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ABSTRACT The focus of this research is to develop a robust model for accurately estimating link-level
annual average daily traffic (AADT) of all the local functionally classified roads. The capabilities of
one-dimensional convolutional neural network (1D-CNN), a deep learning architecture, and the domain
knowledge pertaining to local road travel characteristics were combined to estimate local road AADT. The
AADT based on traffic counts collected at 12,769 traffic count stations on local roads in North Carolina
during 2014, 2015, and 2016 were considered for model training, validation, and testing. A total of eight
existing state-of-the-art statistical, geospatial, and selected other machine learning models were compared
with the 1D-CNNmodel to estimate local road AADT. These include ordinary least square (OLS) regression,
geographically weighted regression (GWR), ordinary kriging, natural neighbor (NN) interpolation, inverse
distance weighting (IDW), backpropagation artificial neural network (BP-ANN), random forest (RF), and
support vector machine (SVM). The model development and test results showed that the 1D-CNN model
performed better than the other considered models. The architecture of the 1D-CNN model can learn the
intricate patterns in the local road AADT. The outputs from the methodological framework proposed in this
research help practitioners perform safety evaluation, planning and implementing infrastructure improve-
ments, fund allocation and prioritization, air quality estimates, and meeting Highway Safety Improvement
Program (HSIP) reporting requirements.

INDEX TERMS Annual average daily traffic, AADT, convolutional neural networks, deep learning, local
road, low-volume road, machine learning.

I. INTRODUCTION
The local functionally classified roads (local roads) constitute
most of the total road network mileage in a state. The feder-
ally funded state-administered Highway Safety Improvement
Program (HSIP) mandates state agencies to report annual
average daily traffic (AADT) on all paved public roads. Most
state departments of transportation (DOTs) cannot routinely
count traffic for all public roads in the state, especially the
local roads. In the case of North Carolina, count-based local
road AADT is available for 12,769 traffic count stations,
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while count-based local road AADT estimates are needed
for over 740,000 noncovered local road links. As state DOTs
have to report local road AADT for all the public roads,
they are looking into cost-effective methods for getting a
better estimate of the local road AADT. Proposing a method
that can accurately estimate AADT for all local roads helps
practitioners in performing safety evaluation, planning and
implementing infrastructure improvements, fund allocation
and prioritization, and air quality estimates, in addition to
meeting HSIP reporting requirements.

In general, most of the past studies and transportation agen-
cies use the term ‘estimating AADT’ rather than ‘predicting
AADT’. Therefore, the term ‘‘estimation’’ was preferred over
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‘‘prediction’’ and used in this paper. Researchers in the past
have explored statistical models [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], time series methods [11], [12], [13], geospa-
tial methods [14], [15], [16], [17], [18], [19], [20], [21],
artificial neural network (ANN) and other machine learning
approaches [22], [23], [24], [25], [26], [27], [28], [29], [30],
and image processing [31], [32], [33] to estimate AADT at
a road link-level. A few researchers explored probe vehicle
data to estimate AADT [34], [35]. Most of these studies
considered higher functionally classified roads in the AADT
estimation process due to the availability of traffic counts.
Only a few researchers estimated AADT on local roads using
statistical methods [8], [10], [20], [21], geospatial methods
like geographically weighted regression (GWR) and Kriging
[14], [16], [20], [21], and ANN and machine learning [26],
[29], [36], [37].

Many factors influence the travel characteristics of a local
road. Per the American Association of State Highways and
Transportation Officials (AASHTO) guidelines, local roads
provide direct access to adjacent land. They often provide
access to higher functionally classified roads (collector roads
and above) [38]. Therefore, variables influencing local travel
characteristics need to be incorporated in the AADT estima-
tion process. A detailed illustration of the selection of those
variables, also used in this research, are discussed in Mathew
and Pulugurtha [21] and Pulugurtha and Mathew [39].

Recent advances in deep learning include powerful and
robust tools like convolutional neural network (CNN) to train
the deep architecture. CNN models have widespread appli-
cations in the field of image recognition and classification,
image segmentation, and video processing [40], [41], [42].
Since an image has dimensional properties in the form of
width and height, it can be interpreted as a matrix of pixel
values with rows and columns. The tabular data processed for
this research had the format of rows and columns, drawing
a parallel to an image dataset. Therefore, the focus of this
research is to apply the unique ability of a one-dimensional
CNN (1D-CNN) model to understand the interdependencies
between the features to accurately estimate local road AADT.

Although there are several methods of local road AADT
estimation, a comprehensive comparison of statistical meth-
ods (ordinary least squares - OLS regression), geospatial
methods (GWR, Kriging, natural neighbor - NN interpola-
tion, and inverse distance weighting - IDW), artificial neural
network and machine learning approaches (ANN, random
forest - RF, and support vector machine - SVM), and deep
learning algorithms like 1D-CNN was not performed in the
past. Therefore, the intent of this research was also to com-
pare outputs from 1D-CNN with other methods to estimate
local road AADT using count-based local road AADT for
12,769 traffic count stations.

An assessment of the models’ predictability and errors will
help identify the best method/model to estimate AADT at
noncovered (locations with no-count-basedAADT estimates)
local road links in North Carolina. Overall, this research aims
to fill the methodological gap and add to the current body of

knowledge by proposing a novel deep learning method and
comparing it with statistical, geospatial, neural network, and
selected other machine learning methods for estimating local
road AADT.

II. LITERATURE REVIEW
In simple terms, AADT is the mean traffic volume across all
days of a year for a given location along a roadway. Using
the ‘simple average method’, AADT can be estimated using
Equation (1) [43].

AADT =
1
n

∑n

k=1
Volk (1)

where Volk is the daily traffic on kth day of the year, and n is
the number of days in a year.

Past research on AADT estimation can be broadly clas-
sified into three categories: traffic count-based, non-traffic
count-based, and travel demand model-based. Traffic counts
are typically estimated using methods relying on data from
continuous and short-duration traffic counters [44]. Agencies
generally adopt stratified sampling procedures to estimate
AADT at noncovered local road locations. The stratification
is generally based on one ormore attributes like the functional
class type (say, urban or rural local road) [44]. Agencies col-
lect traffic volume data at selected locations in each stratum
and consider that as a representative of all the roads within
the stratum [46], [47], [48], [49].

In non-traffic count-based methods, surrogate data like
road characteristics, demographic characteristics, land use
characteristics, temporal characteristics, etc. are used to esti-
mate AADT [4], [8], [16], [20], [21]. In the case of travel
demand model-based AADT estimation, trip generation, trip
distribution, and traffic assignment are sequentially used to
estimate AADT [50], [51], [52].

Blume et al. [46] proposed a methodology using census
data and random sampling to estimate local road AADT.
Their methodology includes dividing and categorizing the
study area into regions based on population density, job den-
sity, and road density. Further, a minimum number of required
samples (traffic counts) were proposed using the High-
way Performance Monitoring System (HPMS) Field Manual
requirement. Finally, the mean/median AADT was assigned
to local roads within a region. Similarly, Frawley [53] pro-
posed a random count-site selection process for local road
vehicle miles traveled (VMT) estimation. It should be noted
that VMT is the product of AADT and the corresponding
local road length.

A few studies explored the application of ANN to
estimate local road AADT from 48-hour sample counts
[36], [37]. According to their findings, the ANN method out-
performed the traditional factor-based method. Lowry [54]
proposed spatial interpolation of traffic counts based on
origin-destination centrality to estimate AADT.

Tsapakis et al. [44] improved the stratification process and
estimated AADT accurately at local roads. Per their findings,
having more strata and very homogeneous strata is preferable
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TABLE 1. Past studies on local road AADT estimation.

than having fewer strata and more samples within each
stratum.

The non-traffic count-based AADT estimation methods
use different non-traffic data like population, employment,
other socioeconomic characteristics, land use, etc. to estimate
local road AADT. Table 1 summarizes the past studies on
local road AADT estimation using the non-traffic count-
based method.

Many researchers considered socioeconomic and demo-
graphic data along with road characteristics to estimate local
road AADT. Population, population density, and the number
of households are the demographic variables generally used
to estimate AADT. A few researchers considered variables
like land use [8], [20], [21] and access to a higher functionally
classified road [10], [20], [21], [29]. The road density, which

indicates the development density near the local road area,
was considered in Pulugurtha and Mathew [20] and Mathew
and Pulugurtha [21].
Zhong and Hanson [50] used travel demand models to

estimate traffic on local roads in New Brunswick, Canada.
Findings from their research indicated an average predic-
tion error of less than 40% for the proposed method.
Wang et al. [51] used a parcel-level trip generation model to
estimate local road AADT and illustrated better predictability
than statistical models.

Other state-of-the-art methods like Temporal Graph
Convolutional Network (T-GCN) and Convolutional Long
Short-Term Memory (Conv-LSTM) architecture were not
explored in this research as temporal variations in AADT of
local roads are limited and not widely captured or available.
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In recent years, advanced image processing and machine
learning approaches have been adopted by a few researchers
to predict traffic flow and AADT [31], [32], [33]. The pre-
dictability of SVM over ANN in estimating AADT was
illustrated in Khan et al. [27]. Das and Tsapakis [29] showed
the predictability of SVM and RF models over conventional
statistical models.

The statistical or machine learning methods like RF and
SVM are prone to overfitting or underfitting based on the
data. Deep learningmethods like CNNwere formed out of the
necessity of modeling a growing number of data samples and
being robust enough not to be susceptible to such biased pre-
dictions. The CNNmodels can handle a large dataset amount-
ing to millions of records in contrast to the other models with
overfitting or underfitting issues. CNN models are proven
to be superior in many transportation engineering applica-
tions [56]. 1D-CNN is a newly developed variant of conven-
tional CNN. Kiranyaz et al. [56] illustrated the predictability
of 1D-CNN over traditional and conventional approaches.

The capability of CNN-based deep learning algorithm to
estimate local road AADT was not explored in the past.
Therefore, a local road AADT estimation method featuring
1D-CNN using count-based AADT obtained from the local
road traffic count stations in North Carolina was explored in
this research.

The contribution of this research is three-fold: 1) develop
a novel 1D-CNN model for capturing data intricacies in a
tabular dataset and estimating local road AADT by utilizing
the advantages of CNN in image-based classification and
enhancement; 2) a comprehensive comparison of statistical
methods (OLS regression), geospatial methods (GWR, Krig-
ing, NN interpolation, and IDW), selected other machine
learning approaches (ANN, RF, and SVM), and the proposed
1D-CNNmodel to estimate local road AADT; and, 3) an error
analysis to identify the locations with high prediction error for
proactive planning.

The state-of-the-art statistical, geospatial, and selected
other machine learning models are relatively simple com-
pared to 1D-CNN and these models may not generalize well
on a large dataset or data containing complex relationships
between its features. Thus, this paper aims to contribute to
the literature and minimizes the limitations of prior local road
AADT estimation models by developing a novel 1D-CNN
model.

III. METHOD
The methodological framework adopted involves the follow-
ing steps.

• Data collection
• Data processing
• Descriptive analysis of local road data
• Develop local road AADT estimation models

◦ 1D-CNN model for local road AADT estimation
◦ Statistical, geospatial and selected other machine

learning models for local road AADT estimation
• Model test and comparison

A. DATA COLLECTION
The local road count-based AADT data, road data, and
socioeconomic and demographic data were obtained from
the North Carolina Department of Transportation (NCDOT).
In general, traffic volumes are collected at ∼50% of the
local road traffic count stations in odd years and at ∼50%
of the local road traffic count stations in even years.
In other words, if local road AADT estimate is not avail-
able for the most current year at a traffic count station,
it is available for the prior year. The growth factor esti-
mates indicate that the count-based local road AADT does
not seem to change significantly from year to year (average
growth factor for the state is ∼1.01 for the year 2016).
Therefore, the average AADT at available local road traf-
fic count stations collected in 2014 and 2016 in addition
to AADT at local road traffic count stations collected in
2015 were used for the model training and validation. This
helped increase the sample size for model training and
validation.

B. DATA PROCESSING
The data was processed to extract the variables such as speed
limit, road density, functional class type, population density,
distance to the nearest nonlocal road, and AADT at the near-
est nonlocal road.

The speed limit of the selected local road linkwas extracted
from the road data shapefile obtained from the NCDOT.
This data comes from traffic ordinances governing the speed
limit.

The local road traffic count station is a point datum. The
road density, defined as the length of all roads per unit area,
was extracted by creating a 1-mile buffer around the traffic
count station. This variable accounts for the development
density, connectivity, and travel demand activity near the
selected local road link.

The local road links are classified based on the functional
class type, as urban local road links and rural local road
links. Some of the local road links are located within the
urbanized areas. Such links are identified by considering
NCDOT guidelines (minimum population of a small urban
boundary is 5,000). Other links are considered as rural local
road links.

The statewide traffic analysis zone (TAZ)-level data was
used to estimate population density near the subject local road
link [20], [21].

A new network dataset using the road characteristics
shapefile obtained from NCDOT was generated and used
to estimate the distance to the nearest nonlocal road
(Dis-nonlocal) and AADT at the nearest nonlocal road
(AADT nonlocal). The origin-destination cost matrix anal-
ysis is performed to compute the distance between each
local road and the nearest nonlocal road (collector roads and
above). The count-based AADT at the nearest nonlocal road
was estimated from the count-based AADT data for all the
functionally classified roads.

127232 VOLUME 11, 2023



S. Mathew et al.: 1D-CNN Model for Local Road AADT Estimation

C. DESCRIPTIVE ANALYSIS OF LOCAL ROAD DATA
A descriptive analysis was separately carried out to under-
stand the influence of selected explanatory variables on
the available count-based local road AADT. The minimum,
5th percentile, 25th percentile, median, mean, 75th percentile,
95th percentile, maximum, standard deviation, and variance
of selected variables were computed and examined.

D. DEVELOP LOCAL ROAD AADT ESTIMATION MODELS
The 1D-CNN model was developed to estimate local road
AADT and compared with the statistical, geospatial, and
selected other machine learning methods. It should be noted
that SVM and RF are the two widely adopted machine learn-
ing approaches to estimate AADT. The model was trained
using the data for 7,926 local road traffic count stations and
validated using the data for 2,966 local road traffic count
stations.

The data used in this research has a fixed structure in the
form of six input variables (explanatory variables) and one
target variable (dependent variable). It is also assumed that
the individual instances in the data are independent of one
another. Thus, the data is interpreted as having a structure
of m rows and n columns like an (m × n) image where m
and n are the width and height of the image, respectively.
In the case of graph neural network (GNN), as each node is
related to others by links of various types, the aforementioned
assumption does not hold. Therefore, GNN is not considered
in this research. A general outline of the 1D-CNNarchitecture
and brief overview of other selected modeling approaches are
presented in the following subsections.

1) 1D-CNN
CNN comes under the domain of deep learning, a subset of
artificial intelligence. As the name suggests, these networks
are constructed to be deep and learn granular level infor-
mation from the data. A convolution is a linear operation
that involves the multiplication of a set of weights for the
input variables, like in a traditional neural network. Given
that the technique was designed for two-dimensional input,
multiplication is performed between an array of input data
and a two-dimensional array of weights, called a filter or a
kernel. Using a filter smaller than the input is intentional as
it allows the same filter (set of weights) to be multiplied with
the input array multiple times at different points. Specifically,
the filter is applied systematically to each overlapping part
or filter-sized patch of the input data. The structure of the
CNN model in the context of local road AADT estimation is
shown in Fig. 1. CNN-based models are primarily made up of
four basic layers: convolutional layer, pooling layer, rectified
linear unit (ReLU) layer, and fully connected layer.

The convolutional layer is the core component of a CNN
architecture. It consists of a set of learnable filters or ker-
nels that have a small reception field but extend through
the entire depth of the input. Each filter is convolved across
the width and height of its input volume during the forward

FIGURE 1. Overview of the proposed CNN model for local road AADT
estimation.

pass, and the resulting dot product is computed, producing
a two-dimensional activation map of the filter. Through this
process, the network learnable filters activate when a specific
feature is detected at a particular location in the input.

After the activation maps are generated from the convolu-
tional layer, pooling is the next step in the architecture. It is
a form of nonlinear downsampling. While there are different
nonlinear methods to implement the same, max pooling is the
most common method. It partitions the filter into rectangular
subregions and generates the maximum output from each
region. The idea behind this is that the exact location of the
feature is less important compared to its rough location rela-
tive to other features. This kind of downsampling also helps
to reduce the spatial representation in the network, thereby
reducing the computation time, memory and simultaneously
tackling the problem of overfitting.

ReLU is the layer which applies the non-saturating acti-
vation function, f(x) = max(0,x). ReLU is preferred as it
is proven to train the neural network faster. After several
convolution operations in the layers, the final classification is
done using a fully connected layer. The neurons in this layer
have connections with the activation functions of the previous
layer.

In this research, a 1D-CNNmodel is developed to estimate
local roadAADT. The processed dataset is in the form of rows
and columns with the input variables (columns) such as the
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FIGURE 2. 1D-CNN architecture for local road AADT estimation.

speed limit, functional class type, road density, distance to
the nearest nonlocal road (Dis-nonlocal), AADT at the near-
est nonlocal road (AADT-nonlocal), and population density
(Fig. 1). With a kernel size = 1, this forms the filter, which
is used to take each individual row in the data as input i.e.,
this filter slides in only one direction from top to bottom,
thus covering the training dataset in each iteration. 1D-CNN
takes input data in the form of three dimensions: samples,
time steps, and features.

About 85% (10,892) of the local road traffic count stations
were randomly selected for modeling. Python programming
language was used to train the 1D-CNN model. There are
six features (explanatory variables) and are sliding the kernel
over each row, making the time steps = 1. On the other hand,
the samples are the total number of rows in the training data,
which in this case is 10,892 (∼85% of the data). Thus, the
input is in the form of [10892, 1, 6].

The model’s hyperparameters are initialized at random.
During the process of model training, the optimum set of
hyperparameters are generated when the model is providing
the most accurate results (the lowest error – mean squared
error (MSE) value). The convolution operation is performed
on the input and the filter. As the filter slides over the rows
of data in the training dataset, a matrix multiplication is
performed at each step, and the result is summed up to build
a feature map. This process is applied for all the convolution
layers in the network resulting in multiple feature maps. The
final output is obtained by putting together all the feature
maps. The 1D-CNN architecture for the local road AADT
estimation is illustrated in Fig. 2.

The AADT-net architecture consists of 7 convolutional
layers with 512 neurons in the first layer and goes down
to 64 neurons in the final convolutional layer and uses the
ReLU activation function in all the layers. The max pooling
layer is not used as it is redundant since the filter size here
is (1,1). The convolutional layers are followed by two fully

connected dense layers, which assemble the output shape to
one prediction, which is the local road AADT. The selection
of the proper loss function is critical for training an accurate
1D-CNN model.

The MSE loss function was used to compute the deviation
between the count-based AADT and the estimated AADT
from the model. MSE is the sum of the squared difference
between the count-based AADT (CAADT) and the estimated
AADT (EAADT), as shown in Equation (2). It indicates the
training process and the direction in which the network learns
and estimates local road AADT.

Mean Squared Error (MSE)

=
1
N

∑N

j=0
(CAADT − EAADT )2 (2)

2) OLS REGRESSION
OLS regression computes the best fitting line for the observed
data by minimizing the sum of the squares of the residuals.
The dependent variable is the count-based AADT. Pearson
correlation coefficients were computed to perform correla-
tion analysis for selecting potential explanatory variables and
developing the OLS regression model. The methodological
framework adopted to develop a valid OLS regression model
for local road AADT estimation is illustrated in Pulugurtha
and Mathew [20] and Mathew and Pulugurtha [21].

3) GWR
GWR allows the dependent and independent variables to
vary locally. In other words, GWR develops a separate OLS
regression model for each local road traffic count station.
It incorporates count-based AADT and explanatory variables
of locations falling within the bandwidth of a target traffic
count station. More details on the GWR model framework
and calibration for local road AADT estimation are pre-
sented in Pulugurtha and Mathew [20] and Mathew and
Pulugurtha [21].
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4) KRIGING
The Kriging method uses a weighted sum of the count-based
AADT at local road traffic count stations to estimateAADT at
noncovered local road locations. It assumes that the distance
between local road traffic count stations reflects the spatial
autocorrelation, explaining the variation in local road AADT.
More detailed discussion on the selection of a best-fitted
Kriging model for estimating local road AADT are found
in Eom et al. [57], Selby and Kockelman [16], and Mathew
and Pulugurtha [21]. This research followed the methodology
illustrated in Unnikrishnan et al. [52] to identify the best
Kriging model for the local road AADT estimation.

5) NN INTERPOLATION
The NN interpolation method uses the Thiessen polygon
developed over each local road traffic count station to esti-
mate AADT at a noncovered location. The boundaries of
polygons are defined such that the edges are equidistant from
the local road traffic count station in the adjacent polygons.
A new Thiessen polygon is generated at each noncovered
location, and the proportion of overlap between the new
polygon and the initial polygon is used as the weights.
A more detailed discussion on NN interpolation along with
mathematical formulation for estimating local road AADT is
presented in Mathew and Pulugurtha [21].

6) IDW
To predict AADT at a noncovered location, IDW uses
count-based AADT from the surrounding local road traffic
count stations. IDW allows higher weights to the closer local
road traffic count stations than the farther ones. Mathew
and Pulugurtha [21] estimated local road AADT using the
IDW method. More discussion on IDW implementation for
estimating local road AADT is presented in Mathew and
Pulugurtha [21].

7) ANN
Amultilayered, feed-forward, backpropagation artificial neu-
ral network model (BP-ANN) was used in this research
for estimating local road AADT. The multilayer percep-
tron consists of the input, hidden, and output layers. The
developed algorithm fine-tunes the model by learning the
error rate obtained from the previous epoch (backward
propagation of errors). The difference between 1D-CNN
and the BP-ANN is the involvement of convolution opera-
tions in the 1D-CNN. Convolutional layers take advantage
of the local spatial coherence of the input meaning that
spatially close inputs are corelated. Using this property,
CNNs are able to reduce the number of parameters in
comparison to a fully-connected multilayered perceptron by
sharing weights making them extremely efficient in process-
ing. The BP-ANN model was a shallow network compared
to the 1D-CNN and the number of epochs were reduced
consequently to reduce the training time and avoiding
overfitting.

8) RF
RF is a supervised machine learning algorithm that uses
decision trees to estimate the output and produces the average
output value. The data is segregated into many random sam-
ples to construct decision trees separately. Each decision tree
runs parallel to others for estimating the local road AADT at
the noncovered locations. The tree-based approach accounts
for the stochastic variation through random sampling, which
also eliminates the problem of over-fitting.

9) SVM
A few researchers considered SVM models to estimate
AADT [23], [27], [28], [29]. SVM is a supervised learning
model for classification and regression analysis. The straight
line that is required to fit the data is referred to as the
hyperplane. The objective of SVM is to find a hyperplane
in Z-dimensional space (Z is the number of features) that
distinctly classifies and estimates the local road AADT.

E. MODEL TEST AND COMPARISON
Count-based AADT data for selected local functionally clas-
sified public road links (∼15%) was set aside for testing.
The 1D-CNN model was trained using data for 7,926 local
road traffic count stations and validated using data for 2,966
local road traffic count stations (data set aside for tuning
the model’s hyperparameters) for 100 epochs. The model
was then tested using data for 1,877 local road traffic count
stations. The predictive performance was assessed using the
mean absolute percentage error (MAPE), mean percentage
error (MPE), and root mean square error (RMSE). They are
mathematically represented as shown in equations (3), (4),
and (5).

MAPE =
1
N

∑N

j=1

∣∣∣∣CAADT j − EAADT j
CAADT j

∣∣∣∣ (3)

MPE =
1
N

∑N

j=1

(
CAADT j − EAADT j

CAADT j

)
(4)

RMSE =

√∑N
j=1 (CAADT j − EAADT j)2

N
(5)

where N is the number of local road traffic count stations kept
aside for testing, CAADT is count-basedAADT, and EAADT
is estimated AADT.

MPE was used to understand if each developed model
generally underestimates or overestimates. MAPE was also
used as there could be a mix of positive and negative errors.
However, RMSE was favored as MPE and MAPE failed with
a mix of positive and negative errors and may result in biased
outcomes if range of errors is large. The use of RMSE is
also in alignment with the past studies on local road AADT
estimation.

IV. RESULTS
The results from descriptive analysis and modeling are dis-
cussed in this section.
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TABLE 2. Descriptive analysis.

TABLE 3. Correlation matrix.

A. DESCRIPTIVE ANALYSIS
The descriptive statistics of all the selected variables are sum-
marized in Table 2. The median count-based AADT is 495,
and the standard deviation is 884. The higher variations in
count-based AADT are mainly attributed to the local road
travel characteristics. The functional class type of most of the
local road traffic count stations is rural, and they account for
about 76% of the total local road traffic count stations. Most
rural local roads have a speed limit of 50 mph or 55 mph.
However, urban local roads generally have a speed limit less
than or equal to 35mph. The correlation between count-based
AADT and selected explanatory variables is summarized in
Table 3.
The results indicate that road density, functional class type,

and AADT at the nearest nonlocal road have a positive cor-
relation with count-based local road AADT. In general, local
roads are designated for land access, and most travel is based
on land access to the nearest nonlocal road. Hence, nonlocal
roads with higher AADT have a higher level of interaction
with local roads. Contrarily, there is a negative correlation
between local road AADT and speed limit. Most rural local
roads have a speed limit of 50 mph or 55 mph from the road
database. However, urban local roads with a lower speed limit
have a higher AADT. The negative correlation between local
road AADT and speed limit can be attributed to this factor.

B. MODEL DEVELOPMENT
The cross-validation approach was used to find the best
Kriging model. The ordinary kriging model with exponen-
tial semivariogram performed better in the cross-validation
process. Fig. 3 shows the MSE loss over the training epochs
for the training and validation datasets in the 1D-CNN
model development process. The model converged, and both

FIGURE 3. MSE loss over the training epochs.

training and validation performance remained equivalent for
100 epochs.

The learning rate = 0.001, batch size is none, dataset is
small enough to fit in the central processing unit (CPU), and
training time is ∼8 minutes for 100 epochs for the 1D-CNN
model, compared to the learning rate = 0.001, batch size
is none, and training time is ∼2 minutes for 50 epochs for
BP-ANN model.

C. MODEL TEST
Count-based AADT data for selected local functionally clas-
sified public road links (∼15% of the sample) were set aside
for testing. Sample predictions for ten randomly selected
traffic count stations are summarized in Table 4. In general,
test results indicated that GWR performed better at majority
of local road traffic count stations with count-based AADT
less than 400, while 1D-CNN performed better at majority
of local road traffic count stations with count-based AADT
more than 400 (as illustrated in Table 5).
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TABLE 4. Estimated AADT at selected test traffic count stations.

FIGURE 4. Estimated AADT vs. count-based AADT.

1D-CNN model was tested using MAPE, MPE, and
RMSE. Table 5 summarizes the validation results of the
1D-CNN and all the other selected models.

From Table 5, 1D-CNN and RFmodels performed better in
terms of RMSE. However, GWR and ordinary krigingmodels
also better estimate local road AADT when assessed using
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TABLE 5. Model test results.

FIGURE 5. Relationship between prediction error and explanatory variables.

all the measures. As MAPE and MPE divide each error indi-
vidually by the observed count-based AADT, high prediction
errors at locations with low AADT significantly impacted
the MAPE and MPE of 1D-CNN. Geospatial methods like
GWR and Kriging can accommodate the spatial variability in
data. The travel characteristics on a local road are generally
location-specific. Hence, methods addressing the nonstation-
ary relationship between the AADT and other explanatory
variables may yield better results. In this research, 1D-CNN
architecture is developed without considering any spatial
weights.

The higher prediction error is mainly attributed to the high
variations in traffic volumes on local roads. The count-based
AADT values range from less than 100 to 5000. Similar
observations were also reported in past research efforts. Das
and Tsapakis [29] used the SVR model to estimate local road

AADT. Their research reported ameanRMSE of 420 for rural
local roads and 1,066 for urban local roads. This research
reported (marginally) lower RMSE. Consultations with the
NCDOT staff also indicated an expected error of ∼100% in
local road AADT estimation.

The relative improvement in local road AADT estimates
from the 1D-CNN model in comparison to all the other
selected models in terms of % RMSE are: OLS regression
(7.40%), GWR (2.40%), ordinary kriging (3.23%), NN inter-
polation (3.70%), 1DW (1.50%), ANN (7.30%), RF (0%),
and SVR (5.10%). The MPE is negative (EAADT >

CAADT) for all the models.
Fig. 4 shows the relationship between count-based and

estimated AADT at test traffic count stations. A linear fitted
model was developed. A better relationship between esti-
mated and count-based AADT is observed in the case of
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RF and 1D-CNN. However, the MAPE and MPE values in
Table 4 show that estimates from 1D-CNN are better than
from RF.

Apart from comparing the performance of 1D-CNNmodel
with other selected models, a reverse engineering approach
was applied to uncover the 1D-CNN black box. The rela-
tionship between selected explanatory variables and pre-
diction error was assessed using the scatter plots (Fig. 5).
The prediction error was observed to increase with an
increase in the count-based local road AADT. Similarly,
the prediction error was observed to increase with an
increase in road density and population density. Further,
a Pearson correlation coefficient analysis was carried out
to analyze the relationship between the prediction error and
selected explanatory variables for all the selected model-
ing techniques. The correlation between the prediction error
and count-based local road AADT, speed limit, functional
class type, road density, Dis-nonlocal, AADT-nonlocal, and
population density was examined. The Pearson correlation
analysis results indicated a similar trend for all the selected
models.

The prediction error has a highly positive correlation with
the count-based AADT. Similarly, there is a positive corre-
lation between the prediction error and the functional class
type. It indicates that the prediction error is higher on urban
local roads than rural local roads. The road density has
a positive correlation with the prediction error. Likewise,
the links with lower speed limits have a higher prediction
error. Overall, the prediction error analysis indicates that
there are unknown parameters (other factors or variables like
land use, socioeconomic characteristics, etc.) that influence
the local road AADT at many traffic count stations with
higher count-based AADT. Hence, there is a need to collect
more samples from areas with higher local road AADT to
improve the model predictability. The 1D-CNN model used
in this research has a fixed parameter size, however it can be
changed depending on the availability of additional data.

The findings from the past studies indicated improved
prediction with GWR over statistical and other geospatial
methods like Kriging, IDW, and NN interpolation [21]. In this
research, GWR performed quite well (MPE is -45.2, MAPE
is 84.1, and RMSE is 729) and offered the added benefit of
accommodating the spatial variations in data in the modeling
process. GWR also provides insights into the relative effect
of different explanatory variables on local road AADT.

V. CONCLUSION
Reliable estimation of AADT is central to road improvement
and funding prioritization, safety performance assessment,
and developing calibrated travel demand forecasting models.

Due to resource limitations, state DOTs and other
regional/local transportation agencies need cost-effective
methods for accurately estimating local road AADT.

Variables such as speed limit, road density, functional class
type, population density, distance to the nearest nonlocal
road, and AADT at the nearest nonlocal road were extracted

and considered as the potential explanatory variables. This
gives the data a fixed structure in the form of input variables
and a target variable as well as the individual instances in
the data being independent of one another. Consequently, this
data structure is interpreted as an image of the format width x
height.

Deep learning algorithms like CNNs have been proven
to perform exceedingly well on structured data (images
for example) and thus are applicable for AADT estima-
tion discussed in this research. The results of the proposed
1D-CNN model were compared with eight existing state-
of-the-art statistical, geospatial, and selected other machine
learning models. The proposed 1D-CNN architecture was
fine-tuned using the MSE loss function. The performance of
the selected models was evaluated using MAPE, MPE, and
RMSE. The comparison results indicated that the 1D-CNN
approach improves the local roadAADT estimation accuracy.
Although 1D-CNN and RF have the same RMSE, 1D-CNN
performed significantly better than RF in terms of MPE and
MAPE. Also, the prediction error for 1D-CNN is found to be
less than 50% for more than half of the traffic count stations
used for testing.

The effect of the explanatory variables on the predic-
tion errors was also quantified for the 1D-CNN model.
The findings indicated that collecting count-based local road
AADT data from urban local roads, locations with high road
density, locations with high population density, and loca-
tions with low-speed limits can improve the predictability of
models.

There are nearly 418,000 urban local road links (typically
between two adjacent intersections; small lengths) in North
Carolina. However, local road traffic count stations are avail-
able for only ∼0.72% of the urban local road links in North
Carolina. On the other hand, there are nearly 328,000 rural
local road links and traffic counts are available for ∼3% of
the links. Collecting more data at urban local roads will help
improve the model accuracy.

Statistical and machine learning methods did not show
any significant improvement in their accuracy once they are
trained on a certain amount of data. Hence, there lacks a
scope for improvement in the accuracy with such methods.
On the contrary, deep learning models can account for a large
number of training samples and thus have higher scope for
improvement in accuracy scores over the existing ones. As the
purpose of this research was to accurately estimate local
road AADT rather than looking into the effects of potential
explanatory variables and their effect on local road AADT,
the implementation of 1D-CNN was deemed appropriate.
The explanatory variables considered in this research are
significant variables among a set of road and socioeconomic
and demographic variables identified through the Pearson
correlation analysis and the OLS regression as part of a
research project [21]. The model test and prediction error
analysis indicated that 1D-CNN is equally good in learning
the intricate pattern in the local road AADT and adequately
estimating AADT at noncovered local road links.
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To the best of the authors’ knowledge, this research is the
first attempt to use the 1D-CNN model to estimate local road
AADT. Although this method is computationally intensive,
the training speed could get faster with better processers.
Past studies indicated that incorporating spatial weights may
improve the predictability of the local road AADT estima-
tion model. Developing a geographically weighted 1D-CNN
algorithm may improve predictability, which merits further
investigation.

1D-CNN model implementation was performed for exper-
imental reasons to examine, even with less data and infor-
mation to solve transportation problems like estimating local
road AADT, if a deep learning model works well in com-
parison to statistical and machine learning methods. The
results indicate that a dataset with similar data distributions,
larger in size compared to the one used in this experiment,
should significantly improve accuracy. Similarly, incorporat-
ing statewide land use data may also help improve the model
accuracy.
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