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ABSTRACT The traditional approach for analyzing the quality of arecanuts is based on their external
appearance. However, using machine learning and deep learning techniques, automated classifications were
performed. But the true quality can only be analyzed when the internal structure of the arecanut is examined.
Therefore, we use the X-ray imaging technique to determine the internal quality of arecanuts. We prepared
a novel dataset of arecanut X-ray images and used a YOLOv5 based deep learning architecture for
classification. The present study employs an adaptive genetic algorithm based approach for hyperparameter
optimization to enhance the mean average precision (mAP) using a light weight model generated using a
ghost network and a feature pyramid network (FPN). We have achieved the highest mAP of 97.84% using
our method with a lower model size of 15 MB. Our method has excelled in detecting the arecanut compared
to cutting-edge object detection algorithms such as YOLOv3, YOLOv4, Detetron, YOLOv6, YOLOv8, and
YOLOX. We also acknowledged the performance enhancement using the adaptive genetic algorithm on the
Pascal VOC 2007 image dataset. Despite of significant computational requirements for executing genetic
algorithms, we proved that genetic algorithms can boost mAP. Additionally, the methodology developed in
this investigation produced multiple models with the best mAP featuring optimized hyperparameters. This
methodical strategy is helpful for the design of an automatic, non-destructive, integrated X-ray image based
classification system. This system has the potential to revolutionize the quality assessment of arecanuts by
offering a more efficient evaluation method.

INDEX TERMS Agriculture, arecanut, deep learning, hyperparameter optimization, nondestructive, X-ray,
classification.

I. INTRODUCTION
Arecanut, also known as betel nut or areca catechu, has
healing properties that have made it a staple in traditional
medicine for centuries. Minerals and vitamins found in
abundance in the arecanut include the essential minerals
magnesium, potassium, and iron. Arecanut has been used
to cure a wide variety of medical conditions, including
toothaches, headaches, and stomach problems. The nut’s
anti-inflammatory and antioxidant properties have also been
shown, suggesting it may serve as a remedy for a variety

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

of diseases. High-quality arecanuts are valued for their
flavour, aroma, and texture when used as an ingredient or
stimulant in food and beverages. A higher market price means
more financial gain for producers, suppliers, and merchants.
Additionally, the quality of the arecanut impacts the amount
of vitamins and minerals it contains. The health benefits
and cultural significance of eating arecanuts depend on their
quality.

So far, various researchers have proposed deep learning,
machine learning, or computer vision methods for grading
or classifying arecanuts based on their external appear-
ance [1], [2], [3], [4], [5], [6], [7], [8], [9]. These methods
cannot guarantee the true quality of arecanut unless an
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FIGURE 1. Representation of an X-ray image depicting the internal parts
of a Grade1 arecanut.

internal examination is performed. The true quality check is
determined when an arecanut kernel is broken and internal
examination is performed. But the broken arecanut cannot
be shelved for longer duration. So, an alternate method is
required to analyse the quality of an arecanut using non-
destructive approach. Computed tomography (CT), magnetic
resonance imaging (MRI), X-ray imaging, infrared ther-
mography, RGB imaging, hyper-spectral imaging, visible
and near infrared spectroscopy, Raman spectroscopy, and
infrared spectroscopy are some examples of nondestructive
approaches that have been recommended for analyzing the
quality features of different crops [10], [11], [12], [13].
It has been shown that quite a few of the methods described
above are capable of accurately forecasting product quality
by analyzing surface characteristics such as shape, size, and
flaws. However, the MRI and X-ray imaging techniques are
the only ones that can be used to verify the internal properties
of an arecanut. However, because of the physical restrictions
and the high cost associated with MRI machines, X-ray
based approaches seem to have the greatest promise. This is
especially the case because of the higher acquisition speed
that X-ray techniques provide.

Various studies on X-ray images of crops and seeds
for quality examination and classification were performed.
Casasent et al. used a neural network to classify pista using
the piece-wise quadratic neural network (PQNN) method.
With an internal examination, the method was able to classify
pistachios into three groups [14]. Irwin Ronaldo Donis-
Gonzalez et al. used CT images of chestnuts to examine
the internal rot. They classified chestnuts into 5 classes,
with class 1 being best and class 5 being completely rotted
nuts. The classification was carried out using a quadratic
discriminant analysis (QDA) classifier [15]. Irwin Ronaldo
Donis-Gonzalez et al. developed an automated, noninvasive,
inline CT sorting system to determine asparagus quality [16].
Vani used X-ray images of mangoes to train a multi-layer

perceptron neural network and discriminant function analysis
to create a prediction model for determining the fruit’s
internal quality [17]. Ahmed et al. classified watermelon
seeds using linear discriminant analysis (LDA) and machine
learning [18]. Medeiros et al. used a machine learning clas-
sifier with linear discriminant analysis (LDA) to sort X-ray
images of jatropha seeds into different groups [19]. Van De
Looverbosch et al. suggested using a support vector machine
(SVM) in conjunction with a feature extraction technique
to effectively identify interior defects in ‘Conference’ and
‘Cepuna’ using CT images of pear fruit [20]. With the aid
of X-ray images and the application of machine learning,
Thomas and Thomas proposed a model for the classification
of male and female cocoons [21].
We adopt a non-destructive approach to assess the quality

of arecanuts using X-ray imaging. The figure 1 shows the
X-ray image of an arecanut together with its components.
During the radiography procedure, X-rays pass through the
denser part of the arecanut and only a few X-rays reach the
X-ray detector. This leads to whiter regions on the X-ray
image of the arecanut. Similarly, if the arecanuts have cracks,
hollowness, or are porous, the detector will absorb more
X-rays, resulting in the development of black patches. Thus,
X-ray imaging is a valuable imaging technique employed
for assessing the quality of an arecanut. The sample X-ray
images of the various arecanut grades with and without
husk are represented in the figure 2. The figure 2a and
figure 2d represents a Grade1 arecanut. The X-ray images
of the Grade1 arecanut appear to have no breakage or
may have a hollow at the center due to an air gap. In the
case of Grade2 arecanut, due to the presence of gaps and
cracks at eccentric region of arecanut, the X-ray image of
Grade2 arecanut appears as shown in sample figure 2b and
figure 2e. However, Grade3 is the lowest quality among
arecanut grades, having porosity at the eccentric region of
the arecanut. The X-ray image of a Grade3 arecanut is
depicted in figure 2c and figure 2f, the presence of black
patches indicates porosity and represents a poor quality
arecanut.

In order to perform automatic detection of arecanut,
YOLOv5 based deep learning architecture is used [22]. Sev-
eral researchers have proposed hybrid models of YOLOv5
for their applications in agriculture [23], [24], [25], [26],
[27], [28], [29], [30]. However, only few researchers have
attempted to explore on hyperparameter based performance
enhancement in YOLOv5 architecture. Isa et al. investi-
gated the performance enhancement through hyperparameter
optimization through manual selection for the detection
of sea fishes [31]. The authors focused their efforts on
fine-tuning hyperparameters such as the learning rate and
the momentum. Adjusting the learning rate anywhere from
0.1 to 0.000001 and the momentum anywhere from 0.9 to
0.9999. Nevertheless, the manual tuning methodology fails
to comprehensively investigate the influence of hyperpa-
rameters on the accuracy. Zhipeng Wang et al. explored
on genetic algorithm based hyperparameter optimization for
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FIGURE 2. The images from a to c represent the X-ray images of sun-dried arecanut kernels. The images labelled d to f depict X-ray scans of sun-dried
arecanuts that are enveloped by husks, confirming their effectiveness.

the detection of apple calyx [32]. Mantau et al. optimized
the hyperparameters for the detection of human objects
using a genetic algorithm [33]. However, both of the
authors experimented with a mutation probability of 80%
and a variance of 0.04 without investigating the crossover
functionality of the genetic algorithm.

The primary objective of our research is to enhance
quality control standards and the automatic detection of
quality of the arecanuts using a non-destructive method.
Among the available techniques, X-ray imaging emerged
as the most suitable instrument for this purpose. Our
first contribution involves the creation of a unique
dataset of X-ray images of arecanuts for the purpose of
quality inspection. Our second contribution involves the
development of an efficient, lightweight deep learning
architecture that incorporates the ghost network and the
feature pyramid network. A lightweight model is developed
in order to run on a CPU/GPU intensive evolutionary
algorithm. Finally, we explore by analyzing mutation-based
genetic algorithms versus adaptive genetic algorithms
for optimizing hyperparameters using the lightweight
model, evaluating their respective effects on detection
performance.

This research article is organised into four main sections:
introduction, materials and methods, results, conclusion
and future work. The introduction provides background
information and states the problem and objectives of the
study. The materials and methods section describes how
the study was conducted. The results section discusses the
findings of the study. The conclusion and future work

summarize the main findings and implications of the study,
followed by future directions for further research.

II. MATERIAL AND METHODS
A. EXPERIMENTAL SETUP
1) ARECANUT SAMPLE COLLECTION
Arecanut samples are collected from a farm at Machchattu,
Kundapur, Udupi, Karnataka, India (13◦ 39’ 56.088’’ N,
74◦ 58’ 47.82’’ E) in the month of February 2023 to create
a novel X-ray based image dataset. The final form of the
arecanut X-ray image dataset is created after following three
steps in sequence: (1) arecanut X-ray image acquisition;
(2) annotation of the acquired image; and (3) dataset creation.

2) X-RAY IMAGE DATA COLLECTION

TABLE 1. X-ray projection imaging scanning details (at New Medical
Centre, Kundapura, Udupi, Karnataka, India)).

Table 1 shows the setup at which X-ray images of arecanut
samples are taken. These numbers decide how much energy
is used to get the image. Positioning the arecanuts on the
X-ray detector plate is the first step in producing an image.
The machine operator starts the image process once all
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necessary preparations are completed. The machine’s X-ray
generator sends out a wave of X-rays, which pass through
the arecanut and land on the imaging table. While the lighter
area will allow X-rays to pass through the arecanut and
reach the detector plate, the denser arecanut will not allow
them to do so. The X-ray detector plate is then read by
a computed radiography (CR) reader, where the image is
processed, displayed, and saved in JPG format. Prior to X-ray
imaging of arecanuts, we loaded the detector plate with the
highest number of arecanuts possible in an effort to keep
the cost of the radiography to minimum. It is important to
consider that X-ray images taken at different angles of an
arecanut will not exhibit changes in quality of the arecanut.
Figure 2 illustrates that the core characteristics of arecanuts
can vary between Grade1 to Grade3. This means that Grade1
arecanuts consistently exhibit Grade1 traits in their X-ray
images, and the same principle holds for Grade2 and Grade3
arecanuts. In essence, the grading process is based on X-ray
images remains reliable and independent of the specific angle
from which the images are captured. This ensures that each
grade is accurately distinguished based on its inherent quality
features.

3) DATASET GENERATION
The X-ray images of arecanuts are split apart and saved
separately through a split process. Software like LabelImg
is used to label each image of an arecanut adhering to the
YOLOv5 format [34]. LabelImg is a user-friendly software
application that facilitates the creation of text files with
annotations for individual images. Subsequently, these files
are employed for the purpose of training deep learningmodels
in order to identify arecanuts. The dataset is divided into
two distinct subsets: the training set and the validation set.
The training dataset comprises 80% of the images, while the
remaining 20% are allocated for validation purposes. We did
not use image augmentation in this work. This novel dataset
is created using a total of 900 images, with 300 images
representing each grade.

B. GENERATING FEATURE RICH LIGHTWEIGHT
DETECTION MODEL
In order to achieve automated identification of quality
arecanuts, we explore the implementation of YOLOv5, a deep
learning framework [22]. YOLOv5 is an object detection
algorithm that stands for ‘‘You Only Look Once Version 5’’.
Since 2020, its object detecting precision and quickness
have made it popular. YOLOv5 uses a grid of cells to
predict bounding boxes and class probabilities for each
cell to find objects in an image. But, YOLOv5 contains
significant upgrades that make it more precise and efficient.
YOLOv5 has backbone, neck, and head networks. YOLOv5’s
backbone network employs a modified Darknet-53 design,
which is responsible for feature extraction from the input
image [35]. The neck network connects the head and
backbone networks, which aggregates the features generated

FIGURE 3. Ghost module generating rich features with inexpensive
operations and concatenating with convolution.

from the backbone network. The head network estimates
image item class probabilities and bounding boxes. The
spatial pyramid pooling (SPP) is a feature fusion module that
allows YOLOv5 to recognize objects at variable sizes and
helps to improve the detection accuracy [36], [37].

1) EFFICIENT CONVOLUTION THROUGH GHOST NETWORK
Ghost network is a lightweight deep neural network designed
to achieve better accuracy with low computation and memory
requirements [38]. The ghost module can be seen as a regular
convolutional layer, but instead of creating one feature map
for each channel, it creates a smaller number of feature maps
through a cheap operation called ghost feature maps. The
ghost feature maps are subsequently employed in generating
the final output featuremaps bymeans of a blend of linear and
nonlinear transformations. This approach reduces the number
of parameters while still providing sufficient representational
capacity for the network. The ghost network architecture
consists of a stem module, several ghost modules, and a
classifier. The stem module extracts low-level features from
the input image and passes them to the ghost modules.
Each ghost module consists of several ghost bottlenecks,
which are composed of 1 × 1 and 3 × 3 convolutions
with ghost modules. The output of the ghost modules
is then passed to a classifier module, which consists of
global average pooling and a fully connected layer. The
generalized representation of ghost network is depicted in
figure 3.

The feature map generated through convolution can be
represented as:

Y = X ∗ f + b (1)

where * represents the operation of convolution and bias
is represented as b. Given input image X ∈ Rc×h×w,
where h is the height and w is the width with the channel
c. Series of optimal operations generating rich features
through inexpensive operations using depth wise and point
wise convolution. This generates output feature maps Y ∈
Rc′×h′×w of n channels with h’ and w’ representing the
height and width of the output data. The convolution filter
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FIGURE 4. Ghost network used for generating rich features with inexpensive operations. a) Ghost Convolution module. b)Ghost Bottleneck module. c)
C3Ghost module. Note: ’+’ indicates addition operation.

f ∈ Rc×k×k×nin convolution layers with k × k filter size
of f.

The process involves a ghost module computation, which
is expressed as

Y ′ = X ∗ f ′ (2)

Yghost = Qj(Yi), j ∈ [1, s− 1] (3)

where Y’ represents the features generated through traditional
convolution, Y ′i indicates the ith feature map and Qj is the
inexpensive operation generating s-1 ghost feature maps.
Thus, we get Y feature maps through concatenation operation,
represented as

Y = Yghost + Y ′ (4)

The detailed configuration of the Ghost network architecture
is depicted in figure 4. The Ghost convolution module
uses two filters of sizes 1 × 1 and 5 × 5 as depicted in
figure 4a. This is very useful for capturing features at different
scales. The 5 × 5 convolution captures broader contextual
information, while the 1 × 1 convolution focuses on fine
details. This combination enables the model to detect objects
of varying sizes effectively. Traditional convolutional neural
network (CNN) are treated to be hard to run on devices with
limited resources, like cell phones or embedded systems,
because they require a lot of processing power. The ghost
bottleneck module helps to cut down the number of factors
and calculations that the network needs to do. This makes
the network more efficient and scalable for various platforms.
The ghost bottleneck module depicted in figure 4b uses 1× 1
and 3× 3 convolutions. The 1×module depicted in figure 4b

uses 1× 1 and 3× 3 convolutions. The 1×model smaller, but
it still has all the important features. The 3 × 3 convolution
is used in the depth-wise(DW) convolution module. The
convolutions are typically applied to maintain the spatial
resolution of the feature maps when stride is 1, where no
down sampling occurs. They help to retain fine-grained
spatial information that might be critical for capturing small
or detailed features in the input data. For down sampling the
spatial dimensions of the feature maps stride is set to 2. This
reduces the size of the feature maps so that the receptive
field can be increased. The figure 4c uses 3 ghost convolution
modules and a ghost bottleneck module which will run for
specified figure 4c uses 3 ghost convolution modules and a
ghost bottleneck module which will run for specified

2) FEATURE PYRAMID NETWORK (FPN) FOR REDUCTION IN
NETWORK LAYERS
We have considered the FPN for feature aggregation, which
plays an essential part in enhancing the efficiency of object
identification [39]. The fundamental premise of FPN is that
they are multi-scale feature pyramids that are generated by
extracting feature maps of various spatial resolutions from
the backbone of a CNN, and then fusing those feature maps
together. This pyramid enables the network to recognize
items of varying sizes in an effective manner. This is because
smaller things are more accurately represented in feature
maps with a higher resolution, while objects of larger size
are more accurately represented in feature maps with a lower
resolution. We used FPN in YOLOv5 to extract features from
multiple layers of the network architecture. These extracted
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features are then concatenated together to form a final feature
map, which is then used for object detection. Because of
this, the network is able to recognize objects of varying sizes
and scales with more precision, which ultimately leads to
higher detection performance. Referring to figure 5, we use
a pyramid with five-scale feature maps (P3, P4, P5, P6, and
P7) at stage2. The levels of the pyramid are shown by the
subscripts. The backbone network layers from stage1 namely
C3, C4, and C5 are used to extract P3, P4, and P5. A top-down
convolution is also used to reduce the degradation due to the
increase in the depth of the convolutional layers. P6 and P7
are generated with a 3 × 3 convolution with two steps from
P5 and P6. This multilevel feature from P3 to P7 shares the
information for the detection layers at stage3 to enhance the
performance.

FIGURE 5. The feature pyramid network (FPN) represents the feature
aggregation that is generated in the backbone through convolution using
the Ghost network in stage1. Stage2 represents the top-down
aggregation of features and represents them for detection in
stage3.

The layered architecture of lightweight detection model is
represented in table 2 which incorporates the Ghost network
and the FPN. Module number indicates the number for each
module which is from 0 to 19. The modules from 0 to 9 are
used for feature extraction using Ghost network, representing
the backbone of the YOLOv5 architecture. The modules
from 10 to 18 are used for feature aggregation using FPN
neck structure as represented in figure 5. The FPN structure
uses only top-down approach for feature aggregation making
it light structure. Additionally, FPN structure uses Ghost
network for convolution process to make the computation
less complex with better aggregation of features to be
represented for detection or head module 19. Thus, the
detection of small, medium, and large-sized objects are
recognized at module 19. Referring to table 2, the output of

TABLE 2. The layered architecture used for creating light-weight model
structures using the ghost network and the feature pyramid network
(FPN).

one module is used as input for another module, we denote
it by specifying the module number. In this notation, ‘‘-
1’’ indicates that the module takes into account the input
from the module above it. The parameter ‘N’ represents
the number of times a specific module is repeated for use.
Finally, the name of the module is represented in the fifth
column. The Ghost module is represented by the module
names GhostConv and C3Ghost. Spatial pyramid pooling
faster (SPPF) is a variant of spatial pyramid pooling (SPP)
designed to reduce the computational expense of the pooling
operation. The conventional SPP method computes the
pooled feature vectors for each level of the pyramid using a set
of maximum pooling layers. However, maximum pooling can
be computationally expensive, particularly for large images
or maps with high-dimensional feature dimensions. SPPF
replaces the initial 5 × 5, 9 × 9, and 13 × 13 maximum
pooling layers with three 5 × 5 layers, thereby reducing the
number of required pooling operations while maintaining the
same level of precision. This modification makes the SPP
method more efficient for grading systems by increasing its
processing speed.

C. OPTIMIZING HYPERPARAMETERS OF OBJECT
DETECTION MODELS USING EVOLUTIONARY
ALGORITHMS
The genetic algorithm is a way to solve optimization
problems with or without constraints. It is based on natural
selection mechanism that drives the evolution of life. Genetic
algorithms improve population of potential solutions and
finds the best solution in a vast search space. Genetic
algorithms start with a population of random search solutions.
A common genetic algorithm uses selection, crossover,
and mutation on chromosomes. Selection implies choosing
fittest parents to have offspring. Fitness functions measure
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FIGURE 6. Flowchart of the genetic algorithm based approach used in the
YOLOv5 architecture.

a solution’s quality. Crossover creates a chromosome from
two fittest candidates. The offspring’s chromosome has
parents’ traits. Mutation alters chromosomal values like
biological mutation and thus diversity increases. Genetic
algorithms are global optimization methods that can find
near-optimal answers across the whole search space, unlike
grid search and random search, which are local optimization
methods. However, genetic algorithms are better than grid
search and random search for several reasons [40]. They
are great at dealing with large search space, where as grid
search becomes impractical and random search might not
be the best way due to it’s randomness. Their iterative
improvement process, balancing exploration and exploita-
tion, allows for the gradual refinement of solutions over
generations. We engage the problem of selecting a set of
hyperparameter values that results in the best performance
as an optimization problem and solve it using the genetic
algorithm.

YOLOv5 uses up to 30 hyperparameters and are static
during training. However, the process of exploring and
determining the optimal combination of hyperparameter
values can be challenging and costly due to the vast
search space and the unknown inter-dependencies among
hyperparameters. By using the genetic algorithm approach,
the optimal combination of augmentation hyperparameters
for YOLOv5 can be identified, that may enhance object
detection performance. Figure 6 illustrates the flowchart
of genetic algorithm-based hyperparameter optimization
technique using mutation only. In this context, during the

FIGURE 7. Flowchart of the adaptive genetic algorithm-based approach
used for hyperparameter optimization. The red dotted rectangle indicates
added operations.

evolution process, the top five fittest individuals are selected
for mutation with a probability of 0.8 and a variance of
0.04 (or a sigma of 0.2). The evolution process continues
until it meets the predetermined stopping criteria, which
is a specified number of generations. The final evolved
and optimized hyperparameters are considered to have
contributed to the enhancement of detection performance
(mAP).

1) HYPERPARAMETERS OPTIMIZATION USING ADAPTIVE
GENETIC ALGORITHM
Figure 7 illustrates the adaptive genetic algorithm-based
hyperparameter optimization technique using both mutation
and cross over functionality. The process starts with the
creation of a population of candidate solutions, where each
solution represents a set of augmentation hyperparameters.
The solutions are then evaluated using an objective function,
such as mAP, to determine their fitness by choosing 10%
of the weight for mAP@0.5 and the remaining 90% of
the weight for mAP@0.5:0.95. The fittest candidates are
then selected for reproduction, where new candidates are
created by combining parts of the fittest candidates. We have
considered an adaptive tournament selection algorithm for
the selection of the fittest candidate. We utilize mAP@0.5 as
a fitness indicator with the objective of maximizing its
value. In the context of conventional tournament selection,
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Algorithm 1 Adaptive Tournament Selection for Identifying Fittest Individual
1: procedure AdaptiveTournamentSelection(population, fitness_scores)
2: selected_indices← emptylist
3: Tmin← tournament_size_min
4: Tmax ← tournament_size_max
5: for i inrange(pop_size− elite_size) do
6: tournament_size← max(max(2,Tmin), ⌊min(Tmax, pop_size)− ( generation

( evolve10 )
⌋))

7: tournament_indices← random.sample(range(pop_size), tournament_size)
8: tournament_fitness← [fitness_scores[j]For j in tournament_indices]
9: winner_index ← tournament_indices[tournament_fitness.index(max(tournament_fitness))]
10: selected_indices.append(winner_index)
11: end for
12: elite_indices← get_elite_indices(fitness_scores, elite_size)
13: selected_indices.extend(elite_indices)
14: Return selected_indices
15: end procedure

a certain quantity of individuals are chosen at random from
the population, and the individual with the most superior
fitness value is designated as a parent for the purpose of
reproduction. Adaptive tournament selection, on the other
hand, adjusts the number of participants in the tournament
dynamically based on the characteristics of the population
by balancing exploration and exploitation. According to
algorithm 1, adaptive tournament selection procedure aims
to select individuals from a population for reproduction
based on their fitness scores. The procedure takes the
population as population and the corresponding fitness scores
as fitness_scores as input and returns the indices of the
selected individuals as selected_individual. In each iteration
of the procedure, a tournament is conducted to choose
individuals for reproduction. The tournament size is repre-
sented as tournament_size, which is adaptively determined
based on the current generation, gradually decreasing as
the generation progresses. The tournament_size is capped
by minimum and maximum values, ensuring a balance
between exploration and exploitation. For each tournament,
a subset of individuals, determined by the tournament_size,
is randomly selected from the population. Based on the
highest fitness_scores of the tournament participants, the
winner of the tournament is declared. The list of selected
indices represented as selected_indices is updated with the
index of the tournament winner, indicating this individual has
been chosen for reproduction. This process will be repeated
until the desired number of individuals (population_size
minus elite_size) has been selected. In addition to the
tournament winners, the procedure also considers elite
individuals. Elite individuals are those with the highest fitness
scores in the population. The top elite-size individuals based
on their fitness scores are automatically selected, and their
indices are added to the list of selected_indices. Finally, the
procedure returns the list of selected_indices, representing the
individuals chosen through adaptive tournament selection for
reproduction. It’s important to consider that the pseudo-code
assumes the existence of additional functions, such as

randomly_select_indices and get_elite_indices, to handle the
corresponding operations of randomly selecting indices and
retrieving the indices of the elite individuals, respectively.
These functions are crucial for the execution of the adaptive
tournament selection procedure. This technique provides
diversity in the population. Crossover and mutation are the
two primary processes that operate in genetics. In our work,
we considered a crossover rate of 0.5 to 1.0 and mutation
rates between 0.1 and 0.5 to produce new offspring based
on a mix of the strongest parents from all of the previous
generations. The evolution process is continued until the
stopping criteria are met. By using this approach, the optimal
combination of augmentation hyperparameters for YOLOv5
can be identified, leading to improved object detection
performance. Overall technical route of enhancing detection
performance using adaptive genetic algorithm on our dataset
is depicted in figure 8.

D. EVALUATION METRICS
The study utilizes objective assessment metrics to assess
the recognition model’s efficiency. These include precision,
recall, and mAP (mean average precision). Here are the
relevant mathematical formulas:

Precision =
TP

(TP+ FP)
(5)

Recall =
TP

(TP+ FN)
(6)

Positive samples with the proper classification are known
as true positives (TP), false positives (FP), and false
negatives (FN), whereas negative samples with the erroneous
classification are known as true negatives (TN).

AP =
∑
n

(Rn − Rn−1)Pn (7)
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FIGURE 8. Flowchart of the overall structure used to enhance detection
performance using an adaptive genetic algorithm on our dataset.

where Rn and Pn are the precision and recall at the nth

threshold.

mAP =
1
n

k=n∑
k=1

APk (8)

where, APk = the Average Precision for class k, n = the
number of classes. We consider mAP@[0.5:0.95] indicating
average mAP over different intersection over union thresh-
olds (IoU) ranging from 0.5 to 0.95 with step size of 0.05.
In addition, the layers, the floating point operations (FLOPs),
the parameters reflect the computational quantity during
training.

Overall, the experiment began by comparing the detection
results of various YOLOv5 models, and the model with
better accuracy is chosen. Since the evolutionary process
of genetic algorithms is GPU-intensive, we generated a
lightweight version of a feature rich model using the ghost
network and FPN. To ensure that the model achieved its full

FIGURE 9. The representation of loss chart of light weight model
generated during training for 150 epochs.

potential, an adaptive genetic algorithm is introduced. This
algorithm is used in optimizing augmentation related hyper-
parameters to fine-tune the model and achieve even higher
accuracy.

III. RESULTS
This study utilized the PyTorch library for all experiments
and employed two NVIDIA Tesla M40 GPUs with GM200
graphics processors. The configuration used for training in
sections III-A and III-B consists of a batch size of 100, train-
ing for 150 epochs, an image size of 416 × 416, employing
the Sigmoid Linear Unit (SiLU) activation function [41],
and utilizing the Stochastic Gradient Descent (SGD) [42]
optimizer. However for section III-C, epochs is reduced to
20 and we included evolution that runs for 1500 generations.

A. PERFORMANCE COMPARISON ON USING VARIOUS
YOLOV5 MODELS
YOLOv5 defines several models from complex to simple
based on the width and depth of multiple. Complex model
being YOLOv5l with more number of layers with larger
model size, whereas the simple model being YOLOv5n
has least number of layers with smallest model size [43].
We compared the detection performance on our dataset for
models from complex to simple and recorded the result in
table 3. The objective is to identify an optimal model for
detecting arecanuts. After conducting experiments, it is found
that the models YOLOv5m and YOLOv5l produced the
better results, with mAP of 96.14% and 96.02%, respectively.
However, by comparing the higher mAP of 96.14% and lower
model size of 42.3MB, the YOLOv5mmodel is selected over
YOLOv5l for further investigation.
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TABLE 3. Experimental results of YOLOv5 models trained from scratch on our dataset.

TABLE 4. Result of ablation experiment performed on implementing lightweight model using Ghost module and Feature Pyramid Network (FPN) to
generate lightweight for faster processing in genetic algorithm. M1-YOLOv5m, M2-YOLOv5m+Ghost network, M3-YOLOv5m+Ghost network+FPN.

FIGURE 10. The results obtained from conducting tests involving the application of the adaptive genetic algorithm and YOLOv5 based mutation
technique over a period of 1500 iterations on our dataset. AGA_Gh- Adaptive Genetic Algorithm using Ghost network and FPN, AGA_Y5m-
Adaptive Genetic Algorithm using YOLOv5m, Mu_Gh - Mutation based evolution using Ghost network and FPN, Mu_Y5m- Mutation based
evolution using YOLOv5m.

B. PERFORMANCE COMPARISON OF USING
LIGHTWEIGHT ARCHITECTURE
Incorporating a ghost network in backbone and implementing
FPN in the neck structure of the architecture leads to a
notable reduction in the model size. Ghost network is a
lightweight CNN architecture that is designed to reduce the
model size and improve the efficiency. This happens due
to the removal of redundant feature maps and keeping the
identity feature maps during feature extraction process. FPN,
on the other hand, is a feature aggregation technique, which
helps the network to detect objects at multiple scales with
halved layers as compared to the path aggregation network
(PANET) structure [44]. Thus, replacing PANET with FPN
will further reduce the model size. It is noticed that PANET
is the path aggregator which is used in YOLOv5 models.
After implementing ghost network [38]and FPN [39] on
YOLOv5m, the model size gets reduced from 42.3 MB
to 15 MB, with a promising mAP of 95.73%. This is

a significant improvement over the previous models, and
it demonstrates the effectiveness of these techniques for
reducing the model size. Table 4 shows the result of ablation
studies performed on the YOLOv5m model. Even though
using ghost network and FPN reduced the mAP by 0.42%,
but there is a significant reduction in the model size by
64.54 % in contrast to YOLOv5m model. This approach is
employed to establish a model that enhances a model with
rich feature maps and, more significantly, to achieve a smaller
size, hence facilitating faster execution of CPU-intensive
genetic algorithms, as utilized in the subsequent section. The
training and validation loss chart of using lightweight model
is represented in figure 9. While working with a smaller
sample size, it is noticed that the validation dataset may
not entirely represent the overall data distribution, leading
to increased fluctuations in the loss curve. However, these
fluctuations in the loss curve should not necessarily be a
cause for concern. As figure 9 illustrates, the overarching
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FIGURE 11. Re-representation of the figure 10 in order to enhance its visual clarity. Each data point corresponds to the maximum mean average
precision (mAP) achieved during a span of 100 consecutive generations, with a maximum limit of 1500 generations. AGA_Gh- Adaptive Genetic
Algorithm using Ghost network and FPN, AGA_Y5m- Adaptive Genetic Algorithm using YOLOv5m, Mu_Gh - Mutation based evolution using Ghost
network and FPN, Mu_Y5m- Mutation based evolution using YOLOv5m.

FIGURE 12. The experimental outcomes of the utilized models.
M1-YOLOv5m, M3- YOLOv5m+Ghost network+FPN, AGA_Gh- Adaptive
Genetic Algorithm using Ghostnetwork and FPN, AGA_Y5m- Adaptive
Genetic Algorithm using YOLOv5m, Mu_Gh - Mutation based evolution
using Ghostnetwork and FPN, Mu_Y5m- Mutation based evolution using
YOLOv5m.

trend of the validation loss curve is descending, indicating the
model’s capacity to learn and improve during training. These
fluctuations in the loss are not mirrored in the training loss,
which can be attributed to the larger number of images in the
training dataset.

C. PERFORMANCE COMPARISON USING ADAPTIVE
GENETIC ALGORITHM
The evolutionary process of a genetic algorithm is dependent
on four essential factors, which we provide as follows. First,
selection of trained model having architecture and state
dictionary. Second, the selection of hyperparameters that
need to be optimized. We consider thirteen augmentation

FIGURE 13. The result of losses occurred during training and validation
while using the adaptive genetic algorithm.

related parameters, and they all began with default values.
These default values may be found in the third column of
table 5. Third, the number of generations to evolve is set to
1500. Finally, the number of epochs for each generation is set
to 20.

The evolution process is applied to models M1 and M3
from the table 4. Figure 10 illustrates the performance
comparison between the YOLOv5-based genetic algorithm
with mutation-only and the adaptive genetic algorithm-based
approach. The figure 11 is re-representation of the figure 10
to enhance its visual clarity. The mutation-only operation,
as described by the YOLOv5 architecture, is executed,
yielding a mAP of 95.64% for model M1 and 96.24%
for model M2. This shows, reduction in mAP by 0.51%
in M1 model, but shows improvement in mAP by 0.53%
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FIGURE 14. The feature map visualization at the final layer of YOLOv5m is generated using an X-ray image of a Grade1 arecanut.

FIGURE 15. The feature map visualization at the final layer of the optimized model is generated using an X-ray image of a Grade1 arecanut.

for model M3. However, when our dataset is experimented
using adaptive genetic algorithm on M1 model, the mAP
increased from 96.14% to 97.78%, which is 1.70% increase
in mAP. In case of using adaptive genetic algorithm on M3
model, the mAP increased from 95.73% to 97.84%, which
is 2.20% increase in mAP. From the figure 11 following
observations are made. Firstly, the adaptive genetic algorithm
has impact on the mAP as compared to YOLOv5 defined
mutation operation. Secondly, the introduction of feature rich
model ‘M3’ has shown significant contribution in enhancing
the mAP. This is evident from both mutation operation and

adaptive genetic algorithm approach depicted as ‘AGA_Gh’
and ‘Mu_Gh’ in figure 11. Thirdly, even though the model
size of M3 is 15MB and M1 is 42.3MB, the top result is
achieved for feature rich model M3, this shows model size
may not contribute to the enhancement of mAP. Finally, the
mAP for ‘AGA_Gh’ and ‘AGA_Y5m’ are overlapping with
similar results, M3 model is preferred over M1 model due to
its lower model size. A comparative detection performance of
various models used is represented in figure 12.

After the evolution process is completed, a plot of fitness
(shown on the y-axis) vs hyperparameter values (shown
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FIGURE 16. Hyperparameter evolution that is completed with one subplot per hyperparameter indicating fitness (y-axis) vs. hyperparameter values
(x-axis) that are evolved through an Adaptive Genetic Algorithm for 1500 generations using lightweight model M3. The +’ sign indicates the highest
fitness value obtained for respective hyperparameter. Yellow indicates higher concentrations.

TABLE 5. The tuned hyperparameter values that are generated through a genetic algorithm using adaptive selection techniques for our dataset recognize
arecanuts. Models 1 to 10 represent a series of models that have evolved through various augmented hyperparameters using model M3. Model1 stands
out as the top-performing generated model, while the remaining nine models also showcase exceptional performance as some of the best generated
models.

on the x-axis) is created as shown in figure 16. The
color yellow represents a greater concentration. When a
parameter has a vertical distribution, it indicates that the
parameter is not allowed to evolve. The losses occurred
during evolution process using adaptive genetic algorithm
is presented in figure 13. Table 5 represents the top
10 models that have best performed using an adaptive
genetic algorithm based approach on model M3. However,
the genetic algorithm also derived 271 models with mAP of
97% and above. Referring to table 5, various models have
generated different hyperparameter values through Genetic
algorithms using adaptive tournament selection techniques.
Some of the hyperparameters like hue (hsv_h), saturation
(hsv_s), perspective has ideally settled to zero values after

evolving for several generations when observed from the top
10 results. Overall, the result demonstrates the significance
of hyperparameter tuning in optimizing the performance of
deep learning models. The improvements achieved through
hyperparameter tuning highlight the potential for further
advancements in this field and underscore the importance
of careful and thorough optimization to achieve the best
possible results. Comparing with the base model YOLOv5m,
we achieved a 1.77% increase in model performance using
hyperparameter optimization, and the model size is reduced
to 63.54%. Comparing to the optimized model (using Ghost
network and FPN), the evolved model has significantly
improved in mAP by 2.20%. It is important to consider that
the genetic algorithm is able to generate multiple optimal
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FIGURE 17. Detection results from using cutting-edge object detection algorithms on our dataset. The images from a to c represent the detection result of
using the YOLOv3 model. The images from d to f represent the detection result of using the YOLOv4 model. The images from g to i represent the detection
result of using the Detetron model. The images from j to l represent the detection result of using model YOLOv5m. The images from m to o represent the
detection result of using model YOLOv6. The images from p to r represent the detection result of using the model YOLOv8. The images from s to u
represent the detection result of using the model YOLOX. The images from v to x represent our method of detection.

models by exploring various hyperparameters with respect
to augmentation. Thus, using adaptive genetic algorithm,
the optimization of augmented hyperparameters to the
lightweight YOLOv5m model resulted in an improvement
in accuracy, with the highest mean average precision (mAP)
value of 97.84% when evolved at generation 1303. This
is a notable improvement over the previous models, and
it demonstrates the effectiveness of hyperparameter tuning
in improving the accuracy of the model. Thus, using an
adaptive genetic algorithm based approach for hyperparam-
eter optimization has contributed to the enhancement of
detection performance (mAP) for the following reasons.
First, YOLOv5 models use hyperparameters during training
time are static, hence performance enhancement depends
only on the neural network architecture. However, our
method is trained for hyperparameter optimization and they
are dynamically changed during the training phase. This
contributes to the further enhancement of model detection

performance. Second, our approach strikes a balance between
exploration (searching broadly across the search space) and
exploitation (focusing on promising configurations). This
balance helps to prevent getting stuck in local optima and
promotes the discovery of better hyperparameter settings.
Third, our approach adapts over time by selecting and
recombining the best-performing hyperparameters, leading
to a better convergence towards optimal or near-optimal
detection performance. This adaptability can be particularly
useful when the relationship between hyperparameters and
performance is complex and nonlinear. Table 6 represents
the detection performance of various state-of-the art object
detection algorithms. It can be observed that our genetically
evolved models AGA_Y5m and AGA_Gh using adaptive
approach has outperformed among all the state-of-the-art
models. However, the model AGA_Gh is the best evolved
model with mAP of 97.84%. Although, AGA_Y5m model
has near best mAP of 97.78%, it exhibits poor performance
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FIGURE 18. Comparative line chart of adaptive genetic algorithm versus mutation based genetic algorithm applied to Pascal VOC2007 image
dataset. Each point represents the top mAP for every 50 consecutive generations, up to 300.

TABLE 6. Comparison with other cutting edge object detection
algorithms. Values are in percentage. AGA_Gh-Adaptive Genetic
Algorithm using Ghost network and FPN, AGA_Y5m-Adaptive Genetic
Algorithm using YOLOv5m.

in mAP@0.5:0.95, achieving only 57.42%, as indicated in
table 6. This is due to the fact that, bounding box predictions
is lower with IoU thresholds (0.75, 0.8, etc.), resulting in
lower mAP@0.5:0.95 performance. This suggests that the
AGA_Gh model’ has improved localization accuracy and
robustness as compared to model AGA_Y5m, leading to the
selection of the AGA_Gh model as the superior performing
model. The feature map visualization result is represented in
figure 14 and result is represented in figure 14 and 15 that
are run on using adaptive genetic algorithm and YOLOv5m
models respectively, the

D. EVALUATION OF PERFORMANCE AMONG
CUTTING-EDGE MODELS
The figure 17 represents the detection result for various
experiments performed on the same X-ray image of arecanut
grade type. From figure 17 we observe the variations
in detection performance on various models used in this
experiment. The analysis of the detection performance is

conducted on several cutting edge models whose weights
are similar to the weights generated in our experiment
and results are represented in table 6. The results of the
detection performance are illustrated in Figure 17. However,
the detection performance for Grade1 arecanut has been
demonstrated to exceed 90% for all the models, except for
the Detetron model, which exhibited a detection accuracy
of 89%. There are only three models, namely YOLOv6,
YOLOX, and our model, that have achieved a detection
accuracy of above 90% for Grade2 arecanut. Among the
several models examined, it has been observed that YOLOX
and our model, has demonstrated a detection accuracy
over 90% specifically for Grade3 arecanut. However, the
performance of detection may exhibit variability between
different models and individual images.

E. PERFORMANCE COMPARISON ON PASCAL
VOC 2007 DATASET
We expanded our analysis of performance on the Pascal VOC
2007 image recognition dataset [45]. The dataset is initially
trained using the YOLOv5m model. Subsequently, our
evolutionary-based strategy is employed for 300 generations,
incorporating mutation and an adaptive genetic algorithm.
The detection performance on the dataset is illustrated in
figure 18 using two distinct techniques. The superiority of
the adaptive genetic algorithm-based strategy over mutation-
based evolutionary strategies and its consistent contribution
to the improvement of detection performance can be shown
from Figure 18. The mutation strategy yielded a maximum
mean average precision (mAP) of 61.13%, whereas the
adaptive genetic algorithm approach resulted in a higher
mAP of 63.17%. Several studies have performed deep
learning based classifications that use X-ray images, which
are represented in the table 7.
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TABLE 7. A comparison between the proposed method and the related work on internal examination. ML-Machine Learning, DL-Deep Learning,
CT-Computed Tomography, CNN-Convolutional Neural Network.

F. PRACTICAL IMPLICATIONS
The application of deep learning models trained on X-ray
images of arecanuts holds significant practical implications
for quality determination within the arecanut industry. These
models enable automated detection, resulting in improved
efficiency and enhanced accuracy. Additionally, they offer
real-time quality control, ensuring standardization and reduc-
ing costs. The aforementioned models employ X-ray image
analysis techniques to categorize arecanuts into different
quality classes, hence enhancing efficiency in processing
and eliminating defective nuts from the manufacturing line.
Deep learning models offer a consistent methodology for
evaluating the quality of arecanuts, ensuring the provision
of premium products to customers and sustaining market
competitiveness. The incorporation of deep learning models
into the X-ray equipment utilized for assessing the qual-
ity of arecanuts yields several advantages. The real-time
assessment of arecanut quality can be achieved by simply
embedding models on the devices, eliminating the need for
additional research tools. The gadgets use optimized and
integrated technology that enhances processing speed and
reduces dependence on external resources. Improvements
can be made to user interfaces in order to enhance user
ability to recognise unambiguous outcomes and visual aids
that facilitate decision making. Ultimately, the integration of
optimal deep learning models into X-ray equipment enhances
the efficiency and quality control procedures for arecanuts.
There is currently no equipment available in the arecanut
industry that uses a non-destructive approach to quality
assurance.

IV. CONCLUSION AND FUTURE WORK
In this study, a non-destructive approach is adopted for
the identification of real quality of arecanuts using X-ray
images. To automate the process of quality identification,
we have created a novel dataset of 900 X-ray images of
arecanuts. Initially, the dataset is trained using YOLOv5
models, the YOLOv5m model achieved the highest mAP
of 96.14% with a model size of 42.3 MB, outperforming
other YOLOv5 models. A light-weight version of model
YOLOv5m is generated using the ghost network and FPN
to get a feature rich model with a reduction in model size

of 15MB and a mAP of 95.73%. Furthermore, in order to
enhance the model detection accuracy (mAP), we considered
13 hyperparameters associated with augmentation available
in YOLOv5. Hyperparameter optimization is performed
using adaptive genetic algorithm and mutation based genetic
algorithm by evolving them for 1500 generations on models
M1 and M3. Mutation based optimization approach on M1
model has reduced the mAP to 95.65%. However, when
adaptive genetic algorithm is used, we got mAP as 97.78%.
However, when mutation based optimization is applied to the
M3model, the mAP increased to 96.24%. Furthermore, when
the adaptive genetic algorithm is used, we observed enhanced
mAP of 97.84% as illustrated in figure 12. The findings of
the research indicate that the mutation based optimization
approach has shown mixed results for the models M1 and
M3. While adaptive genetic based algorithm have shown
enhancement in the mAP for the models M1 and M3.
Comparing mutation based genetic algorithm and adaptive
genetic based algorithm, we have observed enhancement
in mAP, as illustrated in figure 11. Even though evolved
model M1 (AGA_Y5m) using adaptive genetic algorithm
has a near best mAP of 97.78%, we prefer to consider
evolved model M3 (AGA_Gh) due to its lower model size
of 15 MB, better mAP@0.5:0.95 of 74.54% and better
detection performance of 97.84% as illustrated in table 6.
This research has demonstrated that deploying a feature-rich
lightweight model in conjunction with the adaptive genetic
algorithm has yielded a substantial enhancement in detection
performance. The detection performance is evaluated for
other state of the art detection models such as YOLOv3,
YOLOv4, Detetron, YOLOv6, YOLOv8, and YOLOX-s
models. However, our model AGA_Gh has performed better
in detection, as illustrated in table 6. We also noticed that
using an adaptive genetic algorithm on the Pascal VOC
2007 image dataset has improved the detection result. In the
future, it is essential to investigate other methods that may be
used to carry out non-destructive quality assessments of the
arecanuts. It is necessary to investigate several evolutionary-
based algorithms, each of which has the potential to
provide superior outcomes while simultaneously reducing
the total number of generations required for the process of
training.
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DATA AND MATERIALS AVAILABILITY
X-ray sample images are provided and a complete set of
X-ray images is available upon reasonable request at the
following GitHub repository:
https://github.com/PraveenMNaik/Xray-Arecanut-Dataset
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