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ABSTRACT Recently, some research has utilized machine learning methods to identify critical nodes
in complex networks. However, existing approaches often lack a comprehensive consideration of network
structural features during node feature extraction. Benefiting from the powerful feature extraction capability
of network representation learning methods, a simple and effective algorithm for identifying key nodes in
complex networks, termed Network Representation Learning and Key Node Identification (NRL_KNI),
is proposed. The NRL_KNI algorithm utilizes network embedding techniques for learning node feature
representations, followed by clustering and the utilization of quota-based limited sampling to obtain sampled
nodes. Subsequently, these sampled nodes are employed to train a regression model for predicting the
diffusion capability of unsampled nodes. To rank node influences, a Local Structure Influence Score (LSIS)
based on the local structure is introduced to evaluate nodes’ final impact. Experimental results on eight
real-world datasets demonstrate that the NRL_KNI algorithm generally outperforms traditional centrality
methods and network representation learning-based methods in terms of the Jaccard similarity coefficient
and Kendall’s Tau correlation coefficient evaluation metrics.

INDEX TERMS Complex networks, key node identification, network representation learning, regression
model.

I. INTRODUCTION

With the rapid growth of social media platforms, and the
widespread dissemination of information [1] has spawned
many applications based on social networks. For example,
the influence maximization problem aims to identify the
most influential key nodes in the social network [2], so that
under a specific propagation model (such as the Susceptible-
Infectious-Recovered model), the key nodes can influence as
many other nodes as possible. Critical node identification in
complex networks is also crucial in other scenarios, such as
viral marketing, personalized recommendation, information
dissemination, etc. Therefore, how to effectively identify key
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nodes in a complex network has become a research hotspot
in different fields.

Traditional methods for identifying key nodes typically
rely on node centrality indices for selection. For instance,
degree centrality [3] primarily assesses a node’s significance
based on the count of its first-order neighbors; between-
ness centrality [4] quantifies importance by measuring how
frequently a node serves as an intermediary in the shortest
paths; PageRank centrality [5] gauges a node’s significance
by considering both its connections to other nodes and
their individual importance scores; K-shell coefficient [6],
on the other hand, is a network-centric method for glob-
ally classifying the importance of nodes based on structural
characteristics; Berahmand et al. [7] introduced a novel
semi-local and parameter-free centrality measure for identi-
fying the most influential key nodes. While these methods are
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straightforward and extensively employed, their drawback
lies in their partial utilization of the intricate structural traits
of the network.

In the pursuit of more effectively identifying the most
influential key nodes, machine learning-based algorithms for
key node identification are emerging as promising tools.
These approaches can be categorized as either supervised
or unsupervised methods. The supervised method generally
involves transforming the challenge of identifying key nodes
into a regression or classification problem. It leverages the
SIR epidemic model to simulate the actual spreading capa-
bility of each node, effectively using it as a node label. For
instance, Asgharian Rezaei et al. [8] initially constructed
an eigenvector for each node, with its dimension equal to
the total number of nodes in the network. They employed
0.5 % of the network’s nodes to train a regression model.
However, a drawback of this method arises when the network
scale increases, as the dimension of the eigenvector becomes
excessively large, resulting in considerable time and space
consumption during runtime. Similarly, Yu et al. [9] extracted
feature representations from the nodes in the network and
utilized Convolutional Neural Networks (CNNs) to train a
regression model. Subsequently, the trained regression model
was employed to predict the influence of nodes. Conversely,
Zhao et al. [10] utilized the entire network to train a classifica-
tion model, subsequently applying the trained classification
model to predict the importance categories of nodes in a
separate test network.

The crux of the supervised method lies in obtaining
propagation ability labels for nodes, a process whose cost
escalates significantly with the expansion of the network
scale. Hence, unsupervised learning methods have gained
popularity among researchers in the task of key node iden-
tification. Unsupervised learning approaches first employ
network representation learning, also known as network
embedding, to extract feature vectors of nodes. Subsequently,
in conjunction with other methods, which identify key nodes
within the network. For instance, the DeepIM method [11]
utilizes network representation learning to tackle the key
node identification challenge. In this method, the CARE
algorithm [12] is first employed to acquire representation
vectors for each node. These vectors are then used to compute
the similarity between pairs of nodes, constructing a matrix
of correlations among nodes. The selection of key nodes is
based on the magnitude of node counts within the correla-
tion matrix. Similarly, some studies [13] have also employed
node embeddings as a foundation, coupled with clustering
algorithms to partition network nodes into multiple clusters.
Subsequently, within these node clusters, employ additional
methodologies to select key nodes.

The above methods do not well combine the feature
extraction ability of network representation learning and the
generalization ability of machine learning models, result-
ing in poor adaptability and generalization performance of
the above methods. Simultaneously, some algorithms con-
structed node feature dimensions that were excessively large,
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leading to significant time and space consumption during
runtime. Therefore, this paper proposes a simple and effec-
tive key node identification algorithm NRL_KNI based on
the network embedding method. The network embedding
algorithm can greatly reduce the representation dimension of
nodes and preserve the node structure information as much
as possible. In addition, to account for the structural diversity
of training samples, a quota-based approach is employed for
sampling the partitioned node clusters, and the regression
model is trained by sampling 5% of the nodes in the network
as the training set, which can not only save model training
time but also help to enhance the model’s generalization
capacity.

Overall, the main contributions of this paper are as follows:

« A simple and effective key node identification algorithm
NRL_KNI is proposed, which combines network
embedding and regression models, which can make
more effective use of node structure information and
improve the prediction effect of the model. In this paper,
only 5% of the nodes in the network are used to train
the model, which improves the training efficiency and
generalization of the model.

« In assessing the ultimate influence of nodes, this paper
introduces a localized structure-based influence score
(LSIS). LSIS integrates the propagation capability of
first-order neighboring nodes with the respective node’s
local features, providing an effective evaluation of node
influence.

o The proposed NRL_KNI method was evaluated for its
performance on eight real datasets. Comparative anal-
ysis with the results from nine benchmark methods
indicated that, in the majority of cases, the NRL_KNI
method consistently outperformed in terms of the
Jaccard similarity coefficient metric. Simultaneously,
under the Kendall’s Tau correlation coefficient met-
ric, the NRL_KNI algorithm demonstrated performance
improvements of up to 10% compared to the second-best
performing benchmark method. Additionally, param-
eter sensitivity analysis experiments indicated that
NRL_KNI exhibits strong robustness.

Il. RELATED WORKS

In this section, we primarily focus on the relevant tech-
niques associated with the NRL_KNI model, namely the
SIR propagation model for obtaining node labels and the
network embedding methods for learning node representation
features.

A. SIR PROPAGATION MODEL

In the context of influence maximization, the identification
of key nodes in complex networks aims to select a certain
number of nodes that maximize the spread range under a
specific propagation model. In graph G, the expected number
of nodes that node v can influence under a specific propaga-
tion model is defined as its propagation capability (influence
spread range).
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In this study, the SIR epidemic model is employed to assess
the propagation capability of nodes [8]- [10], [14], and [15].
The propagation process of this model can be succinctly
described as follows: Initially, if node v is in an infected (acti-
vated) state (I), while the rest of the nodes remain susceptible
(inactive) (S), nodes in an infected state (I) activate their sus-
ceptible (S) neighbors with a probability 8, simultaneously,
nodes in an infected state (I) transition to a recovered state
(R) with a probability «, the propagation process terminates
when no new nodes are activated (infected).

B. NETWORK REPRESENTATION LEARNING METHODS
Network representation learning, also referred to as network
embedding, aims to learn a low-dimensional vector represen-
tation, denoted as v; € R!Y*?, for each node in the graph
G (V,E), where d «| V | represents the dimensionality of
the embedding vector.

In recent years, the application of deep learning for learn-
ing feature representations of network nodes has gained
significant attention. The DeepWalk algorithm [16] was the
first to introduce the Skip-gram natural language model
and random walk strategy for learning node feature repre-
sentations. It utilized a Depth-First Search (DFS) strategy
to generate random walk sequences and employed these
sequences as contextual information input into the skip-gram
model to learn node representations. Building upon Deep-
Walk, Node2Vec [17] utilized a biased random walk approach
to sample neighborhoods of nodes. This method incorpo-
rated two hyperparameters to control the sampling strategy
using both Depth-First Search (DFS) and Breadth-First
Search (BFS) to generate walk sequences. Subsequently, the
Skip-gram natural language model [18] was employed to
learn node embeddings.

However, this node’s first-order neighborhood-based ran-
dom walk strategy fails to capture richer contextual infor-
mation. To capture higher-order contextual information,
researchers integrated community information and role infor-
mation into network representation learning.

The CARE algorithm [12] integrates community informa-
tion into network representation learning. It accomplishes this
by employing a community detection algorithm to partition
network nodes into multiple communities. Then, by set-
ting a hyperparameter, it samples either the community
members of the current node or its immediate neighbors.
The obtained walk sequences are subsequently fed into a
Skip-gram model to obtain node representations. Similarly,
algorithms such as MNMF [19], GEMSEC [20], CNRL [21],
NRL_RWCE [22], CRARE [23], among others, also incor-
porate community information into network representation
learning. On the other hand, the role2Vec algorithm [24]
incorporates role information into single-layer network rep-
resentation learning. Similarly, Zhang et al. proposed the
RMNE algorithm [25] which integrates role information into
multi-layer network representation learning.
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TABLE 1. The symbols used in this article and their meanings.

Notations Meaning

G Undirected graph

|4 Set of nodes

E Set of edges

n n=|V|

d Embedding vector dimension

k Number of clusters

T Sampling ratio of nodes in the network
N Network’s node count

d (u) Degree of node u

7(v) The set of first-order neighboring nodes of node v
(k) Network’s average degree

<k2> Network’s second-order average degree
B Network’s theoretical diffusion threshold
B The infection threshold

In this paper, the NRL_KNI model employs the SEGK
algorithm [26] for learning node representations. In the
following sections, we will elucidate the intricate details asso-
ciated with learning node representations using the SEGK
algorithm.

lll. METHODOGY

According to convention, in this paper, an undirected network
is defined as G(V, E), where V represents the set of nodes,
E C V x V represents the set of edges, and (v;,v;) € E
indicates the presence of an edge between node v; and node
Vj.
The NRL_KNI model proposed in this paper is illustrated
in Fig 1. It can be divided into three main components.
The uppermost section in Fig 1 represents the first part of
the model, which is primarily responsible for acquiring fea-
ture representations of nodes along with their corresponding
propagation capability labels to form the training dataset.
The middle section represents the second part, involving
the model training using the training dataset and making
predictions for non-sample nodes. The lowermost section
corresponds to the third part, focusing on assessing the final
influence of nodes based on their local structural features
and combining them with their propagation capabilities. Ulti-
mately, an influence ranking list for nodes is generated. The
following sections will provide a detailed explanation of the
theoretical concepts involved in each of these components.

A. NETWORK EMBEDDING AS FEATURE LEARNING IN
NRL_KNI

The structural features of nodes in networks are widely
utilized for identifying key nodes in complex networks. Con-
sequently, recognizing structurally equivalent nodes holds
paramount significance for downstream network analysis
tasks. In this paper, we employ a network embedding
algorithm called SEGK [26] to learn low-dimensional vec-
tor representations of nodes. This method integrates the
structural information of nodes into the node represen-
tation learning process, by comparing different structural
information of nodes across multiple scales to learn node
embeddings.
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FIGURE 1. The overall framework of the NRL_KNI model.

Specifically, this algorithm defines an R-hop neighborhood
for each node, where the R-hop neighborhood of node v; is
defined as {Gl1 G?, e, Gf}, and simultaneously establishes
the computation method for the kernel between two nodes:

k (vi, v;) = il%G (61.6)ks (60 67"). @
r=1

The algorithm initializes matrix K € R"*" as a symmetric
positive semidefinite matrix. The values of matrix K can be
computed using formula (1), with the calculation equation
being K;; = k (v;, vj). Subsequently, the kernel matrix K is
factorized to obtain K = SST, where S € R™", and each
row of S can be interpreted as the structural representation
of nodes in a latent dimensional space. However, when the
network scale becomes significantly large, the total number
of network nodes denoted as n becomes substantial. This
leads to a considerable computational cost for factorizing
matrix K. Therefore, the algorithm employs an approximation
technique (Nystrom method [27]) to yield an approximation
of Kas K ~ SST, where S € R"4 andd « n signifies the
dimension of the embedding vectors.

B. OBTAINING SAMPLE NODES AND NODE LABELS AS
THE TRAINING SET

For machine learning models, constructing training sam-
ples with diverse structures contributes to enhancing the
model’s generalization ability. Therefore, in this section,
building upon node feature representations, we extract sample
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nodes with varying structural characteristics through cluster-
ing algorithms and quota sampling to promote the model’s
generalization capacity.

The NRL_KNI model obtains the feature matrix embed-
ding of nodes through the SEGK algorithm. In the context
of the SEGK algorithm, it can map nodes with structurally
similar attributes into the embedding space while preserv-
ing their proximity. Consequently, the K-means algorithm
can assign nodes with structural similarity to the same
cluster. In essence, this algorithm aims to partition n
data points into k(k <« n) clusters, so that the sum of
squared distances between each sample point within a
cluster and the centroid sample point of that cluster is
minimized.

However, the clusters of nodes obtained through the
k-means algorithm do not guarantee an even distribution of
nodes within each cluster. Therefore, this algorithm employs
a quota sampling approach to sample nodes within each
cluster. Assuming the total number of nodes in node cluster
¢; is m; and the total number of sampled nodes is h, then the
number of sampled nodes from node cluster c; is % X h.
The advantage of this approach lies in avoiding excessive or
insufficient sampling across clusters of different sizes, thus
accommodating the structural diversity of sample nodes.

For the sampled data points, the SIR model is utilized to
simulate their propagation capabilities as node labels. Sub-
sequently, the embedding vectors of the sample nodes are
combined with their corresponding propagation capabilities
to construct the training set.

VOLUME 11, 2023



H. Zhang et al.: Identification of Key Nodes in Complex Networks

IEEE Access

C. MODEL TRAINING AND PREDICTION FOR
NON-SAMPLE NODES

In this paper, we set the proportion of sampled nodes to be
5% of the total number of network nodes. Considering that
the smallest dataset used in this study contains approximately
1000 nodes, this implies that the number of sampled nodes
is around 50. Therefore, the selection of a machine learning
model that can efficiently train on small-scale datasets is cru-
cial. In other words, we aim to train a model on a small-scale
dataset and subsequently apply that model to a large-scale
dataset.

In this study, we opt for utilizing Support Vector Regres-
sion (SVR) [8] to train the regression model. The SVR
model has been extensively employed in the literature [8],
[28] for modeling small-scale datasets. The central objec-
tive of SVR is to identify an optimal hyperplane within a
high-dimensional feature space, intending to minimize the
error between predicted and actual values while maintaining
this error within a permissible tolerance range. Diverging
from conventional regression techniques, SVR’s distinctive-
ness lies in its robustness against outliers and nonlinear
relationships. Through the incorporation of kernel functions,
SVR can map data into higher-dimensional spaces, thereby
accommodating intricate nonlinearity patterns.

Given the obtained training dataset, a regression model is
trained using SVR on the sampled dataset. For non-sampled
nodes, their feature representation vectors are obtained, and
these vectors are then utilized as inputs to the SVR model to
obtain their predicted values.

D. COMPUTE THE FINAL INFLUENCE OF NODES

However, the final ranking of network node influence is not
directly sorted by the values predicted by the SVR model
or simulated by the SIR model. Therefore, this paper intro-
duces the Local Structural Influence Score (LSIS) based on
node-local structures. It combines the propagation capability
of first-order neighboring nodes with their local structural
characteristics. The computation method for the LSIS score
of node v is as follows:

LSIS (v) = vitality [v] + Zuer(v)d (u) x vitality [u], (2)

In equation (2), T (v) represents the set of first-order neigh-
boring nodes of node v, d (1) represents the degree of node u,
and vitality [u] represents the propagation capability of node
u, which is either the value predicted using the SVR model or
simulated using the SIR model.

In the above equation, the importance of a node is mea-
sured by incorporating the propagation capabilities of its
first-order neighboring nodes. If a node’s neighboring nodes
exhibit strong propagation capabilities, it implies that the
node has a greater capacity for outward diffusion through
these neighbors. Simultaneously, weights are allocated to the
nodes in the first-order neighborhood based on their degrees.
Building on this assumption, the larger the degree of a node,
the more significant it is within the network. Therefore,
by enhancing the contribution of neighboring nodes in LSIS
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based on their degrees, this approach efficiently evaluates the
significance of nodes within the network.

Algorithm 1 NRL_KNI Model
1: Input: Undirected graph G(V, E), node embedding
dimensions d, number of clusters k, sampling ratio r,
diffusion threshold 8.
2: Output: Generate a ranked list of nodes based on the
LSIS.
3: Embeddings = SEGK (G, d)
4: S_num = len(G.nodes()) x r
5: Sample_nodes = []
6: C_list = K-means (Embeddings, k)
7
8
9

: for c in C_list do
Sample_nodes.append(quota_sample(c, S_num))
: end for
10: Vitality = SIR (Sample_nodes, )
11: SVR_model = SVR(Embeddings[Sample_nodes],
Vitality)
12: for node in G.nodes()- Sample_nodes do
13:  Vitality[node] = SVR_model(Embeddings[node])
14: end for
15: for vin V do
16:  Calculate the LSIS(v) based on Equation (2)
17: end for

18: return [(vl, Vo, ..., vy) : LSIS (v;i) > LSIS (Vj) if (i <j)]

In Algorithm 1, the process begins with learning the node
embedding matrix through the SEGK algorithm in the third
line, and k node clusters are in the sixth line obtained using a
clustering algorithm. Subsequently, lines 7 to 9 utilize a quota
sampling method within the node clusters to acquire sample
nodes. The propagation capabilities of the sample nodes are
simulated using the SIR model in the 10th line. In the 11th
line, a regression model is trained using the sample set. The
subsequent lines from 12 to 14 are employed for predicting
the propagation capabilities of non-sample nodes. The com-
putation of the Local Structural Influence Score (LSIS) for
nodes within the network occurs in lines 15 to 17. Ultimately,
the algorithm concludes in the 18th line, outputting a ranked
list of nodes based on LSIS.

IV. EXPERIMENTS

To evaluate the performance of different methods, this section
first employs various approaches to generate node rankings.
These rankings are then compared with the actual node
rankings, and two different metrics are employed to assess
the methods’ performance. In recent years, researchers have
proposed some novel node influence ranking algorithms [29],
[30], to obtain the true ranking of node influence, this study
runs the SIR model 1000 times for each node, and the average
propagation capability is taken as the node’s propagation
ability label. Subsequently, nodes are ranked based on their
propagation capabilities in descending order to establish a
baseline ranking.
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A. DATASETS

The study validates the performance of the proposed methods
using networks from various domains, including citation net-
works (cora, citeseer), collaboration networks (CA-GrQc),
social networks (Socfb-Reed98), interaction networks (ia-fb-
message), biological networks (bio-CE-GT, bio-CE-LC), and
language networks (wiki) [31]. The datasets mentioned above
can be obtained from the NetworkRepository [32]. Detailed
statistics for these datasets are provided in Table 2. In Table 2,
the symbol By, is employed to denote the theoretical diffusion
threshold of the network, which can be calculated using the
following formula: B, =~ % In this equation, (k) =
]ivzid,- is used to represent the network’s average degree,
(kz) = ]lvzidiz indicates the second-order average degree
of the network [33], and d; denotes the degree of node i.
Regarding the infection probability within the SIR model, this
study consistently sets the value of § slightly greater than Sy,
ensuring that large-scale propagation can be triggered at the
corresponding § value [34].

TABLE 2. Detailed statistics for real datasets.

Dataset #nodes #edges #max_D #Avg D [y B

cora 2708 5429 168 3.89 0.091 0.101
citeseer 3312 4732 99 2.78 0.143 0.152
wiki 2405 12761 262 9.81 0.032 0.042
CA-GrQc 5241 14484 81 5.52 0.059 0.061
Socfb-Reed98 962 18812 313 39.11 0.014 0.016
ia-fb-message 1266 6451 112 10.19 0.036 0.040
bio-CE-GT 942 3239 151 7.01 0.034 0.037
bio-CE-LC 1387 1468 131 2.37 0.079 0.082

#max_D stands for max degree; #Avg_D stands for average degree.

B. EVALUATION METRICS

In this paper, the Jaccard similarity coefficient and Kendall’s
Tau correlation coefficient are utilized to quantify the simi-
larity and correlation between the ordered lists generated by
the algorithms and the ground truth lists.

1) JACCARD SIMILARITY COEFFICIENT [8]

This metric is used to compare the similarity or disparity
between two samples, with values ranging from O to 1, where
higher values indicate greater similarity between the two
samples. According to the definition, for two ordered lists PR
and TR, the Jaccard similarity coefficient JS (k) for the top-k
elements can be mathematically defined as:

|PR (k) N TR (k)|
|PR (k) UTR (k)|

where PR is the node ranking list obtained by a specific
algorithm, and TR is the true node ranking list.

JS (k) = 3

2) KENDALL'S TAU CORRELATION COEFFICIENT [9]
This metric is used to quantify the degree of concordance
between two lists. Its mathematical definition is as follows:

2(Ny —N_
T (X, Y)=ﬁ, “
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where X and Y respectively denote two distinct lists of length
n, while N} and N_ represent the counts of concordant and
discordant pairs between lists X and Y. For instance, the
set of joint ranks obtained from X and Y is represented by
Ly, 62,¥2) 500y Gy yn). If x; > x5 and y; > yj or
x; < xjandy; < yj, then (x;, y;) and (x;, y;) form a concordant
pair. If x; > xjandy; < yjorx; < xjandy; > y;, then this pair
is considered a discordant. Furthermore, the value of 7 (X, Y)
ranges from —1 to 1. A larger value of t (X, Y) indicates a
stronger correlation between the two ranking lists.

C. BASELINE METHODS

The baseline algorithms in this paper include four
centrality-based heuristic algorithms and five network
embedding-based counting methods, which are detailed as
follows:

1) DEGREE CENTRALITY (DC) [3]

Degree centrality measures the importance of a node by
calculating the number of its first-order neighbors. Intuitively,
if a node has more neighboring nodes, it is considered more
significant in the network. Let d,, represent the degree of node
v in network G. The normalized degree centrality of node v
can be expressed as follows:

dy
N-—-1

DC, = )
2) BETWEENNESS CENTRALITY (BC) [4]

Betweenness centrality measures the importance of a node
by calculating the frequency at which the node appears as an
intermediary in the shortest paths. The betweenness centrality
of node v in the network can be defined as:

nV
BC, = > LI, (©)
fven 8

where gg, represents the total number of shortest paths
between nodes f and h, and n}, represents the count of paths
passing through node v among the aforementioned total num-
ber of shortest paths. A higher betweenness centrality of node
v indicates stronger control and information transmission
capacity within the network.

3) PageRank CENTRALITY (PG) [5]

The core idea of this algorithm is that the importance of
a node is not solely determined by the number of nodes it
is connected to, but also by the importance of those nodes.
In other words, a node’s PageRank centrality is influenced by
both its degree and the quality of its connections, emphasizing
the collaborative impact of these two factors.

4) KATZ CENTRALITY(KC) [35]

This algorithm assesses the centrality of nodes based on
the length of relationship paths between them. Unlike other
centrality metrics, Katz centrality not only takes into account
a node’s direct connections but also considers multi-hop
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FIGURE 2. Jaccard similarity results in different datasets.

connections between nodes. The Katz centrality of node v;
can be defined as follows:

cx (vi) = a0 Aijer () +E, (7

where « is the attenuation factor, and « is strictly less than
the reciprocal of A;ux. Amax 1S the largest eigenvalue of the
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adjacency matrix A, and parameter £ provides an initial value
for all nodes, typically set to 1.

5) DeepIM ALGORITHM [11]

This method introduces graph representation learning tech-
niques for the identification of critical nodes in com-
plex networks. Initially, the algorithm employs the CARE
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TABLE 3. The Kendall’s Tau correlation coefficient between the rankings obtained from different algorithms and the true rankings.

Algorithm CA-GrQc cora citeseer SocfbR wiki iafbm bio-CE-GT bio-CE-LC
DC 0.3788 0.2755 0.4233 0.3702 0.3616 0.3496 0.2423 0.1750
PG 0.0798 0.0889 -0.0395 0.3349 0.3062 0.3353 0.1198 -0.0598
BC 0.2368 0.2619 0.4180 0.2856 0.2421 0.3235 0.2125 0.1910
KC 0.4423 0.3277 0.4808 0.3723 0.3811 0.3543 0.2714 0.1789
DeepIM -0.1846 -0.1242 -0.2254 -0.0838 -0.1169 -0.1409 -0.0834 -0.1183
Deepwalk 0.0712 0.0934 0.0262 -0.0362 0.0895 -0.1798 0.0562 0.0308
Node2vec 0.0896 0.1066 0.0286 -0.1344 0.1658 -0.0115 0.0301 0.0179
SEGK -0.0009 0.0147 -0.0120 0.0430 0.0373 0.0186 0.0494 -0.0234
NRL_RWCE 0.0000 0.0098 0.0580 -0.0170 -0.0130 0.0003 -0.0036 0.1149
NRL_KNI 0.5400 0.3988 0.5805 0.3864 0.3563 0.3399 0.2846 0.2086

SoctbR stands for Socfb-Reed98; iatbm stands for ia-fb-message.

TABLE 4. The influence of different cluster numbers k on Kendall’s Tau
correlation coefficient.

TABLE 5. The influence of different sampling ratios r on Kendall’s Tau
correlation coefficient.

k CAG cora citeseer SocfbR  wiki iafam r CAG cora citeseer SocfbR  wiki iafam

k=5 0.5254 0.4037 0.5611 0.3868 0.3542 0.3400 r=0.01 0.5266 0.3973 0.5461 0.3864 0.3547 0.3410
k=10 0.5400 0.3988 0.5805 0.3864 0.3563 0.3399 r=0.03 0.5310 0.4023 0.5751 0.3864 0.3544 0.3408
k=15 0.5303 0.3926 0.5565 0.3864 0.3564 0.3402 r=0.05 0.5254 0.4037 0.5611 0.3868 0.3542 0.3400
k=20 0.5400 0.3988 0.5555 0.3864 0.3555 0.3407 r=0.07 0.5304 0.4087 0.5687 0.3864 0.3563 0.3397

CAG stands for CA-GrQc; SocfbR stands for Socfb-Reed98; iafam
stands for ia-fa-message.

algorithm [12] to learn node embedding vectors. Subse-
quently, it calculates the cosine similarity between every
pair of nodes, constructs a matrix of node correlations, and
eventually selects the top-K nodes as critical nodes using a
counting-based approach. In this paper, nodes are arranged
in descending order based on their frequency of appearance,
resulting in an ordered list reflecting the nodes’ influence.

Building upon the approach of the DeepIM method, this
paper also extends several other methods.

6) SEGK ALGORITHM [26]

This algorithm learns node embedding vectors by approx-
imating and decomposing the kernel matrix containing the
structural similarity between nodes. For the graph kernel
used in this algorithm, the Weisfeiler-Lehman (WL) subtree
kernel is selected in this paper. Similarly, after obtaining node
embeddings, the selection of critical nodes follows the same
approach as the DeepIM algorithm.

7) DeepWalk ALGORITHM [16]

This method starts by sampling nodes using a random walk
approach. Subsequently, node sequences are used as inputs
to train node embedding vectors using the Skip-Gram model
[18]. The selection of the critical node set aligns with the
approach of the DeepIM algorithm.

8) Node2Vec ALGORITHM [17]

This method introduces two hyperparameters during the
sampling process to control the balance between depth-first
search and breadth-first search for generating random walk
sequences of nodes. Subsequently, these node sequences
are used as inputs for training node embedding vectors
using the Skip-Gram model [18]. Similarly, the selection
of critical nodes follows the approach of the DeepIM
algorithm.
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CAG stands for CA-GrQc; SocfbR stands for Socfb-Reed98; iafam
stands for ia-fa-message.

TABLE 6. The influence of different embedding dimensions d on
Kendall’s Tau correlation coefficient.

d CAG cora citeseer SocfbR  wiki iafam

d=16 0.5299 0.4037 0.5525 0.3864 0.3555 0.3406
d=32 0.5322  0.3953 0.5478 0.3864 0.3552 0.3404
d=64 0.5363 0.3956 0.5806 0.3862 0.3539 0.3409
d=128 0.5254 0.4037 0.5611 0.3868 0.3542 0.3400
d=200 0.5351 0.4038 0.5740 0.3868 0.3564 0.3410

CAG stands for CA-GrQc; SocfbR stands for Socfb-Reed98; iafam
stands for ia-fa-message.

9) NRL_RWCE ALGORITHM [22]

This algorithm is a node embedding method based on
community-aware random walks and incorporates an auto-
matic parameter determination strategy for the random walks
to ensure that the learned node representations preserve com-
munity information. The selection of the critical node set
aligns with the approach of the DeepIM algorithm.

D. EXPERIMENTAL TOOLS AND PARAMETER SETTINGS

In this paper, all experiments were conducted on a computer
equipped with the Windows operating system and executed
using the CPU. The software tools utilized for experimental
data processing included Python (version: 3.8), Networkx
(version: 2.6.3), Matplotlib (version: 3.7.1), NumPy (version:
1.16.6), and Pandas (version: 1.4.3). Each experiment on the
datasets involved the training of a support vector regression
model for predicting the diffusion capability of non-sampled
nodes. The model was configured with the following param-
eters: the regularization parameter C was set to 100, and
the kernel function selected was the Radial Basis Function.
Furthermore, for network embedding-based methods, the
node embedding dimension d is uniformly set to 128, while
the remaining parameters are used with the default values
from the original literature. When constructing the correlation
matrix, only the top 10 most relevant nodes for each node
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FIGURE 3. The influence of different cluster numbers k on Jaccard similarity coefficient.

are considered. In the SIR model, the infection probability
B for each dataset is set to be greater than the threshold By,
and the recovery probability is consistently set to 0.01. The
clustering parameter k is chosen from the set {5, 10, 15, 20}.
For all datasets, the sampling ratio r is uniformly set to 0.05.
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E. EXPERIMENTAL RESULTS ANALYSIS

Across different datasets, the performance of various methods
was compared based on the ranking of the top-k nodes, where
k ranged from 10 to 290, and the corresponding ‘‘Ranks”
values were shown on the graph. Fig 2 illustrates the variation

128183



IEEE Access

H. Zhang et al.: Identification of Key Nodes in Complex Networks

curves of Jaccard similarity coefficient values across six
datasets. As depicted in Fig 2, our proposed NRL_KNI
method attained the highest Jaccard similarity scores for the
top-30 nodes in the wiki, ia-fb-message, and citeseer datasets.
Similarly, it achieved the highest Jaccard similarity scores for
the top-50 nodes in the CA-GrQc, wiki, and citeseer datasets.
Furthermore, as “‘Ranks” values increased, the performance
of NRL_KNL also exhibited improvement. In most scenarios,
the NRL_KNI method consistently demonstrated the best
outcomes. These results suggest that the NRL_KNI algorithm
holds a certain advantage over baseline algorithms in identi-
fying critical nodes within complex networks, thus affirming
the effectiveness of the proposed approach presented in this
study.

Table 3 presents the results of Kendall’s Tau corre-
lation coefficient metric, where bold type indicates the
best-performing result, and results marked with horizontal
lines denote the second-best outcomes. In the CA-GrQc
dataset, the performance of NRL_KNI improved by approx-
imately 10% compared to the second-best Katz method.
In the cora dataset, the performance of NRL_KNI improved
by around 7% compared to the second-best algorithm.
In the citeseer dataset, NRL_KNI’s performance improved
by approximately 10% compared to the second-best method.
Moreover, it is worth noting that NRL_KNI exhibited
a performance improvement of approximately 1% com-
pared to the Katz algorithm in the Socfb-Reed98 and
bio-CE-GT datasets. Similarly, on the bio-CE-LC dataset,
the performance of NRL_KNI also improved by around
1% compared to the second-best performing Betweenness
Centrality algorithm. Additionally, Table 3 reveals that,
in the majority of datasets, the performance of network
embedding-based counting methods is subpar, whereas cer-
tain centrality-based heuristic algorithms exhibit favorable
performance.

F. PARAMETER SENSITIVITY ANALYSIS

In the process of clustering, the number of clusters k can have
a significant impact on the clustering outcomes. Therefore,
this section performs parameter sensitivity analysis on six
datasets. When evaluating the influence of the number of
clusters k, while keeping other parameters constant, it is
sufficient to vary only the value of k. The results are depicted
in Fig 3. For the citeseer, wiki, Socfb-Reed98, and ia-fb-
message datasets, the Jaccard similarity coefficient curve
shows no noticeable fluctuations as the parameter k changes.
The results indicate that the clustering parameter k is not
highly sensitive on these datasets, and the algorithm presented
in this paper demonstrates relatively stable outcomes. On the
other hand, for the cora and CA-CrQc datasets, the Jaccard
similarity coefficient curve exhibits slight fluctuations with
changes in the parameter k, but these variations do not signif-
icantly alter the algorithm’s results, showing an overall trend
towards stability. The results indicate that, in most cases,
the parameter k has a minor effect on the Jaccard similarity
coefficient values.
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Table 4 presents the impact of different clustering numbers,
denoted as k, on Kendall’s Tau correlation coefficient. Across
the cora, Socfb-Reed98, wiki, and ia-fa-message datasets,
as the clustering number k varies, the values of Kendall’s Tau
correlation coefficient exhibit minimal fluctuations, indicat-
ing that parameter k is not highly sensitive to these datasets.
However, in the CA-GrQc dataset, despite slight fluctuations
in the correlation coefficient values due to changes in param-
eter k, the overall performance of the NRL_KNI algorithm
remains relatively stable. Moreover, for the citeseer dataset,
when k = 10, there is an approximately 3% performance
improvement compared to k = 15 or k = 20. Nevertheless,
considering the overall trend, the amplitude of this improve-
ment is not substantial, and the proposed algorithm continues
to outperform the baseline. The experimental results from
Fig 3 and Table 4 collectively demonstrate that the proposed
method is not highly sensitive to the clustering parame-
ter k, further highlighting the robustness of the NRL_KNI
algorithm.

The optimal values of k for different datasets are shown
in Figure 3 and Table 4. Dataset CA-GrQc has an optimal
k value of 20, while dataset citeseer has an optimal k value
of 10. This indicates that different datasets have different
optimal values for k. Tables 5 and 6 respectively present the
impact of different parameter values r and d on the Kendall’s
Tau correlation coefficient. The optimal values for parameters
rand d vary across different datasets. For instance, the optimal
r value for the citeseer dataset is 0.03, while for the cora
dataset, it is 0.07. The optimal d value for the citeseer dataset
is 64, whereas for the wiki dataset, it is 200. To maintain
consistency with the benchmark methods, d is uniformly set
to 128 in this study.

V. CONCLUSION
This paper presents a simple and effective key node identifi-
cation algorithm named NRL_KNI. This algorithm leverages
network representation learning techniques to acquire node
embeddings, enabling efficient capture of the structural infor-
mation of nodes within the network while significantly
reducing the dimensionality of node representations. More-
over, this method introduces the Local Structural Influence
Score (LSIS) to evaluate the final impact of nodes, taking
into full consideration the influence factors of their local
structures. The NRL_KNI approach employs a quota-based
sampling technique on node clusters, using only 5% of
the nodes within the network for model training, thus
effectively reducing computational time and enhancing the
algorithm’s generalization performance. Experimental results
conducted on multiple real-world datasets indicate that
the NRL_KNI method significantly outperforms the major-
ity of baseline methods in terms of metrics such as the
Jaccard similarity coefficient and Kendall Tau correlation
coefficient.

However, there is still significant room for improvement
for NRL_KNI. The shortcomings of this work include the
reliance on node propagation capability labels on multiple
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simulations of the SIR epidemic model. Although this
approach is widely used in many literature works and this
paper attempts to mitigate its impact on the overall algorithm
by reducing the size of the training set (using only 5% of the
network nodes), the influence of simulating node propagation
capability on NRL_KNI is inevitable. Therefore, exploring
a more efficient method to approximate node propagation
capability becomes a direction for the improvement of this
algorithm. Furthermore, the algorithm proposed in this paper
can be extended for application in multi-layer networks, tem-
poral networks, attribute networks, etc. It is also possible
to explore alternative methods for constructing node feature
vectors or employing diverse machine-learning models for
training the sample set.
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