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ABSTRACT Cell-free massive multiple-input multiple-output (CF-mMIMO) technology seeks to enable
wireless connectivity with high-rates, flexibility and scalability, by distributing the antennas of the system
among multiple access points (APs), allowing the spatial degrees-of-freedom (DoF) of the system to be
fully exploited. The distributed nature of CF-mMIMO systems also raises, however, a security challenge,
because messages intended to a given user may be opportunistically eavesdropped by other users of the
systems, leaking potentially private information. As a step towards addressing this issue, we consider the
problem of beamforming (BF) design that maximize the downlink (DL) secrecy rate of the CF-mMIMO
system, considering that existing approaches have shortcomings including rate performance degradation,
limitations to point-to-point (P2P) and/or multiple-input single-output (MISO) scenarios, and/or poor
scalability, all of which contradict the aforementioned goals of CF-mMIMO technology. With that in mind,
our focus is on scalable solutions to the problem, in a manner that does not sacrifice rate or scalability.
To that end, we propose an improved and accelerated power-optimizing fractional programming (FP)-based
sumrate maximization (SRM)-BF, and provide an accompanying semidefinite programm (SDP)-based
secrecymaximization beamforming (SecBF) which can be used to optimize the previous’ SRM-BF towards
higher aggregate secrecy rates.Acomplexity analysis and comparisons via simulation demonstrate that
the proposed FP-based SRM-BF outperforms the state-of-the-art (SotA), and that the SDP-based SecBF
convergences quickly from the latter BF state yielding superior secrecy without significant losses in
communication rate.

INDEX TERMS Cell-free massive MIMO, leakage minimization beamforming, optimization theory,
physical layer security.

I. INTRODUCTION
With the landmark of 1 billion wirelessly connected
devices reached in 2020, and a prediction of growth
to 5 billion by 2025 [1], the Next-Generation Inter-
net of Things (NG-IoT) is considered a major driver
of the evolution from the fifth-generation (5G) to the

The associate editor coordinating the review of this manuscript and

approving it for publication was Walid Al-Hussaibi .

six-generation (6G) of wireless systems. This transformation
is, however, characterized not only by the exponential
growth in the number of devices, but also (and per-
haps most importantly) by their heterogeneous capabilities,
which creates a number of new security challenges and
requirements, from fast and low-complexity authentication,
to variable levels of data confidentiality and privacy between
users, that must be provided simultaneously by future
networks [2], [3].
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Physical layer security (PhySec) is, among other can-
didates, a technology that can bridge the gap caused by
this new paradigm of heterogeneous security, by aiding
mechanisms implemented at the upper layers [4]. When
referring to PhySec in that context, the main interest is
not in the information-theoretical notion of perfect security
described in the pioneering work of Wyner [5], but in
practical mechanisms that aim at augmenting system security.
Techniques such as these include jamming-aided secrecy [6],
[7], [8], [9], which degrades an eavesdropper’s channel
via the introduction of carefully designed artificial noise;
wireless channel-based secret key generation (SKG) [10],
[11], [12], [13], which provides cryptographic-grade bit
strings for upper layer encryption; and secrecy-maximization
beamforming (SecBF) [14], [15], [16], [17], [18], [19], [20],
which aims to lower the amount of information available to
an eavesdropper via beamforming techniques; to name a few.

Among these complementary methods, we focus the
contribution of this article on the latter class of SecBF
schemes, which enjoys particular attractiveness due to the fact
that beamforming is already a core technology of the cell-
free massive multiple-input multiple-output (CF-mMIMO)
architecture. Indeed, a substantial body of work in the
PhySec literature, briefly revised below for the sake of con-
text, considers secrecy-enhancing MIMO-beamforming (BF)
algorithms that offer additional security (or privacy) to users.
Such BF approaches have, however, their own shortcomings
under the multi-user, cell-free, and multi-antenna receiver
scenarios characteristic of 5G and 6G systems [2], [3].

To cite a few well-known contributions, in [14], [15],
and [16] SecBF schemes were proposed for point-to-point
(P2P) systems, where a single transmitter ‘‘Alice’’ commu-
nicates with a single receiver ‘‘Bob’’ in the presence of one
or more eavesdropper(s) ‘‘Eves’’. The latter contributions
are, however, limited to multiple-input single-output (MISO)
scenarios,1 where Alice has multiple antennas but Bob is a
single-antenna device. While SecBF schemes designed for
Multiple-Input Multiple-Output (MIMO) settings can also be
found, e.g. in [17] and [18], most are still constrained to P2P,
rather than multi-user (MU) scenarios. And although the MU
case has also been explored e.g. in [19], the typical overall
system set up addressed in related literature is such that each
individual user is constrained to a single receive antenna,
which is therefore better described as MU MISO.

These limitations to MISO and P2P conditions often
encountered in related literature are in part motivated by
the complexity of the underlying optimization problems,
which grows geometrically with the number of antennas
or the number of users in the system, or the combination
of both these parameters. It can therefore be said that
the real current challenge in SecBF design is to obtain
schemes of low-complexity for the full MU-MIMO setting.

1In [14] and [15] the eavesdroppers have multiple antennas, and in [16]
both Bob and the single Eve benefit from the presence of a multi-element
reflective intelligent surface (RIS) in the environment, but still the BF
techniques proposed are confined to the MISO paradigm.

Examples of recent work addressing the full MU-MIMO
scenario are [20], [21], and [22], where techniques to enhance
the security features of a single access point (AP) serving
several multi-antenna user equipment (UEs) simultaneously
were proposed. However, these methods achieve the desired
low-complexity by relying on a beam-domain approach,
whereby a given beam dictionary of cardinality lower than
the number of antennas is employed so as to reduce the
dimensionality of the problem. In other words, the complexity
reduction of beam-domain schemes comes at the expense of
performance degradation, as a result of the reduction in the
number of degrees-of-freedom (DoF) imposed by the smaller
beam dictionary cardinality.

Fortunately, outside the SecBF literature, techniques such
as the fractional programming (FP) method introduced
in [23] have been developed, which succeed in reducing the
complexity of the full MU-MIMO sum-rate maximization
(SRM) problem via downlink (DL) beamforming.

Still, such low-complexity SRM-BF methods have the
drawback that the FP procedure utilized requires the relax-
ation of the DL sum-power constraint into a per-user power
limit, which is obviously suboptimal especially in the highly
distributed CF-mMIMO setup.

In light of all the above, we contribute in this article both
with a feasibility-oriented, lower-complexity transmit (TX)
and receive (RX) SRM DL-BF method for full MU-CF-
mMIMO systems incorporating optimum power allocation,
as well as with an accompanying and corresponding low-
complexity SecBF scheme, which can be ‘‘turned on’’ when
desired in order to increase the secrecy of the links, without
significant sacrifice of total rate, without relying on the strong
assumption that the channels of malicious and colluding
eavesdroppers are known, as in [19], and without resorting
to a beam-domain approach, as in [20], [21], and [22].

To that end, we apply the concept of secrecy-enhancement
via leakage minimization (SecLM) [24], [25], [26], which is
concerned with preventing that the information transmitted
to any given k-th user of the system is opportunistically
eavesdropped by any of the remaining K − 1 legitimate users
in the network. The approach is motivated by the pragmatic
standpoint, already mentioned above, that SecBF methods
alone cannot offer 100% security, but rather are a part of set
of measures, serving in particular as a mechanism to improve
the security of the AP–to–UE channels for authentication and
for secret key generation, agreement and distribution.

We emphasize that embedded in the SecLM concept is,
furthermore, a recognition of the fact that the channels
to and from truly ill-intended eavesdroppers cannot be
known.2 Consequently, under such a pragmatic approach,
the potential eavesdroppers are legitimate users which may
opportunistically attempt to decode the information sent to
other users, as long as that does not sacrifice their own rates.

2An ill-intended Eve is either not a legitimate user of the system, and thus
not included in channel estimation procedures, or is a malicious user who
would seek to induce incorrect channel estimates in order to advance its goal.
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With our approach and methodology clarified, we also
emphasize that a larger question motivating the article
is whether SecLM-BF schemes result in any significant
sacrifice in ‘‘leakage-oblivious’’ communication rate, to be
understood here as the total rate served to all users and
optimized with no regards to leakage. In other words, we are
interested in showing that SecLM-BF schemes are a practical
and viable companion to SRM-BF schemes, that add security
to the system without significantly affecting throughout. The
contributions of the article can be summarized as follows:

• In order to provide a solid SRM-BF reference, a new
improved version of the SRM-BF scheme based on FP
proposed in [23] is developed. In comparison to such
a state-of-the-art (SotA) alternative, which has a per-
user DL-TX power constraint, our solution eliminates
this weakness in favor of a more general total DL-TX
power constraint. Furthermore, a significant reduction in
complexity is achieved in comparison to the SotA, via
a simplification of the closed-form expression iterated
towards the solution, where the repetitive inversion of a
full-rankmatrix is replaced with the update of a diagonal
matrix.

• A new SecLM-BF scheme for systems with multi
antenna users is proposed, in contrast to the current
SotA schemes which are limited to single antenna users.
This new method is shown to yield higher leakage-free
throughput than the aforementioned SRM-BF scheme,
while achieving similar leakage-oblivious throughput.
This accompanying SecBFmethod, although of a higher
complexity than the aforementioned FP-based SRM
approach, can be executed over one or two iterations
using the latter as an initial point, in order to provide
users with additional secrecy without large sacrifices in
rate performance.

The remainder of the article is structured as follows.
The overall system model, problem statement, and the
strategy adopted for RX-BF is described in Section II. The
SotA semidefinite programm (SDP)-based high-performance
solution and FP-based low complexity scheme for SRM are
briefly revised in Section III, with their corresponding limita-
tions also highlighted. The proposed methods that resolve the
aforementioned limitations in the context of SRM are offered
in Section IV, with the corresponding new techniques for
SecBF described in Section V. An analysis and comparison
of the computational complexities of the SotA and proposed
methods, as well as a thorough evaluation of their relative
performances via simulation are given in Section VI. Finally,
a short conclusion is offered in Conclusion.
Notation: Column vectors and matrices are respectively

denoted by lower- and upper-case bold face letters. The ℓ2 and
Frobenius norms are denoted by ∥ ·∥2 and ∥ ·∥F, respectively.
The transpose operation is indicated by the superscriptT. The
real part of a complex scalar is denoted as ℜ{·}, the conjugate
transpose operation is indicated by the superscriptH and the
inverse of the conjugate transpose by −H. The circularly
symmetric complex Gaussian distribution with mean ν and

variance σ 2 is denoted by CN (ν, σ 2). The log determinant
function is denoted by logn | · |. The non-negative operator
is denoted by (·)+ and is equivalent to max(·, 0). Subscripts
in lower-case math (italicized) font denote indices, while
subscripts in upper-case and occasionally in lower-case text
(upright) font are used to contextualize variables. Super-
scripts enclosed in parenthesis indicate iteration indices.

II. PRELIMINARIES
Before we proceed with the description of our system
model and subsequent problem statement, it is useful to
contextualize the work that will be introduced hereafter.
In particular, we stress that the uplink (UL)-BF case is
of no practical interest, since any BF algorithm aimed at
minimizing leakage in theULwould require a highly artificial
assumption that each k-th UE has knowledge of its channels
to all other UEs.

A. SYSTEM MODEL
Consider a DL CF-mMIMO system as illustrated in Fig. 1,
with a total of N TX antennas distributed among L APs,
each equipped with Nt TX antennas (i.e., N = L × Nt ),
serving K UEs each furbished with M RX antennas. The
communication between the ensemble APs and each UE is
intended to be private, such that with respect to each k-th user,
the remaining K − 1 UEs are considered to be passive (non-
malicious) and non-colluding eavesdroppers, which may be
able to capture some leaked information.

Let L ≜ {1, . . . ,L} and K ≜ {1, . . . ,K } be the sets of
indices ℓ and k , respectively corresponding to APs and UEs,
such that the fading channel between the ℓ-th AP and k-th
UE can be denoted as Hℓ,k ∈ CM×Nt . If Hℓ,k is subjected to
spatial correlation then it can be modeled as [27] and [28]

Hℓ,k ≜
√
Rℓ,kGℓ,k

√
Tℓ,k

T
, (1)

FIGURE 1. A multi-user CF-mMIMO DL system where L interconnected
APs collectively equipped with N antennas serves K UEs with M antennas
each.
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whereGℓ,k ∈ CM×Nt ∼ CN (0, σ 2I) capture the small fading
effects, and the matrices Rℓ,k ∈ CM×M and Tℓ,k ∈ CNt×Nt

model the effects of spatially-correlated scattering at the
receive and transmit path components of the channel between
the ℓ-th AP and the k-th UE, respectively.

The spatial correlation matrices Rℓ,k and Tℓ,k in
equation (1) are determined via the local scattering model
described in [29], which can be briefly summarized as
follows. Let the angle of departure (AoD) and angle of arrival
(AoA) of a path between the ℓ-th AP and the k-th UE be
respectively denoted by ϕTx

ℓ,k and ϕRx
ℓ,k . Briefly omitting the

super- and sub-scripts for conciseness, each of the angles ϕ

are assumed to be Gaussian random variables with mean µφ

and standard deviation σφ , with the pair (µφ, σφ) associated
to a given scattering cluster, such that the distribution of ϕ is
given by

f (ϕ) =
1√
2σφ

e
−

(φ−µφ )2

2σ2
φ . (2)

Then, using the operator [X]q,m to denote the q-th row and
m-th column elements of some matrix X, each element of
Rℓ,k and Tℓ,k is defined as[

Rℓ,k
]
q,m=βℓ,k

∫
e2π jd(q−m) sin(ϕ

Rx
ℓ,k )f (ϕRx

ℓ,k ) dϕRx
ℓ,k , (3a)[

Tℓ,k
]
q,m=βℓ,k

∫
e2π jd(q−m) sin(ϕ

Tx
ℓ,k )f (ϕTx

ℓ,k ) dϕTx
ℓ,k , (3b)

where βℓ,k captures the total average gain of the multipath
components of the path between the ℓ-th AP and the k-th UE,
and d is the antenna spacing given in wavelengths, which is
assumed to be the same in all antennas, both at APs and UEs.

For convenience, we define the effective DL channel
matrix from all APs to the k-th UE as the concatenation

Hk ≜
[
H1,k ,H2,k , . . . ,HL,k

]
∈ CM×N . (4)

Denoting the TX andRX beamformingmatrices associated
with the k-th UE by Vk ∈ CN×M and Uk ∈ CM×M ,
respectively, the complex baseband received signal at the k-th
UE can be described as

yk =

Intended signal︷ ︸︸ ︷
UkHkVksk +

Downlink inter-user interference︷ ︸︸ ︷∑
k ′∈K\{k}

UkHkVk ′sk ′ +

Colored noise︷ ︸︸ ︷
Uknk ,

(5)

where sk ∈ CM×1 is the unitary average power signal
intended to the k-th UE, and nk ∈ CM×1

∼ CN (0, σ 2I)
is the circularly symmetric complex-valued additive white
Gaussian noise (AWGN) at the k-th UE.

B. PROBLEM STATEMENT
From equation (5), it follows that the intended DL achievable
rate ηIk of the k-th UE is given by

ηIk = log2
∣∣IM + UkHkFkHH

k U
H
k C

−1
k

∣∣, (6a)

where

Ck ≜
∑

k ′∈K\{k}

UkHkFk ′HH
k U

H
k + σ 2UkUH

k , (6b)

describes the power of the interference-plus-noise affecting
the k-th user, with

Fk ≜ VkVH
k , (6c)

denoting the positive semidefinite (PSD) Gramian matrices
of the DL-TX beamformer Vk .

It also follows from equation (5) that the rate of information
ηLk,e intended for the k-th UE, which under ideal conditions
can be decoded by the e-th UE, under the assumption that the
latter performs perfect self-interface cancellation (SIC) of its
own intended signal is given by

ηLk,e ≜ log2
∣∣IM + UeHeFkHH

e U
H
e C

−1
k,e

∣∣, (7a)
with

Ck,e ≜
∑

k ′∈K\{k,e}

UeHeFk ′HH
e U

H
e + σ 2UeUH

e , (7b)

describing the power of the interference-plus-noise at the e-th
UE when decoding information intended for the k-th UE.

From the achievable communication rate ηIk and the leaked
communication rate ηLk,e, respectively given in equations (14)
and (17), the minimum leakage-free (secrecy) achievable rate
of the k-th user, under the assumption that the eavesdroppers
are the other users acting in an opportunistic, self-serving and
non-colluding manner, is given by

ηk ≜ min
e̸=k

(ηIk − ηLk,e)
+, with (e, k) ∈ K, (8a)

which, given that the intended rate ηIk is constant to the min
operator, and that the minimum of the negated leakage rates
ηLk,e is equivalent to a negated maximum, can be relaxed into

ηk = ηIk − max
e̸=k

(ηLk,e), with (e, k) ∈ K, (8b)

under the understanding that the link of a k-th user
whose channel realization yields3 ηIk < ηLk,e, for some e,
is fundamentally insecure, so that the design of SecLM-BF
for such a user is out of the scope of interest of the article.

As argued in Section I, the definition of the minimum
secrecy (or private) rate given in equation (8), where the
possible eavesdroppers to a k-th user are the otherK−1 users
e ̸= k ∈ K of the system itself, is motivated in the interest
in scenarios of practical relevance, where the members of the
system will not sacrifice their own quality-of-service (QoS)
in order to eavesdrop, thus fulfilling the assumption that the
potential eavesdroppers’ channels He are known to the APs.

From all the above, we can concisely state that the goal of
the article is to design low-complexity SecLM-BF schemes
to maximize ηk considering also power limits, which can be
expressed mathematically as

maximize
Vk ,Uk

∑
k∈K

ηIk − max
e̸=k

(ηLk,e), (9a)

subject to
∑
k∈K

∥Vk∥
2
F ≤ Pmax, (9b)

where Pmax denotes the maximum available TX power.

3Although such ill condition does occur occasionally with the minimum
mean square error (MMSE) TX-BF, it has not been observed in our
simulations when the proposed SecLM-BF schemes of Section V is
employed, which corroborates the accuracy of the relaxation of equation (8a)
into (8b).
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C. A NOTE ON BEAMFORMING STRATEGIES
Before proceeding with a brief review of SotA BF mecha-
nisms related to the problem summarized in equation (9),
let us qualitatively inspect the latter in the context of
the objectives of the article. To begin with, we invoke a
well-established result of convex optimization theory applied
to joint TX-RX MIMO beamforming designs [30], which
establishes that as long as the problem is put on a convex
(or concave) form, optimizing over the TX and RX variables
separately leads to no loss of performance with respect to
optimizing over both variables simultaneously.

By force of the latter, we may focus hereafter in contribut-
ing new methods to optimize over Vk , under the assumption
that Uk is known, followed by the optimization over Uk via
SotA methods, with given Vk . In other words, problem (9) is
equivalent to the following coupled sub-problems

given Uk ∀k, (10a)

maximize
Vk

∑
k∈K

ηIk − max
e̸=k

(ηLk,e), (10b)

subject to
∑
k∈K

∥Vk∥
2
F ≤ Pmax, (10c)

and

given Vk with ∥Vk∥
2
F = Pk , ∀k. (11a)

maximize
Uk

∑
k∈K

ηIk − max
e̸=k

(ηLk,e). (11b)

For the sake of conciseness, in what follows we will omit
the first expression – that is equations (10a) and (11a) –
designating the coupling of the two sub-problems.

Next, observe that the interference-plus-noise matrix in
equation (6b) can be simplified to

Ck =Uk

(∑
k ′∈K\{k}

HkFk ′HH
k +σ 2IM

)
UH
k =UkEkUH

k , (12)

Ek ≜
∑

k ′∈K\{k}

HkFk ′HH
k + σ 2IM , (13)

which, substituted into equation (6a) andwith a rotatedmatrix
product yields, under the assumption of invertible Uk ∀k

ηIk = log2
∣∣IM + UkHkFkHH

k U
H
k U

−

k HE
−1
k U−1

k

∣∣
= log2

∣∣IM + U−1
k UkHkFkHH

k U
H
k U

−

k HE
−1
k

∣∣
= log2

∣∣IM + HkFkHH
k E

−1
k

∣∣, (14)

Similarly, the interference-plus-noise matrix of the leakage
rate in equation (7b) simplifies to

Ck,e=Ue

(∑
k ′∈K\{k,e}

HeFk ′HH
e +σ 2IM

)
UH
e =UeEk,eUH

e , (15)

Ek,e ≜
∑

k ′∈K\{k,e}

HeFk ′HH
e + σ 2IM , (16)

which substituted into eq. (7a) yields, after some algebra,

ηLk,e ≜ log2
∣∣IM + UeHeFkHH

e U
H
e U

−
e HEk,eU

−1
e

∣∣
= log2

∣∣IM + U−1
e UeHeFkHH

e U
H
e U

−
e HE

−1
k,e

∣∣
= log2

∣∣IM + HeFkHH
e E

−1
k,e

∣∣. (17)

The consequence of the equations (14) and (17) is that
RX-BF does not impact on either the sum-rate

∑
k∈K ηIk ,

or the total secrecy rate
∑

k∈K ηIk − maxe̸=k (ηLk,e), such that
our goal is theoretically accomplished in full by solving
problem (10).
In practice, however, RX-BF does impact on the bit error

rates (BERs) achieved by users, such that for the sake of
completeness, we consider hereafter that the solution of
problem (11) is obtained optimally via a MMSE approach,
as argued in [31], yielding

Uk = VH
k H

H
k
(
HkFHH

k +σ 2IN
)−1

, (18a)

where

F ≜ VVH
∈ CN×N with V ≜

[
V1, . . . ,VK

]
∈ CN×KM .

(18b)

Notice that equation (18) implies that, if desired, the
RX-BF matrices Uk can be computed at each UE based on
the local knowledge of their own precoding and channel
matrices Vk and Hk , in addition to the global knowledge of
the aggregate precoding matrix F, broadcast4 to all UEs.

III. SotA: SUM RATE MAXIMIZATION BEAMFORMERS
In preparation to introducing our proposed DL-SecLM-BF
scheme, we briefly revise the classic SDP-based, and a recent
low-complexity FP-based SRM-BF methods, which shall be
later used to assess the performance of our contribution by
means of both a complexity analysis and a direct performance
comparison obtained via computer simulations, performed
in Section VI. The choice of these SotA references is moti-
vated by the fact that, to the best of our knowledge, no equiv-
alent SecLM scheme that addresses the full MU-MIMO case
here considered currently exists. The review also serves the
purpose of clarifying the approach followed in the design of
the proposed methods later introduced in Sections IV and V.

A. CLASSIC SRM-BF VIA SEMIDEFINITE PROGRAMMING
Consider a basic (unweighted) sum-rate maximization prob-
lem for the DL of a CF-mMIMO system, subjected to a total
DL TX power constraint, described by [23, Eq.(52a)]

maximize
Fk⪰0

∑
k∈K

ηIk (19a)

subject to
∑
k∈K

Tr(Fk ) ≤ Pmax. (19b)

Using the invariance property of the determinant of matrix
products with respect to cyclic permutations of thematrices in
the argument [32], the expression of ηIk given in equation (14)
can be re-written as

ηIk = log2
∣∣Ek + HkFkHH

k

∣∣− log2
∣∣Ek ∣∣, (20)

from which it is evident that the objective function (19a) is
not concave, as it is a sum of concave and convex terms.

4Although not relevant to SRM beamforming, the fact that the MMSE RX
beamformer of equation (18a) does not require knowledge of the remaining
precoders Vk ′ at the k-th UE, but rather only the Gramian F of the aggregate
precoder V, is of great importance to SecLM-BF approaches to be discussed
later.
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In order to find a concave relaxation of the objective (19a),
consider the following affine lower bound of the function
log2

∣∣E−1
k

∣∣ = − log2
∣∣Ek ∣∣ at a given point D−1

k , obtained via
a first-order Taylor expansion and given by [9, Eq.(33)]

− log2
∣∣Ek ∣∣ ≥ log2

∣∣Dk
∣∣− Tr(DkEk )

ln(2)
+

M
ln(2)

, (21)

such that (19a) can be lower-bounded by∑
k∈K

ηIk ≥

∑
k∈K

η̂Ik︸ ︷︷ ︸
concave over Fk

+

∑
k∈K

log2
∣∣Dk

∣∣+ KM
ln(2)︸ ︷︷ ︸

independent of Fk

, (22)

where we have highlighted the terms that are independent on
the optimization variable Fk , and the term η̂Ik defined as

η̂Ik ≜ log2
∣∣Ek + HkFkHH

k

∣∣− Tr(DkEk )
ln(2)

, (23)

is an affine concave lower bound of the corresponding
intended leakage-oblivious achievable rate ηIk .

By dropping the aforementioned terms independent on Fk ,
the following concave equivalent of problem (19) is obtained

maximize
Fk⪰0

∑
k∈K

η̂Ik (24a)

subject to
∑
k∈K

Tr(Fk ) ≤ Pmax. (24b)

Problem (24) is an SDP, can be solved via interior point
methods [33], [34], [35], [36], initialized and parameterized
as follows.

First, under the knowledge of the channel matrices Hk ,
an initial set of BFmatricesV(0)

k can be obtained via the naïve
MMSE beamformer

V(0)
k =

√
Pmax

K

(∑
k ′∈KHH

k ′Hk ′ +σ 2IN
)−1HH

k∥∥∥(∑k ′∈KHH
k ′Hk ′ +σ 2IN

)−1HH
k

∥∥∥
F

. (25)

Then, each subsequent iSDP-th iteration of the solver of
the problem is executed using the constant matrices Dk , ∀ k
constructed using the matrices Fk obtained at the (iSDP−1)-th
iteration, which shall hereafter be denoted F(iSDP−1)

k , yields [9]

Dk ≜

[ ≜E(iSDP−1)
k︷ ︸︸ ︷∑

k ′∈K\{k}

HkF
(iSDP−1)
k ′ HH

k +σ 2IM

]−1

, (26)

where we have highlighted the quantities E(iSDP−1)
k , which

capture the interference-plus-noise that would affect the k-th
UE if the BF vectors obtained in the (iSDP−1)-th iterationwere
employed, and which is the basis for the iterative construction
of the matrixDk in the affine lower bound of log2

∣∣E−1
k

∣∣ given
in equation (21).
The convergence guarantee of the approach described

above is discussed in detail in [9], and a complete pro-
cedure of the method is summarized as a pseudo-code
in Algorithm 1. The computational complexity of this
reference SotA method will be analyzed arithmetically in
Subsection VI-A, but it is well known that the interior point

Algorithm 1: DL-SRM via SDP-TX and MMSE-RX BFs
Internal Parameters:Maximum TX power Pmax, channel
matrices Hk , noise power σ 2, convergence tolerance ϵ, and
maximum number of iterations iSDPmax
Output: TX and RX DL-BF matrices Vk and Uk , ∀k

Initialization: Obtain V(0)
k from (25), and F(0)

k via (6c), ∀k

1: repeat
2: Increment iteration index iSDP by 1
3: Compute Dk , ∀k from (26)

4: Obtain F(iSDP)
k , ∀k by solving problem (24)

5: until
∥∥F(iSDP)

k − F(iSDP−1)
k

∥∥
F < ϵ,∀k or iSDP= iSDPmax

6: Extract Vk as the square root of F
(iSDP)
k , ∀k

7: Compute Uk , ∀k via (18a)
8: return Uk , ∀k and Vk , ∀k

methods typically employed to solve semidefinite programs
are quite costly [33], [34], [35], [36], which makes the
application of this approach to CF-mMIMO systems with
large numbers of UEs unfeasible.

B. LOW-COMPLEXITY SRM-BF VIA FRACTIONAL
PROGRAMMING
As highlighted in the last remark above, the SDP-based
SRM-BF approach is computationally too expensive to scale.
This issue can, however, be mitigated by addressing the non-
convexity of the log-ratio terms in the objective function (19a)
via the matrix FP approach recently proposed in [37]. To that
end, we first rotate the matrix product in the argument of the
rate ηIk , so as to obtain the equivalent to equation (14), i.e.

ηIk = log2
∣∣IM + VH

k H
H
k E

−1
k HkVk

∣∣, (27)

whose Lagrangian Dual Transform (LDT) is given by
[37, Sec. III-B Th.2]

η̌Ik =

constant with respect to Vk︷ ︸︸ ︷
log2

∣∣IM+0k
∣∣−Tr

(
0k
)

+ Tr
( (

IM+0k
)︸ ︷︷ ︸

constant with respect to Vk

HkVkM−1
k VH

k H
H
k

)
, (28a)

where 0k are the matrix Lagrange multipliers, given by

0k ≜ Hk
[
VkE−1

k VH
k
](iFP−1)HH

k , (28b)

and we have, for convenience of notation, introduced the
auxiliary matricesMk defined as

Mk ≜
∑
k ′∈K

HkVk ′VH
k ′HH

k + σ 2IM . (28c)

As emphasized in equation (28a), the Lagrange multiplier
matrices 0k are constant with respect to the optimization
variables Vk . In anticipation to the algorithmic procedure to
be described in the sequel, we have therefore utilized the same
notation introduced in the previous subsection, indicating

in equation (28b) that the term
[
VkE−1

k VH
k

](iFP−1) is to be
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computed for a given ‘‘point,’’ that is, using the solution
obtained at the previous iteration.

Notice, however, that the expression in equation (28a) is
not concave, due to the ratio on the variable Vk embedded in
the last term of η̌Ik . This can be circumvented by the quadratic
transform (QT) described in [37, Sec. III-B, Th.1], which
applied onto equation (28a) yields

η̆Ik = log2
∣∣IM+0k

∣∣−Tr
(
0k
)

+ Tr
((
IM+0k

)(
2ℜ{VH

k H
H
k Yk}−YH

k MkYk
))

, (29a)

where

Yk =

[∑
k ′∈K

HkF
(iFP−1)
k ′ HH

k +σ 2IM
]−1
HkV

(iFP−1)
k . (29b)

It is evident that equation (29a) is concave on Vk such that
the associated optimization problem

maximize
Fk⪰0

∑
k∈K

η̆Ik (30a)

subject to
∑
k∈K

Tr(Fk ) ≤ Pmax, (30b)

can be solved efficiently via interior point methods.
Better still, the fact that both the QT-LDT-reformulated

rate expression of equation (29a) and the constraint of (30b)
are quadratic on Vk , enables the design of SRM-BF of
significantly lower complexity, as proposed in [23]. This
requires, however, relaxing the sum power constraint of (30b)
to a per-user equal-power constraint, yielding

maximize
Vk

∑
k∈K

η̆Ik (31a)

subject to ∥Vk∥
2
F ≤

Pmax

K
∀k. (31b)

Problem (31) can then be solved via the Lagrangian Mul-
tiplier Method (LMM), for which we define the constraints

gk ≜ ∥Vk∥
2
F −

Pmax

K
≤ 0, (32)

such that the corresponding Lagrangian can be expressed as

L =

∑
k∈K

η̆Ik −

∑
k∈K

ξkgk , (33)

where ξk are the Lagrangian multipliers.
Taking the partial derivatives of the Lagrangian with

respect to Vk and equating to zero yields

0 =
∂

∂Vk

∑
k ′∈K

η̆Ik ′ −
∂

∂Vk

∑
k ′∈K

ξk ′gk ′ , (34)

where the derivative terms are respectively given by
∂

∂Vk

∑
k ′∈K

η̆Ik ′ = 2
(
HH
k Yk

(
IM+0k

))H
+

− 2VH
k

∑
k ′∈K

HH
k ′Yk ′

(
IM+0k ′

)
YH
k ′Hk ′ ,

(35a)
∂

∂Vk

∑
k ′∈K

ξk ′gk ′ (x) = 2ξkVH
k . (35b)

Substituting the latter equations into (34), and solving
for Vk , we obtain the solution

Vk =

(
ξkIN +

∑
k ′∈K

HH
k ′Yk ′

(
IM + 0k ′

)
YH
k ′Hk ′

)−1
HH
k Yk

(
IM + 0k

)
,

(36)

which is a monotonically descending function of the
Lagrangianmultiplier ξk , such that the latter can be optimized
via bisection (BS) search so as to satisfy constraint (31b).

The DL-SRM-BF method described above, which is a
summary of the FP-based TX-BF scheme proposed in [23],
combined with the MMSE RX-BF of [31], is offered in the
form of a pseudo-code in Algorithm 2, and will hereafter be
considered the low-complexity SotA reference.

Algorithm 2: SotADL-SRMvia FP-TX andMMSE-RXBFs
Internal Parameters:Maximum TX power Pmax, channel
matricesHk , noise power σ 2, convergence tolerance ϵ, max-
imum number of iterations iFPmax, and search boundary ξmax
Output: TX and RX DL-BF matrices Vk and Uk , ∀k

Initialization: Obtain V(0)
k from (25), and F(0)

k via (6c), ∀k

1: repeat
2: Increment iteration index iFP by 1
3: Compute 0k , ∀k from (28b)
4: Compute Yk , ∀k from (29b)

5: Obtain V(iFP)
k , ∀k from (36), with ξk optimized via

bisection search over [0, ξmax] to satisfy (31b)
6: until

∥∥V(iFP)
k − V(iFP−1)

k

∥∥
F < ϵ,∀k or iFP= iFPmax

7: Compute Uk , ∀k via (18a)
8: return Uk , ∀k and Vk , ∀k as V

(iFP)
k , ∀k

IV. PROPOSED LOW-COMPLEXITY SRM BEAMFORMER
The FP-based SRM-BF method of Algorithm 2 has, despite
a lower complexity in comparison with the SDP approach
of Algorithm 1, two major drawbacks. The first is that
the relaxation of constraint (30b) into (31b) leads to sub-
optimality, since it implicates that all UEs are allocated the
same TX power, regardless of their channel conditions.

We emphasize that although we are still discussing
SRM here, such a relaxation is particularly deleterious to
SecLM-BF, to be addressed later, since the imposition of an
equal TX power to all users severely limits the DoFs available
to minimize leakage of information from a user to another,
as can be inferred from the discussions in Subsection II-B.

The second drawback is that the recurrent evaluation of
equation (36) requires a matrix inversion at each step of the
BS search for Vk ∀k , resulting in a still large computational
cost. In what follows, we address these two issues, leading to
a novel lower-complexity FP-based SRM-BF method, which
will serve also as a prelude to the SecLM-BF technique
introduced subsequently.
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A. FP-BASED SRM-BF OPTIMIZED TX POWER
In order to address the relaxation of the original total
transmit power constraint (30b) into the per-user TX
power constraint (31b) that limits the performance of
Algorithm 1, let us instead of transforming problem (30)
into (31), as done in the SotA reference summarized in
Subsection III-B, consider first redefining the beamforming
vectors Vk as

Vk ≜
√
Pk V̄k ∀k, (37)

such that problem (30) can be reformulated as

maximize
Vk

∑
k∈K

˘̄ηIk (38a)

subject to
∑
k∈K

Pk ≤ Pmax, (38b)

∥V̄k∥
2
F = 1, ∀k (38c)

where

˘̄ηIk ≜ log2
∣∣IM+0̄k

∣∣−Tr
(
0̄k
)

+ Tr
((
IM + 0̄k

)[
2
√
Pkℜ{V̄H

k H
H
k Ȳk}−ȲH

k M̄k Ȳk
])

,

(38d)

with

0̄k ≜ Hk
[
Pk V̄kE−1

k V̄H
k
](iFP−1)HH

k , (38e)

Ȳk ≜
[∑
k ′∈K

Hk
[
Pk ′ F̄k ′

] (iFP−1)
HH
k+σ 2IM

]−1
Hk
[√
Pk V̄k

](iFP−1)
,

(38f)

M̄k ≜
∑
k ′∈K

Pk ′Hk V̄k ′V̄H
k ′HH

k + σ 2IM , (38g)

F̄k ≜ V̄k V̄H
k . (38h)

Taking advantage of the fact that the LDT-reformulated
rate expression of equation (38d), as well as the con-
straints (38b) and (38c), are all quadratic on both V̄k
and

√
Pk , SRM-BF design can be accomplished efficiently

by splitting (38) into two separate optimization sub-problems
solved alternately, with the first aimed at optimizing the
power while maintaining the beamformer fixed, and the
second seeking to optimize the beamforming design while
maintaining the power fixed.

In order to optimize Pk given V̄k , let us define

p ≜
∑
k∈K

Pk − Pmax = 0, (39)

where we have taken the inequality constraint (38b) at
equality so as to obtain the Lagrangian function

LP =

∑
k∈K

˘̄ηIk − λ p, (40)

whose derivative with respect to
√
Pk , equated to zero,

yields
∂

∂
√
Pk

∑
k ′∈K

˘̄ηIk ′ −
∂

∂
√
Pk

λ p = 0, (41)

with distinct derivative terms respectively equal to

∂

∂
√
Pk

λ p = 2λ
√
Pk , (42a)

∂

∂
√
Pk

∑
k ′∈K

˘̄ηIk ′

= 2Tr
{(
IM+0̄k

)
ℜ{V̄H

k H
H
k Ȳk}

}
+ −2

√
PkTr

{∑
k ′∈K

(
IM+0̄k ′

)
ȲH
k ′Uk ′Hk ′ F̄k ′HH

k ′Ȳk ′

}
.

(42b)

Substituting the latter expressions into equation (41) and
solving for Pk , we obtain

Pk =

(
Tr
{(
IM+0̄k ′

)
ℜ{V̄H

k H
H
k Ȳk}

}
λ+Tr

{∑
k ′∈K

(
IM+0̄k ′

)
ȲH
k ′Hk ′ F̄kHH

k ′Ȳk ′

})2 . (43)

It follows that
∑

k∈K Pk is a monotonically descending
function of the Lagrangian multiplier λ, which therefore can
be efficiently found via a BS search.

Next, consider the optimization of V̄k givenPk . To this end,
let us redefine the unit power constraint (38c) as

gk ≜
∥∥V̄k

∥∥2
F − 1 = 0, (44)

which yields the Lagrangian function

LV =

∑
k∈K

˘̄ηIk −

∑
k∈K

µkgk , (45)

whose partial derivative on V̄k , equated to zero, yields

∂

∂Vk ′

∑
k ′∈K

˘̄ηIk ′ −
∂

∂Vk

∑
k ′∈K

µk ′gk ′ = 0, (46)

where the distinct derivative terms are respectively given by

∂

∂V̄k

∑
k ′∈K

˘̄ηIk ′ = 2
√
Pk
(
HH
k Ȳk

(
IM + 0̄k

))H
− 2Pk V̄H

k

∑
k ′∈K

HH
k ′Ȳk ′

(
IM + 0̄k ′

)
ȲH
k ′Hk ′ ,

(47a)
∂

∂V̄k

∑
k ′∈K

µk ′gk ′ = 2µk V̄H
k . (47b)

Substituting the latter equations into (46) and solving
for V̄k , we obtain

V̄k =

[
µkIN +

∑
k ′∈K

HH
k ′Ȳk ′

(
IM + 0̄k ′

)
ȲH
k ′Hk ′

]−1
HH
k Ȳk

(
IM+0̄k

)
√
Pk

,

(48)

which is a monotonically descending function of the
Lagrangianmultiplierµk that can be efficiently optimized via
BS search so as to satisfy constraint (38c).
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B. ACCELERATED FP-SRM-BF WITH TOTAL
TX POWER CONSTRAINT
Despite the expected improvement in performance resulting
from the optimized power allocation enabled by the method
contributed above, it can be seen from the direct comparison
of equations (36) and (48) that this approach would have
complexity similarly to that of Algorithm 2, as the BS search
for the optimal Lagrangian coefficients µk still requires
repetitive matrix inversions. We therefore introduce in the
sequel another contribution that alleviates such a burden.

To that end, let us start by defining the auxiliary variables

Ā ≜
∑
k ′∈K

[
HH
k ′Ȳk ′

(
IM + 0̄k ′

)
ȲH
k ′Hk ′

]
, (49)

B̄k ≜ HH
k Ȳk

(
IM + 0̄k

)
P−1/2
k , ∀k, (50)

3̄ ≜ diag(λ̄1, λ̄2, . . . λ̄N ), (51)

Ā = Q̄3̄Q̄H, (52)

where Q̄3̄Q̄H is the eigendecomposition of Ā, with 3̄ being
its matrix of eigenvalues, and Q̄ its eigenvectors such that
Q̄Q̄H

= Q̄HQ̄ = IN .

Algorithm 3: Proposed Method - Accelerated DL-SRM via
Power-Optimized FP-TX and MMSE-RX BFs
Internal Parameters:Maximum TX power Pmax, channel
matrices Hk , noise power σ 2, convergence tolerance ϵ, max
number of iterations iFPmax and search boundaries λmax, µmax
Output: TX and RX DL-BF matrices Vk and Uk , ∀k

Initialization: Obtain V(0)
k from (25), F(0)

k via (6c), and set
P(0)k =Pmax/K , ∀k

1: repeat
2: Increment iteration index iFP by 1
3: Compute 0̄k and Ȳk , ∀k from (38e) and (38f)

4: Obtain P(i
FP)
k , ∀k from (43), with λ optimized via

bisection search over [0,λmax]
5: Construct Ā from (49) and obtain the eigenpair Q̄, 3̄

from its eigen-decomposition, as in (52)

6: Obtain V̄(iFP)
k , ∀k from (53), with µk optimized via

bisection search over [0, µmax]
7: Compute V(iFP)

k , ∀k from (37)

8: until
∥∥V(iFP)

k − V(iFP−1)
k

∥∥
F < ϵ,∀k or iFP= iFPmax

9: Compute Uk , ∀k via (18a)
10: return Uk , ∀k and Vk , ∀k as V

(iFP)
k , ∀k

Substituting the latter equations into equation (48) yields

V̄k =
(
µkIN+Ā

)−1
B̄k =

(
µkQ̄Q̄H

+Q̄3̄Q̄H)−1
B̄k ,

=
(
Q̄
[
µkIN+3̄

]
Q̄H)−1

B̄k =Q̄−H(µkIN+3̄
)−1

Q̄−1B̄k ,

= Q̄
(
µkIN+3̄

)−1
Q̄HB̄k =Q̄L̄−1

k Q̄HB̄k , (53a)

FIGURE 2. Convergence behavior: total sum rate achieved by SotA and
proposed low-complexity SRM-BF schemes, as a function of iteration
index.

where L̄−1
k is a diagonal matrix given by

L̄−1
k =diag

( 1

λ̄1+µk
,

1

λ̄2+µk
, · · · ,

1

λ̄N+µk

)
, ∀k. (53b)

Remarks: Notice that the acceleration approach described
above cannot be applied directly over the SotA SDP problem
given in equation (24), since the objective (24a), detailed in
equation (23), would not be quadratic on the variables Pk
and V̄k , as is the objective (38a) detailed in equation (38d).
In turn, the first sub-problem aimed at optimizing Pk

does not require acceleration, since there is no repetitive
matrix inversion required during the BS search. The proposed
method described above is summarized as a pseudo-code in
Algorithm 3, and its performances is briefly assessed in the
sequel via comparison with the SotA scheme of Algorithm 2.

C. ASSESSMENT OF LOW-COMPLEXITY SRM-BFs
The rates achieved by both approaches detailed in
Algorithms 3 and 2 are compared in Figs. 2 and 3,
respectively. First, Fig. 2 indicates that in addition to, and in
spite of, the lower complexity resulting from the accelerated
BS searching procedure from Subsection IV-B, the proposed
Algorithm 3 converges faster and to a significantly higher
total achievable sum rate than the SotA scheme of [23], shown
in Algorithm 2. It is found, in particular, that for the system
setup used in the comparison – namely, with K = 4 users
each with M = 2 antennas, under an average SNR of 15dB,
and served by a set of APs with N = 32 total antennas –
the proposed SRM-BF method achieves, after 10 iterations,
approximately 0.5 (bits/s/Hz) of gain over the SotA.

To bring this into perspective, a channel with a bandwidth
of 20 (bits/s/Hz), would experience advantages of 10 (Mbit/s)
in communication sum rate. Next, we compare in Fig. 3 the
performances of the SotA and proposed methods achieved
after 10 iterations, as a function of the SNR. Again, the
results show that in spite of its lower complexity, the proposed
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FIGURE 3. Performances: total sum rate achieved at the 10-th iteration by
SotA and proposed low-complexity SRM-BF schemes, as a function of
signal to noise ratio (SNR).

method outperforms the SotA, with higher gains at the lower
SNR range, indicating that the equivalent of Fig. 2 for a lower
SNR would reveal an even wider gap in performance.

At zero SNR, for instance, the gain over the SotA scheme
grows to 1.25 (bits/s/Hz), or 25 (Mbit/s) in a channel with
20 (MHz) of bandwidth. Due to page limitations, we omit
(to the disadvantage of the proposed method) further figures
illustrating the gains of the proposed SRM-BF method over
the SotA, leaving further assessments to Section VI-B, where
the performances of the SotA and proposed methods also in
terms of SecLM will be compared.

V. PROPOSED LEAKAGE-MINIMIZING BEAMFORMER
Motivated by the gains achieved with the proposed SRM-BF
scheme, as illustrated above, we next turn our attention to
the other goal of the article, which is to obtain a scalable
method to improve the security of multi-user CF-mMIMO
systems via a PhySec approach, in particular by designing
low-complexity TX SecBFs aimed at minimizing the leakage
of private information to legitimate users in the network.

A. PRELIMINARY: SecLM-BF AGAINST PERFECTLY
COLLUDING EAVESDROPPERS
As a theoretical exercise, let us first consider a case of
little practical relevance but which will prove useful in the
design of the proposed SecLM-BF technique introduced sub-
sequently. To that end, let us return to leakage-minimization
alternative described in equation (10), which for convenience
is reproduced below

maximize
Fk⪰0

∑
k∈K

ηIk − max
e̸=k

(ηLk,e), (54a)

subject to
∑
k∈K

Tr(Fk ) ≤ Pmax. (54b)

One way to convexify the latter problem is to replace the
max(·) operator in objective (54a) by a sum of the leakages
to all users, which yields the cost-functions

η̃k ≜ ηIk −

∑
e∈K\{k}

ηLk,e, (55)

which in turn can be re-written as

η̃k = log2
∣∣Ek+HkFkHH

k

∣∣+∑
e∈K\{k}

log2
∣∣Ek,e∣∣−∑

e∈K
log2

∣∣Ee∣∣,
(56)

and further simplified following the same affine upper-
bounding method employed in Subsection III-A, yielding

η̃k ≤

≜η̂k︷ ︸︸ ︷
log2

∣∣Ek+HkFkHH
k

∣∣+∑
e∈K\{k}

log2
∣∣Ek,e∣∣−∑

e∈K

Tr(DeEe)
ln(2)

+

∑
e∈K

log2
∣∣De

∣∣
︸ ︷︷ ︸
independent of Fk

+
K ·M
ln(2)︸ ︷︷ ︸
constant

, (57)

where we highlighted two terms that can be ignored – one
for being constant and another for being computed using the
matricesDe, which are constructed as in equation (26), based
on the solutions

{
F(iSDP−1)
k∈K

}
obtained in the previous iteration

– and where the implicitly-defined quantities η̂k are concave
alternatives to the private rates at each k-th user, such that
problem (54) can be put in the convex form

maximize
Fk⪰0

∑
k∈K

η̂k (58a)

subject to
∑
k∈K

Tr(Fk ) ≤ Pmax, (58b)

which can be solved by interior point methods [33], [34],
[35], [36].

Notice, that the relaxation described by equation (55)
is equivalent to the (quite strong) assumption that the
information leaked to each and all of the K − 1 opportunistic
eavesdroppers is completely uncorrelated and perfectly
aggregated, which are obviously hard to meet in practice. The
SecLM-BF problem formulated in equation (58) is therefore
somewhat distant from the original problem described by
equation (54), such that the TX-BFs obtained via this
approach can be expected to lead to poor results in the more
practically-relevant case, which is that the security of each
k-th is undermined by any other single individual user of
the system that happens to be in a privileged position to
opportunistically eavesdrop on the information transmitted
to the k-th user. The latter, more relevant case, is considered
below.

B. SecLM-BF AGAINST INDIVIDUAL OPPORTUNISTIC
EAVESDROPPERS
Despite the limitation of being mostly of theoretical rele-
vance, there is an inspiring aspect of the approach described
in Subsection V-A, namely, the fact that the non-convexity
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of the term
∑

e∈K log2
∣∣Ee∣∣ in equation (56) is, after the

introduction of the affine upper-bound resulting from the
truncated Taylor expansion described by equation (21),
ultimately circumvented by the elimination of the localized
term

∑
e∈K log2

∣∣De
∣∣, thanks to the matrices De being

computed using the solution
{
F(iSDP−1)
k , ∀k

}
from the last

iteration.
This motivates us to consider, rather than relaxing

max(·) into a sum and then applying the affine upper-
bound, to instead employ the aforementioned ‘‘retrofitting’’
approach to relax the max(·) operator directly, as follows.
First let us identify, for each k-th user, the eavesdropper that
achieves the highest leakage rate under the set of matrices{
F(iSDP−1)
k , ∀k

}
obtained at the (iSDP− 1)-th iteration, which

yields

ẽk ≜
{
e
∣∣ argmax

e̸=k
ηLk,e

({
F(iSDP−1)
k , ∀k

})}
, (59)

where we indicate in the notation that the leakage rate ηLk,e
at the i-th iteration is computed via equation (17), using the
solution

{
F(iSDP−1)
k , ∀k

}
obtained in the previous iteration.

Then, the following problem can be formulated as

maximize
Fk⪰0

∑
k∈K

ηIk − ηLk,ẽk (60a)

subject to
∑
k∈K

Tr(Fk ) ≤ Pmax, (60b)

Algorithm 4: Proposed Method - DL-SecLM-BF via SDP-
TX and MMSE-RX BFs
Internal Parameters:Maximum TX power Pmax, channel
matrices Hk , noise power σ 2, convergence tolerance ϵ, and
maximum number of iterations iSDPmax
Output: TX and RX DL-BF matrices Vk and Uk , ∀k

Initialization: Obtain V(0)
k as the output of Algorithm 3, and

F(0)
k via (6c), ∀k

1: repeat
2: Increment iteration index iSDP by 1
3: Compute Dk , ∀k as in eq (26)
4: Compute ẽk , ∀k as in eq (59)

5: Obtain F(iSDP)
k , ∀k by solving (64)

6: until
∥∥F(iSDP)

k − F(iSDP−1)
k

∥∥
F < ϵ,∀k or iSDP= iSDPmax

7: Extract Vk as the square root of F
(iSDP)
k , ∀k

8: Compute Uk , ∀k via (18a)
9: return Uk , ∀k and Vk , ∀k

which can be written in its epigraph form as

maximize
Fk⪰0

∑
k∈K

ηIk − RLk (60c)

subject to
∑
k∈K

Tr(Fk ) ≤ Pmax, (60d)

ηLk,e ≤ RLk , ∀k, e ̸= k, (60e)

where each k-th term of the summation in objective (60a) can
be rewritten as

ηIk − ηLk,ẽk = log2
∣∣Ek+HkFkHH

k

∣∣− log2
∣∣Ek ∣∣

− log2
∣∣Ek,ẽk +HẽkFkH

H
ẽk︸ ︷︷ ︸

= Eẽk

∣∣+ log2
∣∣Ek,ẽk ∣∣,

(61)

which in turn can be lower bounded by

ηIk − ηLk,ẽk ≥ η̂Ik + η̂Lk,ẽk + log2
∣∣Dk

∣∣+ log2
∣∣Dẽk

∣∣︸ ︷︷ ︸
independent of Fk

+
2M
ln(2)︸ ︷︷ ︸
constant

,

where we have highlighted the terms that are independent on
the optimization variable Fk , and the affine rate lower-bounds
η̂Ik and η̂Lk,ẽk

are respectively defined as

η̂Ik ≜ log2
∣∣Ek + HkFkHH

k

∣∣− Tr(DkEk )
ln(2)

, (62)

η̂Lk,ẽk ≜ log2
∣∣Ek,ẽk ∣∣− Tr(DẽkEẽk )

ln(2)
. (63)

Finally, dropping the terms independent on Fk from
inequality (62), the following concave equivalent of prob-
lem (60) is obtained

maximize
Fk⪰0

∑
k∈K

η̂Ik +

∑
k,s∈S

η̂Lk,ẽk (64a)

subject to
∑
k∈K

Tr(Fk ) ≤ Pmax, (64b)

which again can be solved by interior point methods [33],
[34], [35], [36], and is summarized above in Algorithm 4.

VI. COMPLEXITY AND PERFORMANCE ASSESSMENT
A. COMPLEXITY ANALYSIS
In this section we perform an objective comparative analysis
of the complexities of the proposed SRM and SecLM-BF
methods summarized in Algorithms 3 and 4, as well as of the
reference SotA alternatives, namely, the classic SDP-based
SRM-TX-BF of Algorithm 1, and the FP-based SRM-TX-BF
of Algorithm 2. Before we start, let us again emphasize
that since RX-BF does not impact on achievable rates,
as discussed in Subsection II-C, the same MMSE-based
RX-BF scheme is used in all compared techniques, such that
its complexity is not considered.

1) SDP-BASED METHODS
The complexities of the classic SRM-BF scheme of
Algorithm 1, and of the proposed SecLM-BF scheme of
Algorithm 4, being both based on SDP, are dominated by
the number of iterations of interior point method required
to solve their corresponding SDP problems, respectively
described in equations (24) and (64). These problems belong,
in turn, to a class of convex determinant maximizing
problems as described in detail in [38, Sec.2], whose cost
per iteration can be upper bound (assuming that no particular
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structure is exploited) by the complexity of the corresponding
Newton-Raphson method [38], given by

O(
√
n(n2 + ℓ2)m2), (65)

where the parameters m, n and ℓ depend on the dimension
of the variables present in the specific objective function and
constraints of the problem.

For the problems depicted, referring back to equations (24)
and (64), the values of m, n and ℓ are given by

m = K ·M · N , (66a)

n = K · N 2, (66b)

ℓ = K · N 2, (66c)

which finally yields

O(iSDPmax · K 4.5(N 7M2)), (67)

jointly for all users, where iSDPmax denotes themaximum number
of iterations of the SDP procedure.

As shall be discussed in the following subsection, the
complexity described by equation (67) is significantly higher
than those of FP-based approaches. However, it is known
SDP typically outperforms majorization techniques such as
the FPmethod [30]. It follows that an alternative to retain best
performance while reducing complexity is to adopt a hybrid
approach, whereby initial TX-BF matrices are first obtained
via an FP method, and then refined by a few iteration of SDP.
In view of the above, our contribution towards complexity
reduction in relation to SDP is indirect, namely, in terms of
a reduction in the number of required refinement iterations
via SDP, since the proposed FP-based TX-BF scheme of
Algorithm 3 yields better performance (and thus better initial
points) then the SotA FP-based method of Algorithm 2.

In addition, Algorithm 3 has a lower complexity than
Algorithm 2, as shall be quantified in the sequel.

2) FP-BASED METHODS
Before we look at the complexity of Algorithms 2 and 3,
it will prove convenient to recall that the number of iterations
required by the BSmethod to find a root of a given function in
an interval (0, µ], subject to a tolerance ε, is lower-bounded
by [39]

iBSmin ≥
logµmax − log ε

log 2
. (68)

With the latter in mind, notice that the complexity of the
SotA FP-based BF approach of Algorithm 2 is dominated by
the cost of repeatedly computing Vk ∀ k via equation (36),
over each iteration of both the FP method itself (outer loop,
up to iFPmax) and the BS method (inner loop, with at least iBSmin)
required to find the optimal µk that satisfies the constraint of
equation (32).

It follows that the complexity order of the FP-based SRM-
TX-BF of Algorithm 2 can be estimated as

O(iFPmax · iBSmin · K 2(N 2M + NM2
+ N 3)︸ ︷︷ ︸

cost of evaluating (36) in order to optimize
all µk ’s via bisection so as to satisfy (32)

). (69)

In contrast, the complexity of the proposed FP-based
SRM-TX-BF of Algorithm 3, which includes the accelera-
tion method contributed in Subsection IV-B, is dominated
by the computation of the eigen-decomposition given in
equation (52), and the subsequent evaluation of equation (53).
Now, while the cost of evaluating equation (53) is incurred
at each iteration of both the outer and inner loops, the cost
related to equation (52) is incurred with each iteration iFPmax of
the FP procedure, but only once for all BS iterations and all
K users collectively. Consequently we have,

O
(
iFPmax · iBSmin K 2(N 2M + NM2)︸ ︷︷ ︸

cost of evaluating (53) in order to optimize
all µk ’s via bisection so as to satisfy (44)

+ iFPmax

cost of the eigen-decomposition
of Ā as per equation (52)︷︸︸︷

N 3 )
. (70)

Comparing equations (69) and (70) the gain in complexity
reduction achieved by the proposed Algorithm 3 over the
SotA Algorithm 2 can be quantified to be of about

O
(
iFPmax ·i

BS
minK

2N 3
−iFPmaxN

3)
=O

(
iFPmaxN

3(iBSminK
2
−1)

)
. (71)

In order to visualize the relative computational costs of
all the techniques under consideration, we compare their
complexities as a function of the two most crucial parameters
that impact the scalability of the CF-mMIMO system,
namely, the number N of transmit antennas in the ensemble
of APs, and the number K of UEs. The results are given in
Figure 4, and show that indeed the most expensive scheme is,
by far, the SDP-based SRMmethod of Algorithm 1, followed
by the FP-based SotA scheme of Algorithm 2, which is
already orders of magnitude less complex. It is also found,
however, that the proposed methods of Algorithm 3 and 4 are
about 100 times less costly than the SotA FP-based scheme.

It will next be shown, in the subsequent Subsection,
that despite having lower complexity, the proposed methods
achieve the same or slightly better performance than the SotA
counterparts.

B. SIMULATION RESULTS ON PERFORMANCE
With the complexities of the SotA and proposed SRM and
PhySec BF schemes quantified, we next turn our attention
to assessing their relative performances. To this end, we first
present in Fig. 5 convergence plots comparing the rates
achieved by Algorithms 1 and 4. We emphasize that these
are both these algorithms are high-performing SDP-based
methods which, however, are accelerated by initial BF-ing
vectors obtained by FP-based schemes, namely, Algorithm 3
(proposed) and Algorithm 2 (SotA).

We clarify that the initial point Vk utilized to kick-start
both FP-based methods in all cases considered were taken
from the classic MMSE beamformer given in equation (25).
In addition, all results shown are obtained via Monte Carlo
simulations, with network and channel parameters as shown
in Table. 1, where the UEs are random and uniformly
distributed within a square area of side DUE , while the APs
are positioned at the corners of a co-centric square of sideDAP

127520 VOLUME 11, 2023



I. A. M. Sandoval et al.: Sum-Rate Maximization and Leakage Minimization

FIGURE 4. Computational complexities of proposed and SotA SRM and
SecLM beamforming schemes, as a function of the number of transmit
antennas N and number of users K in the CF-mMIMO system.

embedded in theUE square. Finally, the CVX [33] framework
with the MOSEK [34] solver, both implemented in Matlab,
were used to solve the SDP-based optimization problems in
an iterative manner.

The first results are shown in Fig. 5, which com-
pare the leakage-minimized sum rates

∑
k ηk , with ηk ’s

obtained via equation (8), and the ‘‘leakage-oblivious’’
sum communication rates

∑
k ηIk , with ηIk ’s calculated from

equation (14), respectively. Focusing first on the left-hand-
side subplots of each subfigure – that is, on the sum private
communication rates – it is clearly observed that that the
proposed SecLM approach to BF yields significant gains in
terms of private rate, under all SNR and load conditions,
but with the advantages increasing at higher SNRs and

at harsher loading conditions, both of which are desired
features, since CF-mMIMO systems are supposed to offer
high rates to large numbers of users. For example, in the case
of overloaded systems at low SNRs, the proposed Algorithm
4 achieves after 10 iterations, a secrecy sum rate gain of about
0.10 (bits/s/Hz), over the SotA Algorithm 1 accelerated via
the proposed FP-based Algorithm 3 and via the SotA FP-
based Algorithm 2.
To put this gain into perspective, in a channel with a

bandwidth of 20 (MHz), thesewould translate to an advantage
of 2 (Mbit/s) of secrecy sum rates. In turn, for the high
SNR cases, it is found by the latter gain expands further
to 0.25 (bits/s/Hz), which correspond to a secrecy sum rate
advantage of 5 (Mbit/s) in a channel with 20 (MHz) of
bandwidth.

Since the results shown in Fig. 5 are in terms of average
rates, in order to obtain further insight on the advantage
offered by the proposed methods, we next look at the
statistics of the secrecy rate gains of SecLM-BF over SRM-
BF, compared to the corresponding losses in terms of
leakage-oblivious communication sum rates. To this end,
we define the following SecLM-BF-to-SRM-BF rate ratios

ρLoss ≜

∑
k∈K

Communication sum rate computed via eq. (14),
with Vk ’s obtained from proposed Algorithm 4︷︸︸︷

ηIk∑
k∈K ηIk︸︷︷︸

Communication sum rate computed via eq. (14),
with Vk ’s obtained from SotA Algs. 1 + 2

, (72a)

and

ρGain ≜

∑K
k=1

Secrecy sum rate computed via eq. (8),
with Vk ’s obtained from proposed Algorithm 4︷︸︸︷

ηk∑K
k=1 ηk︸︷︷︸

Secrecy sum rate computed via eq. (8),
with Vk ’s obtained from SotA Algs. 1 + 2

. (72b)

The cumulative distribution functions (CDFs) of ρLoss

and ρGain are plotted respectively in red and blue in Fig. 6, for
various loading conditions and considering BF-ing vectors
obtained with less (i = 2) and more (i = 10) iterations.
For the sake of visibility, the areas in between both curves,

to the left and to the right of the point where ρLoss = ρGain = 1,
are also highlighted in red/blue, respectively. These areas
correspond to the loss in leakage-oblivious communication
sum rate and the gain in secrecy rate, respectively, such that
the relative size of one area compared to the other gives
an indication of how often the proposed SecLM-based BF
scheme leads to a gain in secret rate, versus how often the
strategy leads to a loss in leakage-oblivious communication
sum rate.

It is seen that the gains generally outweigh the losses,
with the advantage of the proposed method being more
pronounced at harsher loading conditions and at fewer
iterations, which again indicates that the proposed BF
schemes are suitable to CF-mMIMO systems with more users
and requiring low-complexity implementation.
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FIGURE 5. Beamforming convergence under various SNR (low and high) and load (under-, fully and overloaded) conditions.

Finally, a succinct comparison of both the relative
complexity and performance of the proposed and SotA
algorithms is offered in Table. 2. Here, we can highlight

the facts that: 1) the proposed method for SecBF via
SecLM, given by Algorithm 4, offers the highest secrecy
rate among the compared alternatives, at a computational
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FIGURE 6. Statistics of the relative losses in leakage-oblivious communications rates versus the corresponding gains in secrecy
(leakage-minimized) rates, as measured by ρLoss and ρGain , defined in equations (72a) and (72b), respectively.
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TABLE 1. Simulation parameters.

TABLE 2. Comparison of cost-performance trade-offs.

complexity similar to that of the SRM-oriented SotA method
of Algorithm 1; while 2) the proposed SRM methods offer a
choice between two strategies, namely, Algorithm 3, which
is a low-complexity alternative to the SotA method of
Algorithm 2 that outperforms the latter in (higher) achieved
sum-rate and (lower) complexity; and 3) the combination of
Algorithms 1 and 3, which outperforms the combination of
the SotA Algorithms 1 and 2 in (lower) complexity, without
sacrificing sum-rate.

VII. CONCLUSION
We contributed two new TX/RX BF schemes to improve
the security/privacy of DL communications in CF-mMIMO
systems, while harmonizing the contradicting requirements
of high-rates, flexibility and scalability. The first contribution
is an accelerated and power-optimized FP-based SRM-BF,
summarized in Algorithm 3, which offers lower complexity
and better performance than the best SotA alternative
known [23], summarized in Algorithm 2. In turn, the
second contribution is an SDP-based SecBF, summarized in
Algorithm 4, which can be used to optimize the previous
FP-based SRM-BF in order to minimize the information
leakage to other users of the system, and therefore provide
high aggregate secrecy/private rates. The performance and
complexity of the proposed algorithms are extensively
compared to related SotA schemes, which demonstrate

the superiority of the contributed methods, as concisely
summarized in Table. 2.
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