;

L(s5, a2) = L(t3, a2) = e.

Additionally, the multi-valued transition relations are as
follows:

In X1, R(s0, s1) = e, R(s0, s2) = e, and R(s0, s3) = e,
which can be mimicked by R(t0, t1) = e in X2.
In X1, R(s2, s4) = e, which can be mimicked by R(t1, t2) =

e in X2.
In X1, R(s2, s5) = e, which can be mimicked by R(t1, t3) =

e in X2.
Now, let’s consider the reverse direction:
In X2, R(t0, t1) = e can be mimicked by R(s0, s1) = e,

R(s0, s2) = e, and R(s0, s3) = e in X1.
In X2, R(t1, t2) = e can be mimicked by R(s2, s4) = e in

X1.
In X2, R(t1, t3) = e can be mimicked by R(s2, s5) = e in

X1.
In formal terms, if X2 is not simplified any further and

X1 ∼ X2, it concluded that X2 is indeed the multi-valued
bisimulation quotient of X1. This multi-valued bisimulation
quotient provides a more concise representation of the
original multi-valued Kripke structure while preserving the
relevant behavioral properties.
The multi-valued bisimulation equivalence captures more

subtle behavioral similarities between states in a multi-valued
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FIGURE 3. Multi-valued bisimulation quotient.

Kripke structure compared to multi-valued simulation
equivalence. As a result, the multi-valued bisimulation
quotient provides a more condensed representation of
the original while preserving the necessary behavioral
properties.

D. MULTI-VALUED BISIMULATION QUOTIENT ALGORITHM
The process for implementing the multi-valued bisimulation
quotient is Algorithm 2.

The multi-valued bisimulation quotient algorithm consists
of multi-valued decision tree generation and multi-valued
sets partitions. These two main components bridge
the gap between theoretical concepts and their practi-
cal computational implementations, ensuring clarity and
efficiency. As an initialization step, the multi-valued
decision tree generation divides the states into several
equivalent classes based on the same multi-valued label
function. The multi-valued bisimulation quotient is then
obtained by treating these equivalent classes as differ-
ent multi-valued sets and subsequently refining these
multi-valued sets.

In summary, the core idea of the multi-valued bisimulation
quotient algorithm is as follows:

(1) Generation(steps 1-16): In the multi-valued decision
tree, the various branches represent different label
function memberships, and the height represents the
number of elements of the atomic propositions set. For
example, if AP = {a1, a2}, the height is 2. The vertices
at 1st depth in the tree represent L(si, a1) = e, and the
vertices at 2ed depth represent L(si, a2) = e, where

si ∈ S and e ∈ L. Ultimately, the state space is divided
into various leaf nodes by different memberships e, and
each leaf node represents the equivalent classes w with
the same label function.

(2) Initialization(step 18, step 23): Initialize two initial
partitions, i.e., initial preorder partitions 5pre := w and
initial successor partitions 5post := w, as two starting
points for subsequent iterations.

(3) Iterative(steps 19-22, steps 24-27): Iteratively refine
the preorder partitions 5pre and successor partitions
5post . Continue these two processes until no further
merges or splits are possible, resulting in two partitions
ultimately.

(4) Combination(step 28): Combine the ultimate partitions
of preorder partitions 5pre and successor partitions
5post into a single refinement partition 5refinement .

(5) Restructure(step 29): Use 5refinement , AP, and L to
restructure and generate a new multi-valued Kripke
structure.

(6) Outcome(step 30): Provide the newly generated
multi-valued Kripke structure as the output, representing
the multi-valued bisimulation quotient.

For each state s ∈ S, traversing the multi-valued decision
tree from root to leaf takes time O(|AP| · |N |). Therefore, the
time complexity of generation is O(|S| · |AP| · |N |), where
|AP| represents the number of values in the label function
AP, |S| represents the number of states in the state space, and
|N | represents the number of memberships in L. According
to the given information, for the preorder partitions, the time
complexity for each state s ∈ C is O(|Pre(s)| · |N |), and for
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TABLE 1. A comparison between multi-valued equivalences and regular equivalences.

Algorithm 2Multi-Valued Bisimulation Quotient Algorithm
Input:X = (S, I ,R,L,AP,L)
Output:X/∼ = (S/∼, I∼,R∼,L∼,AP,L)

1: new(v0)
2: for all s ∈ S do
3: v = v0
4: for all i = 1, . . . , n− 1 do
5: for all a ∈ AP do
6: if L(s, a) = e then
7: new(branch(v))
8: v:=branch(v)
9: end if
10: end for
11: end for
12: if L(s, a) = e then
13: new(branch(v))
14: states(branch(v)):=states(branch(v))∪s
15: end if
16: end for
17: w :=states(branch(v))
18: 5pre := w
19: while there exists a multi-valued pioneer splitter for5pre

do
20: choose a multi-valued pioneer splitter C for 5

21: 5pre :=
⋃
B∈5

(
⋃
e∈L

(B ∩ Pre(C)))

22: end while
23: 5post := w
24: while there exists a multi-valued successor splitter for

5post do
25: choose a multi-valued successor splitter C for 5

26: 5post :=
⋃
B∈5

(
⋃
e∈L

(B ∩ Post(C))

27: end while
28: 5refinement = 5pre ∩ 5post ;
29: restructure X into X/∼ by 5refinement ,AP and L;
30: return X/∼ = (S/∼, I∼,R∼,L∼,AP,L);

the successor partitions, the time complexity for each state
s ∈ C is O(|Post(s)| · |N |). Therefore, for all states, the time
complexity of the preorder partitions isO(

∑
s∈S

|Pre(s)|·|N |) =

O(|Pre(C)| · |N |), and the time complexity of the successor
partitions is O(

∑
s∈S

|Post(s)| · |N |) = O(|Post(C)| · |N |). As a

result, the overall time complexity of the partition operators is
O(|Pre(C)| · |N |+ |Post(C)| · |N |). Thus, the time complexity

TABLE 2. The time complexities of the multi-valued simulation quotient
algorithm.

of the multi-valued bisimulation quotient algorithm is O(|S| ·

|AP| · |N | + |Pre(C)| · |N | + |Post(C)| · |N |).

V. DISCUSSION
In this paper, we introduced the multi-valued equiva-
lences based on quasi-Boolean algebra. These multi-valued
equivalences extend the traditional binary truth values of
‘‘0’’ or ‘‘1’’ to cover a continuous range between ‘‘0’’
and ‘‘1’’.

(1) Extension of label function values: We expanded the
values of label functions to quasi-Boolean algebra,
allowing them to take on between ‘‘0’’ and ‘‘1’’. This
extension provides a more nuanced and expressive
representation of label function values, accommodating
a range of possibilities.

(2) Extension of transition relation values: Similarly, the
values of transition relations were extended to quasi-
Boolean algebra, covering the continuous range between
‘‘0’’ and ‘‘1’’. This extension enables a more flexible
and expressive representation of transitions, espe-
cially in scenarios involving multi-valued uncertain
models.

These extensions make multi-valued equivalences more
expressive and applicable inmodeling and analyzing systems.
For a side-by-side comparison with regular equivalences,
please refer to TABLE 1.

As a result, all multi-valued equivalence methods are
not limited to multi-valued uncertain models but are also
effectively applied to regular model problems. Concepts like
multi-valued quotients play a significant role in multi-valued
equivalence techniques as they minimize multi-valued
uncertain systems for verification efficiency. A minimized
multi-valued model replaces the original multi-valued model
for verification purposes. When e = 1, the multi-valued
quotients reduce to the regular quotients. Therefore, the
multi-valued quotient algorithms also apply to solving the
regular quotients.

For a detailed breakdown of the time complexities
associated with multi-valued simulation quotient algorithms
in various scenarios, please refer to TABLE 2.
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TABLE 3. The time complexities of the multi-valued bisimulation quotient algorithm.

For a detailed breakdown of the time complexities asso-
ciated with multi-valued bisimulation quotient algorithms in
various scenarios, please refer to TABLE 3.

VI. CONCLUSION
Multi-valued systems are more susceptible to the challenge
of state space explosion due to the inherent multi-valued
uncertainty. In light of this, multi-valued equivalences are
crucial for addressing this issue. This paper has introduced
several such equivalences tailored for multi-valued systems,
including multi-valued simulation equivalence, multi-valued
bisimulation equivalence, multi-valued simulation quotient,
and multi-valued bisimulation quotient.

However, it’s important to note that some algorithms of
multi-valued simulation quotients are initial endeavors, and
there is room for further refinement. The number of edges in
the state graph, the total count of states in the state space, and
the number of memberships in L significantly impact com-
putational efficiency. In our forthcoming research, we intend
to delve deeper into these algorithms and endeavor to develop
enhanced versions that can better tackle the challenges posed
by multi-valued systems.
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