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ABSTRACT Pneumatic muscle actuators are widely used in the manufacture of bionic robots and
rehabilitation medical equipment. However, due to complicated inherent nonlinearities, time-varying
characteristics and uncertainties, it is still a challenge to carry out the accurate dynamic modeling
and controller design for PAM systems. To address above issues, we propose an error tracking-based
neuro-adaptive iterative learning control scheme to get satisfactory non-uniform angle trajectory tracking
performance. First, the error-tracking method is used to overcome the nonzero initial state error in iterative
learning controller design for the PAM system. Second, a difference-learning neural network is utilized to
compensate for unknown uncertainties in the PAM system dynamics. Moreover, a barrier Lyapunov function
is applied to design controller so as to restrict the the difference between system out error and the desired
error trajectory within the preset bound during each iteration. And the stability of the closed-loop system is
proven theoretically by using Lyapunov synthesis. Finally, simulation results demonstrate the effectiveness
of the proposed control scheme.

INDEX TERMS Pneumatic artificial muscle systems, iterative learning control, barrier Lyapunov function,
error tracking method, neural network control.

I. INTRODUCTION
With the rapid development of robot technology, the engi-
neering and scientific community are eagerly looking forward
to the advent of actuators and electromechanical system with
better performance [1]. Pneumatic artificial muscle(PAM) is
a kind of soft tubular actuator possessing many advantages,
such as rapid response, low cost, high power weight ratio,
etc [2], [3], [4]. These above-mentioned merits propels the
increasing attention and wide application of PAM actuators
in the field of bionic robots, exoskeleton and rehabilitation
robots. Nevertheless, there exist complicated inherent char-
acteristics in PAM systems, inclusive of high nonlinearities,
complex hysteresis, and time-varying characteristics, such
that the controller design of PAM systems is challenging. The
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past decades have witnessed the hard exploration in the study
of controller design for PAM systems, which yields some
meaningful results based on sliding mode control technique
[5], adaptive control theory [6], [7], predictive control method
[8], fuzzy control theory [9], ADRC theory [10], [11],
etc. In many occasions, PAM-actuated rehabilitation devices
are applied for performing repeated tasks, e.g., the lower
limb assistance devices used to assist walking and help
rehabilitation training. As such, iterative learning control
(ILC) technique may be adopted for obtaining excellent
tracking performance. ILC is a distinctive control strategy
good at dealing with repeated tracking control or periodic
disturbance rejection according to iterative learning strategy
for nonlinear systems [12], [13], [14], [15]. While ILC
systems operate, the iteration-independent uncertainties in
ILC systems may be estimated by using system errors, cycle
by cycle. Through these self-tuning processes, ILC systems
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can improve the control performances gradually, even with
little knowledge of the system model.

Two aspects of ILC algorithm designs for PAM systems
will be considered in this work. The first aspect with ILC on
PAM systems is about the non-uniform trajectory tracking
for nonlinear systems with nonzero initial errors. In most
traditional ILC results, the reference trajectory must be
iteration-invariant. Nevertheless, in some cases, we possibly
encounter the cases that the reference trajectory in one
iteration cycle is different from the reference trajectory in
another iteration cycle. In the context of PAM systems, the
control task probably changes in iteration domain, which
means the reference trajectory should be adjusted to meet the
demand. Only a few ILC literature results have ever reported
ILC scheme in the case of tracking non-uniform trajectory
during different iterations [16], [17], [18]. Specifically,
in [16], an ILC design based on contractionmapping principle
is developed for the situation where the reference signal
slowly varies between two adjacent iterations. In [17], the
non-uniform trajectory tracking design based on Lyapunov
approach is studied, where the reference trajectories in one
iteration is totally different from that in another iteration.
In [18], the non-repetitive trajectory tracking ILC scheme
is developed for nonparametric uncertain systems. In [16]
and [17], the initial system error in each iteration is assumed
to be zero. Due to limitations of physical resetting, it is
difficult to let the initial error be zero in many practical
situations. Hence, it is of significance to develop adaptive
ILC schemes suitable to nonzero initial errors, which is a
fundamental problem of ILC and is usually called the initial
position problem of ILC in the field of ILC. To broaden
the application scope of ILC technology, several solutions
have been put forward, such as time-varying boundary layer
[19], initial rectification action [18], [20] and error tracking
method [21]. But overall, the number of solutions is still
very limited. Therefore, the initial position problem of ILC
deserves further study. To the best of our knowledge, though
there are some existing results involved with ILC design for
PAM systems [22], the non-uniform trajectory tracking ILC
design for PAM systems with nonzero initial error has not
addressed yet.

The second problem is about system constraints of PAM
systems. In many practical systems, there exist various
constraints. If the system output or system state violates a
certain constraint, it may result in performance degradation
and system insecurity. Up to now, the typical constraint
control design includes model predictive control [24], set
invariance notions [23], reference governor [25] and barrier
Lyapunov function [26], [27], [28]. The adaptive control
for PAM systems with system constraint is investigated in
[6]. To the best of our knowledge, the existing result on
adaptive ILC for PAM systems with system constraints is
very few [29]. In [29], an adaptive ILC law is developed for
PAM systems whose filtering error are constrained during
system operations. How to address the issue of non-uniform
trajectory tracking and output constraint in adaptive ILC

design for PAM systems with nonzero initial errors, is a
significant research topic yet to be resolved.

Inspired by the above discussion, to solve the angle
non-uniform trajectory tracking problem of PAM systems,
wewill develop an output-constrained error-tracking adaptive
ILC scheme for a PAM-actuated device. Compared with
existing results, the main contributions can be summarized
as follows:

(1) Non-uniform trajectory tracking of PAM systems has
been considered with an error-tracking method adopted for
dealing with the problem of nonzero initial error in ILC
design.

(2) It is the first time to develop adaptive ILC scheme for
PAM systems with output constraint, which is different from
the filtering-error constraint strategy given in [29].

(3) By developing a barrier Lyapunov functional, along
with the difference-learning neural network, excellent control
performance and the boundedness of all signals in the
closed-loop system are guaranteed.

The paper is organized as follows. The system model
and problem formulation is introduced in Section II. In
Section III, a simple example is provided to clearly explain
how to use the error-tracking method during ILC system
design. The construction of auxiliary curves and the detailed
procedure of controller design is given in Section IV. The
stability analysis of closed-loop PAM system is provided in
Section V. The satisfactory simulation results are shown in
Section VI, and the conclusion is drawn in Section VII.

II. PROBLEM FORMULATION
The model a PAM-acutated device [6] is presented in Fig. 1.
The control objective is to make the PAM system with
complicated inherent dynamic characteristics, uncertainties
and disturbance track the given reference trajectories, so as
to further complete actuating tasks.

FIGURE 1. Control system structure of the PAM-actuated mechanism.

In this device, there exist two PAM actuators which are
parallel to each other. The signal of deflection angle may
be collected by the angle sensor and then be transmitted to
the computer. The charging or discharging of the two PAM
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actuators can be realized by opening and closing the pressure
proportional valves. The input control voltages of pressure
proportional valves, ul(t) and ur (t), are determined by the
following equations.{

ul(t) = uo + δuu(t),
ur (t) = uo − δuu(t),

(1)

in which uo presents the preloaded voltage, u(t) is the control
input and δu denotes the coefficient of voltage distribution.
Here, t ∈ [0,T ], T denotes the operation time interval during
each iteration. P1 and P2 are the internal pressures of two
PAM actuators, which can be calculated by{

P1(t) = P0 +1P(t) = δ0ul(t),
P2(t) = P0 −1P(t) = δ0ur (t).

(2)

In (2), P0 presents the preloaded internal pressure, 1P(t)
is the variation of pressure, and δ0 denotes the proportional
coefficient of the control voltage and output pressure. F1(t)
and F2(t) are the Pulling forces generated by PAM actuators,
which may be determined by{

F1(t) = P1(t)(λ1ϵ21 (t) + λ2ϵ1(t) + λ3) + λ4,

F2(t) = P2(t)(λ1ϵ22 (t) + λ2ϵ1(t) + λ3) + λ4,
(3)

where λ1 − λ4 are four parameters, ϵ1(t) = ϵ0 + rl−1
0 θ (t),

and ϵ2(t) = ϵ0 − rl−1
0 θ (t). Here, θ (t) is the deflection angle,

ϵ0 is the initial shrinking rate, and l0 represents the initial
length of PAM actuators. By letting Jp represent the moment
of inertia, bυ denote the damping coefficient and r be the
radius of pulley, we can deduce the driving moment of this
device as

Tp(t) = Jpθ̈ (t) + bυ θ̇ (t) = F1(t)r − F2(t)r + dυ , (4)

in which dυ is the unknown external disturbances.
From (1)- (4), we obtain

θ̈ (t) = −J−1
p bvθ̇ (t) + 2Jk0uor2(2λ1ϵ0 + λ2)l

−1
0 θ(t)

+ 2J−1
p k0λur[λ1ϵ20 + λ2ϵ0 + λ3 + 2λ2ϵ0

+ λ1(rθ (t)l
−1
0 )2]u(t) + ds (5)

where ds = J−1
p dυ . Let x1(t) and x2(t) denote θ (t) and θ̇ (t),

respectively. From (5), we can get the state-space model of
the device at the kth iteration cycle as

ẋ1,k (t) = x2,k (t),
ẋ2,k (t) = uoξ1x1,k (t) + ξ2x2,k (t) + [g1 + g2x21,k ]uk (t)

+ds,k ,

(6)

where ξ1 = 2J−1k0r2(2λ1ϵ0 + λ2)l
−1
0 , ξ2 = −J−1bv

and g1 = 2J−1k0λur(λ1ϵ20 + λ2ϵ0 + λ3), g2 =

2J−1k0λurλ1(rl
−1
0 )2.

For simplicity, the arguments of functions in the article are
often omitted when no confusion occurs.

III. A SIMPLE EXAMPLE ON ERROR TRACKING METHOD
To clearly explain the concept of initial position problem of
ILC and how to solve this problem by using error-tracking
method [20], let us consider a simple system as follows:

χ̇k (t) = ϑ(t) sin(χk ) + uk (t), (7)

where k denotes iteration index, t ∈ [0, 5], χk (t) ∈ R,
ϑ(t) is an unknown parameter. Assume ϑ(t) is time-varying
but iteration-independent, i.e., ϑ(t) = 2e0.01 t + sin(0.2π t).
The control objective is to make χk (t) converge to zero as
k increases. Because ϑ(t) is time-varying, we will derive a
difference learning law to estimate ϑ(t).
s1). Design control law and iterative learning laws as

uk = −ιχk − ϑk sin(χk ), (8)

ϑk = ϑk−1 + χk sin(χk ), (9)

where ι > 0 is a design parameter. Substituting (8) into (7)
leads to

χ̇k (t) = −ιχk + ϑ̃k sin(χk ), (10)

where ϑ̃k = ϑ − ϑk . Define a Lyapunov functional as

Lχ,k =
1
2
χ2
k +

1
2

∫ t

0
ϑ̃2
k dτ. (11)

From (11), we obtain

Lχ,k − Lχ,k−1 =
1
2
χ2
k −

1
2
χ2
k−1 +

1
2

∫ t

0
(ϑ̃2
k − ϑ̃2

k−1)dτ.

(12)

By (10), we have

1
2
χ2
k =

1
2
χ2
k (0) +

∫ t

0
χk χ̇kdτ

=
1
2
χ2
k (0) − ι

∫ t

0
χ2
k dτ +

∫ t

0
χϑ̃k sin(χk )dτ. (13)

Substituting (13) into (12) yields

Lχ,k − Lχ,k−1 ≤
1
2
χ2
k (0) +

∫ t

0
χϑ̃k sin(χk )dτ −

1
2
χ2
k−1

+
1
2

∫ t

0
(ϑ̃2
k − ϑ̃2

k−1)dτ. (14)

It follows from (9) that

χϑ̃k sin(χk ) +
1
2
(ϑ̃2
k − ϑ̃2

k−1)

= χϑ̃k sin(χk ) +
1
2
(2ϑ − ϑk − ϑk−1)(ϑk−1 − ϑk−1)

≤ χϑ̃k sin(χk ) +
1
2
(2ϑ − 2ϑk )(ϑk−1 − ϑk−1)

= 0. (15)

Combining (14) with (15), we get

Lχ,k − Lχ,k−1 ≤
1
2
χ2
k (0) −

1
2
χ2
k−1. (16)
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By recursion method, from (16), we obtain

1
2
χ2
k (t) ≤ Lχ,k (t) ≤ Lχ,0(t) +

1
2

k∑
i=0

χ2
i (0) −

1
2
χ2
k−1(t).

(17)

Lχ,0(t) can be proved to be bounded. If χi(0) = 0 holds,
from (17), we can derive the conclusion that Lχ,k (t) = 0 and
χk (t) = 0 for k → +∞. If the boundedness of

∑k
i=0 χ

2
i (0)

can not be guaranteed, from (17), we can not derive the
conclusion that Lχ,k (t) = 0 and χk (t) = 0 for k → +∞.
Remark 1: In practical applications, the initial state of the

system is not equal to 0, which means χi(0) is not equal to
0 here. From this, it can be inferred that

∑k
i=0 χ

2
i (0) →

+∞ while k → +∞, which means we can not derive
the conclusion that Lχ,k (t) = 0 and χk (t) = 0 for k →

+∞ from (17). Hence, traditional ILC algorithms are not
applicable in many practical applications.

s2) Define

χ∗
k (t) = χk (0)hχ (t) cos(

π t
2tδ

), (18)

where 0 < tδ < 5(e.g., tδ = 0.5), and

hχ (t) =

{
1, for t ≤ tδ,
0, for t > tδ.

(19)

Let us define

χz,k (t) = χk (t) − χ∗
k (t). (20)

According to (7) and (20), we have

χ̇z,k (t) = ϑ(t) sin(χk ) + uk (t) − χ̇∗
k , (21)

On the basis of (21), we design the control law and iterative
learning law as

uk = −ιχz,k − ϑk sin(χk ), (22)

ϑk = ϑk−1 + χz,k sin(χk ). (23)

Define another Lyapunov functional as

Lz,k =
1
2
χ2
z,k +

1
2

∫ t

0
ϑ̃2
k dτ. (24)

Similar to (17), we can obtain

Lz,k (t) ≤ Lz,0(t) +
1
2

k∑
i=0

χ2
z,i(0) −

1
2
χ2
k−1 (25)

It follows from (25) that

1
2
χ2
z,k (t) ≤ Lz,k (t) ≤ Lz,0(t) −

1
2
χ2
k−1(t) (26)

From (26), we can derive the conclusion that Lz,k (t) = 0 and
χz,k (t) = 0 for t ∈ [0, 5] and for k → +∞. Thus, based on
the fact that χz,k (t) = χk (t) for t ∈ [tδ, 5], χk (t) = 0 holds
over t ∈ [tδ, 5], while k → +∞.

According to the above analysis, we can see that the control
algorithm (22)-(23) may be used in cases that χk (0) ̸= 0. That

is to say, the design method is effective to solve the initial
position problem of ILC.
Remark 2: Because χz,i(0) = 0 for i = 0, 1, · · · , k , so the

term 1
2

∑k
i=0 χ

2
z,i(0) in (25) is equal to zero. By contrast, the

term 1
2

∑k
i=0 χ

2
i (0) in (17) is not equal to zero.

IV. CONTROLLER DESIGN
Let x1,d denote the reference trajectory. By defining e1,k =

x1,k − x1,d , e2,k = x1,k − x2,d and x2,d = ẋ1,d , from (6),
we have

ė1,k = e2,k ,
ė2,k = uo,kξ1x1,k + ξ2x2,k + (g1 + g2x21,k )uk + ds,k

−ẍ1,d .

(27)

Note that in actual situations, the initial system error in each
iteration usually satisfies

e1,k (0) ̸= 0, e2,k (0) = 0. (28)

A. CONSTRUCTION OF DESIRED ERROR TRAJECTORY
To overcome the obstacle caused by nonzero initial error in
the path of of ILC system design, two auxiliary signals e∗1,k (t)
and e∗2,k (t) are formed as follows:

When 0 ≤ t ≤ tδ ,

e∗1,k (t) = e1,k (0)
(10(tδ − t)3

t3δ
−

15(tδ − t)4

t4δ

+
6(tδ − t)5

t5δ

)
, (29)

e∗2,k (t) = e1,k (0)
(
−

30(tδ − t)2

t3δ
+

60(tδ − t)3

t4δ

−
30(tδ − t)4

t5δ

)
, (30)

when tδ < t ≤ T , e∗1,k (t) = 0, e∗2,k (t) = 0. Here, tδ is a preset
time point between 0 and T .

Let ε1,k (t) = e1,k (t) − e∗1,k (t) and ε2,k (t) = e2,k (t) −

e∗2,k (t). Through simple calculation, it follows from (29) that
e∗1,k (0) = e1,k (0) holds. Meanwhile, when t = 0,

−30(tδ − t)2

t3δ
+

60(tδ − t)3

t4δ
−

30(tδ − t)4

t5δ
= 0, (31)

fromwhich and (30), it can be inferred that e∗2,k (0) = 0 holds.
Based on the fact that e∗1,k (0) = e1,k (0) and e2,k (0) =

e∗2,k (0) = 0, it is obvious that

ε1,k (0) = 0, ε2,k (0) = 0. (32)

B. ERROR-TRACKING CONTROLLER DESIGN
According to (27), we get

ε̇1,k = ε2,k ,

ε̇2,k = uo,kξ1x1,k + ξ2x2,k + (g1 + g2x21,k )uk
+ds,k − ẍ1,d − ė∗2,k .

(33)
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Define sε,k = cε1,k + ε2,k with c > 0. From (33), the
derivative of sε,k may be calculated by

ṡε,k = cε2,k + uo,kξ1x1,k + ξ2x2,k + (g1 + g2x21,k )uk + ds,k
− ẍ1,d − ė∗2,k . (34)

Chose a barrier Lyapunov function as

Vk =
ε21,k

2(b2ε − ε21,k )
+

1
2g1

s2ε,k , (35)

where bε > 0.
Remark 3: On the basis of above conclusions given

in (32), we can see that sε,k (0) = 0 and Vk (0) = 0 holds,
which is useful to overcome the initial position problem
of ILC.

Differentiating Vk yields

V̇k =
b2ε

(b2ε − ε21,k )
2
ε1,k (sε,k − cε1,k ) + sε,k

[
g−1
1 (cε2,k

+ uo,kξ1x1,k + ξ2x2,k + ds,k − ẍ1,d − ė∗2,k )

+ uk + g−1
1 g2x21,kuk

]
≤

b2εε1,ksε,k
(b2ε − ε21,k )

2
+ sε,k

[
g−1
1 (cε2,k + uo,kξ1x1,k + ξ2x2,k

+ ds,k − ẍ1,d − ė∗2,k ) + uk + g−1
1 g2x21,kuk

]
. (36)

Then, a radial basis function (RBF) neural network is adopted
for constructing the following approximator

g−1
1 (cε2,k + uo,kξ1x1,k + ξ2x2,k + ds,k − ẍ1,d − ė∗2,k )

= ηηη∗T (t)ψψψ(XXX ) + ϵ(XXX ), (37)

in which ηηη∗(t) represents the optimal weight of neural
network andψψψ(XXX ) = [ψ1,k , ψ2,k , · · · , ψm,k ]T , where

ψj,k = e
−

∥XXX−cccj∥
2

2b2j , j = 1, 2, · · · ,m, (38)

XXX = [x1,k , x2,k , x1,d , x2,d , ẋ2,d ]T , cccj and bj represent the
center vector and the width of the hidden layer, respectively.
ϵ(XXX ) is the approximation error. There exists an unknown
constant ϵN such that |ϵ(XXX )| ≤ ϵN .
Denote ψψψ(XXX k ) briefly by ψψψk . Combining (36) with (37)

yields

V̇k =
b2εε1,ksε,k
(b2ε − ε21,k )

2
+ sε,k [ηηη∗T (t)ψψψk + ϵ(xxxk ) + uk

+ g−1
1 g2x21,kuk ] (39)

Based on (39), the control law and iterative learning laws are
designed as follows:

uk = ui,k + ur,k , (40)

ui,k = −
b2εε1,k

(b2ε − ε21,k )
2

− λssε,k − ηηηTkψψψk , (41)

ur,k = −ϖkx21,kui,k tanh(sε,kϖkx21,kui,kυ)

− ϵN ,k tanh(sε,kϵN ,kυ), (42)

ηkηkηk = sat(ηηηk−1) + γ1sε,kψψψk ,η−1η−1η−1 = 0, (43)

ϖk = sat(ϖk−1) + γ2sε,kx21,kui,k ,ϖ−1 = 0, (44)

ϵN ,k = sat(ϵN ,k−1) + γ3|sε,k |, ϵN ,−1 = 0, (45)

where λs > 0, υ = µ(k + 1)(k + 2), µ > 0, γ1 > 0, γ2 > 0,
γ3 > 0, ϖk is the estimation of ϖ :=g−1

1 g2, and ϵN ,k is the
estimation of ϵN . Here, sat(·) is is an saturation operator: For
β ∈ R,

sat(β) := sign(β)min(β̄, |β|), (46)

in which β̄ represents the upper bound of |β| and
sign(·) is an operator of signum function; for an n-
dimensional vector βββ = [β1, β2, · · · , βn]T , sat(βββ) :=

[sat(β1), sat(β2), · · · , sat(βn)]T .

V. CONVERGENCE ANALYSIS
Theorem 1: Consider the closed-loop PAM system con-

sisting of (6) and (40)-(45). The tracking performance and
system stability can be concluded as follows:

(t1) |ε1,k (t)| < bε is guaranteed for t ∈ [0,T ], which
means |x1,k | < bε + |x1,d | holds for t ∈ [tδ,T ].

(t2) Both e1,k (t) = 0 and e2,k (t) = 0 hold for t ∈ [tδ,T ]
as the iteration number increases.

(t3) All internal signals in the closed-loop system are
guaranteed to be bounded ∀t ∈ [0,T ] and ∀k > 0.

Proof: (t1) First, in order to derive the constraint
property of PAM system, let us verify the boundedness of the
time derivative of barrier Lyapunov functional Lk , which is
defined as follows:

Lk = Vk +
1
2γ1

∫ t

0
η̃ηηTk η̃ηηkdτ +

1
2γ2

∫ t

0
ϖ̃ 2
k dτ

+
1
2γ3

∫ t

0
ϵ̃2N ,kdτ, (47)

where η̃ηηk = ηηη − η̃ηηk . Note Lk (0), the initial value of Lk (t),
is bounded. In the next part, we will verify that L̇k (t) < +∞

is guaranteed for t ∈ [0,T ], so as to derive that Lk (t) < +∞

and |ε1,k (t)| < bε hold for t ∈ [0,T ].
Substituting (40) and (41) into (39) leads to

V̇k ≤ −λss2ε,k + sε,kη̃ηη
T
kψψψk + |sε,k |ϵN − |sε,k |ϵN ,k

+ |sε,k |ϵN ,k + sε,kϖx21,kui,k − sε,kϖkx21,kui,k

+ sε,kϖkx21,kui,k + (1 + g−1
1 g2x21,k )u2,k ]. (48)

Invoking (42) and (48), we have

V̇k ≤ −λss2ε,k + sε,kη̃ηη
T
kψψψk + |sε,k |ϵ̃N ,k + sε,kϖ̃kx21,kui,k

+ |sε,k |ϵN ,k + sε,kϖkx21,kui,k + (1 + g−1
1 g2x21,k )

×
[
−ϖkx21,kui,k tanh(sε,kϖkx21,kui,kυ) − ϵN ,k

× tanh(sε,kϵN ,kυ)
]
. (49)

where ϵ̃N ,k = ϵN − ϵN ,k , ϖ̃k = ϖ −ϖk . For σ ∈ R, ω > 0,
the inequality

|σ | − σ tanh(
σ

ω
) ≤ 0.2785ω (50)
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holds. By this property, we obtain

sε,kϖkx21,kui,k − sε,k (1 + g−1
1 g2x21,k )ϖkx21,kui,k

× tanh(sε,kϖkx21,kui,kυ)

≤ sε,kϖkx21,kui,k −ϖkx21,kui,k tanh(sε,kϖkx21,kui,kυ)

≤
0.2785

µ(k + 1)(k + 2)
(51)

and

|sε,k |ϵN ,k − sε,k (1 + g−1
1 g2x21,k )ϵN ,k tanh(sε,kϵN ,kυ)

≤ |sε,k |ϵN ,k − sε,kϵN ,k tanh(sε,kϵN ,kυ)

≤
0.2785

µ(k + 1)(k + 2)
. (52)

It follows from (49), (51) and (52) that

V̇k ≤ −λss2ε,k + sε,kη̃ηη
T
kψψψk + |sε,k |ϵ̃N ,k + sε,kϖ̃kx21,kui,k .

(53)

With the help of (53), we get

L̇k ≤ −λss2ε,k + sε,kη̃ηη
T
kψψψk + |sε,k |ϵ̃N ,k

+ sε,kϖ̃kx21,kui,k +
0.557

µ(k + 1)(k + 2)

+
1
2γ1

η̃ηηTk η̃ηηk +
1
2γ2

ϖ̃ 2
k +

1
2γ3

ϵ̃2N ,k . (54)

Invoking (43), (44) and (45), we can deduce the following
three inequalities:

sε,kη̃ηη
T
kψψψk +

1
2γ1

η̃ηηTk η̃ηηk

=
1
2γ1

(ηηη∗
− ηηηk )

T (2ηηηk − 2sat(ηηηk−1) + ηηη∗
− ηηηk )

=
1
2γ1

[−ηηηTk ηηηk + ηηη∗Tηηη∗
− 2ηηη∗T sat(ηηηk−1)+2ηηηTk sat(ηηηk−1)]

= −
1
2γ1

[ηηηk − sat(ηηηk−1)]T [ηηηk − sat(ηηηk−1)]

+
1
2γ1

[sat(ηηηTk−1)sat(ηηηk−1) + ηηη∗Tηηη∗
− 2ηηηT sat(ηηηk−1)]

≤
1
2γ1

[sat(ηηηTk−1)sat(ηηηk−1) + ηηη∗Tηηη∗
− 2ηηηT sat(ηηηk−1)],

(55)

sε,kϖ̃kx21,kui,k +
1
2γ2

ϖ̃ 2
k

=
1
2γ2

[−ϖ 2
k +ϖ 2

− 2ϖ sat(ϖk−1) + 2ϖksat(ϖk−1)]

=
1
2γ2

[sat(ϖk−1)sat(ϖk−1) +ϖ 2
− 2ϖ sat(ϖk−1)]

−
1
2γ2

[ϖk − sat(ϖk−1)]2

≤
1
2γ2

[sat(ϖk−1)sat(ϖk−1) +ϖ 2
− 2ϖ sat(ϖk−1)], (56)

and

|sε,k |ϵ̃N ,k +
1
2γ3

ϵ̃2N ,k

=
1
2γ3

[−ϵ2N ,k + ϵ2N − 2ϵsat(ϵN ,k−1) + 2ϵN ,ksat(ϵN ,k−1)]

=
1
2γ3

[sat(ϵN ,k−1)sat(ϵN ,k−1) + ϵ2N − 2ϵsat(ϵN ,k−1)]

−
1
2γ3

[ϵN ,k − sat(ϵN ,k−1)]2

≤
1
2γ3

[sat(ϵN ,k−1)sat(ϵN ,k−1) + ϵ2N − 2ϵN sat(ϵN ,k−1)].

(57)

By the property of saturation, we can see that the right
values of the three above inequalities are bounded. Therefore,
from (54)-(57), we obtain

L̇k < +∞, (58)

which means

Vk < +∞ (59)

and

ε21,k

2(b2ε − ε21,k )
< +∞. (60)

From (60), we can see that |ε1,k | < bε holds for t ∈ [0,T ].
Remark 4: Based on the construction of e∗1,k (t), the result

that |ε1,k | < bε holds for t ∈ [0,T ] implies that |e1,k | < bε
and |x1,k | < bε + |x1,d | hold for t ∈ [tδ,T ].
(t2) Second, we will calculate the difference of Lyapunov

functional between two adjacent iterations, so as to analyze
the convergence of PAM system.
From (53), we get

Vk ≤ Vk (0) −

∫ t

0
λss2ε,kdτ +

∫ t

0
(sε,kη̃ηη

T
kψψψk + sε,kϖ̃k

× x21,kui,k )dτ +

∫ t

0
|sε,k |ϵ̃N ,kdτ. (61)

Substituting (61) into (47), we have

Lk ≤ −

∫ t

0
λss2ε,kdτ +

∫ t

0
(sε,kη̃ηη

T
kψψψk + sε,kϖ̃kx21,kui,k )dτ

+

∫ t

0
|sε,k |ϵ̃N ,kdτ +

1
2γ1

∫ t

0
η̃ηηTk η̃ηηkdτ

+
1
2γ2

∫ t

0
ϖ̃ 2
k dτ +

1
2γ3

∫ t

0
ϵ̃2N ,kdτ. (62)

When k > 0, invoking (62), we obtain

Lk − Lk−1

≤ −

∫ t

0
λss2ε,kdτ +

∫ t

0
(sε,kη̃ηη

T
kψψψk + sε,kϖ̃kx21,kui,k )dτ

+

∫ t

0
|sε,k |ϵ̃N ,kdτ +

1
2γ1

∫ t

0
(η̃ηηTkψψψk − η̃ηηTk−1ψψψk−1)dτ

+
1
2γ2

∫ t

0
(ϖ̃ 2

k − ϖ̃ 2
k−1)dτ +

1
2γ3

∫ t

0
(ϵ̃2N ,k − ϵ̃2N ,k−1)dτ

− Vk−1 +
0.557

µ(k + 1)(k + 2)
. (63)
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By the adaptive learning law (43), we have

1
2γ1

(η̃ηηTk η̃ηηk − η̃ηηTk−1η̃ηηk−1) + sε,kϖ̃kx21,kui,k

≤
1
2γ1

[(ηηη−ηηηk )T (ηηη−ηηηk )−(ηηη−sat(ηηηk−1))
T (ηηη − sat(ηηηk−1))]

+ sε,kη̃ηη
T
kψψψk

≤
1
2γ1

(2ηηη − ηηηk − sat(ηηηk−1))
T (sat(ηηηk−1) − ηηηk ) + sε,kη̃ηη

T
kψψψk

≤
1
γ1

(ηηη − ηηηk )T (sat(ηηηk−1) − ηηηk ) + γ1sε,kψψψk )

= 0. (64)

It follows from (63) and (64) that

Lk − Lk−1

≤−

∫ t

0
λss2ε,kdτ+

∫ t

0
sε,kϖ̃kx21,kui,kdτ+

∫ t

0
|sε,k |ϵ̃N ,kdτ

+
1
2γ2

∫ t

0
(ϖ̃ 2

k − ϖ̃ 2
k−1)dτ +

1
2γ3

∫ t

0
(ϵ̃2N ,k − ϵ̃2N ,k−1)dτ

− Vk−1 +
0.557

µ(k + 1)(k + 2)
. (65)

Using the learning law (44), we have

1
2γ2

(ϖ̃ 2
k − ϖ̃ 2

k−1) + sε,kϖ̃kx21,kui,k

≤
1
2γ2

[(ϖ −ϖk )2 − (ϖ − sat(ϖk−1))2)] + sε,kϖ̃kx21,kui,k

≤
1
2γ2

(2ϖ −ϖk − sat(ϖk−1))(sat(ϖk−1) −ϖk )

+ sε,kϖ̃kx21,kui,k

≤
1
γ2

(ϖ −ϖk )(sat(ϖk−1) −ϖk + γ2sε,kx21,kui,k )

= 0. (66)

Combining (65) with (66), we arrive at

Lk − Lk−1

≤ −

∫ t

0
λss2ε,kdτ +

∫ t

0
|sε,k |ϵ̃N ,kdτ +

1
2γ3

∫ t

0
(ϵ̃2N ,k

− ϵ̃2N ,k−1)dτ − Vk−1 +
0.557

µ(k + 1)(k + 2)
. (67)

Similarly, invoking the learning law (45), we get

1
2γ3

(ϵ̃2N ,k − ϵ̃2N ,k−1) + |sε,k |ϵ̃N ,k

≤
1
2γ3

[(ϵN − ϵN ,k )2 − (ϵN − sat(ϵk−1))2] + |sε,k |ϵ̃k

≤
1
2γ3

(2ϵN − ϵN ,k − sat(ϵN ,k−1))(sat(ϵN ,k−1) − ϵN ,k )

+ |sε,k |ϵ̃k

≤
1
γ3

(ϵN − ϵN ,k )(sat(ϵN ,k−1) − ϵN ,k ) + γ3|sε,k |)

= 0. (68)

Applying (68) to (67), we can get

Lk − Lk−1

≤ −

∫ t

0
λss2ε,kdτ − Vk−1 +

0.557
µ(k + 1)(k + 2)

≤ −Vk−1 +
0.557
µ

(
1

k + 1
−

1
k + 2

). (69)

On the basis of recursive operation, from (69), we obtain

Lk (t) ≤ L0(t) +
0.557
µ

−
1
2g1

k−1∑
j=0

s2ε,j(t). (70)

With the help of the continuity of Lyapunov functional,
we can see that of L0(t) is bounded for t ∈ [0,T ]. Therefore,
L0(t) +

0.557
µ

is also bounded. Then, from (70), we obtain

lim
k→+∞

sε,k (t) = 0, t ∈ [0,T ]. (71)

In light of the fact that sε,k = cε1,k+ε2,k , it follows from (71)
that

lim
k→+∞

ε1,k (t) = 0,∀t ∈ [0,T ] (72)

and

lim
k→+∞

ε2,k (t) = 0,∀t ∈ [0,T ], (73)

which is actually equivalent to the conclusion that both
e1,k (t) = 0 and e2,k (t) = 0 hold for t ∈ [tδ,T ], as the
iteration number k increases.
(t3) Here, let us analyze the boundedness of closed-loop

system signals.
Based on (70), the boudedness of Lk is guaranteed, such

that sε,k is bounded. On the basis of this and the definition
of sε,k , we can see that ε1,k and ε2,k are bounded. Further, xxxk
and eeek may be verified to be bounded. Applying the above
conclusion and the property of saturation functions, we can
derive the boundedness of uk . Then, it is not difficult to derive
the boundedness of all other signals in the closed-loop PAM
system.

In this work, we construct the auxiliary signals e∗1,k and e
∗

2,k
to overcome the obstacle of nonzero initial error in adaptive
ILC design. Difference learning approch is used to estimate
the ideal weight of RBF neural network. Hyperbolic tangent
function is used to design robust feedback term.
Remark 5: In (61), if Vk (0) ̸= 0, then the following

inequality can be derived:

Lk (t) ≤ L0(t) +

k∑
i=0

Vi(0) +
0.557
µ

−
1
2g1

k−1∑
j=0

s2ε,j(t),

from which we can not conclude that limk→+∞ sε,k (t) = 0.
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FIGURE 2. x1 and x1,d during the 29th iteration (barrier ILC).

FIGURE 3. x2 and x2,d during the 29th iteration (barrier ILC).

FIGURE 4. The error e1 and e∗

1 during the 29th iteration (barrier ILC).

VI. NUMERICAL SIMULATION
To verify the theoretical results, a numerical simulation
is performed for the PAM system (6), in which ds,k =

0.5 sin(x1,k )x2,k + 0.1sgn(x1,kx2,k ) + 0.2rand1. The model
parameters are set as follows [29]: δ0 = 0.09, λ1 = 1,
λ2 = 1.5, λ3 = 4, λ4 = 1.8, δu = 1, ϵ0 = 0.5, bv = 2,
r = 4cm, l0 = 20cm, up = 2.5V , J = 10kg · cm2.
The initial state is x1,k (0) = 0.7 + 0.1rand2, x2,k (0) = 0.
Here, rand1 and rand2 are random numbers between 0 and 1.

FIGURE 5. The error e2 and e∗

2 during the 29th iteration (barrier ILC).

FIGURE 6. ε1 during the 29th iteration (barrier ILC).

FIGURE 7. ε2 during the 29th iteration (barrier ILC).

The desired trajectory is

x1,d =

{
0.5 cos(0.4π t), k = 0, 2, 4, 6, · · ·
cos(0.2π t), k = 1, 3, 5, 7, · · ·

(74)

and

x2,d =

{
−0.2π sin(0.4π t), k = 0, 2, 4, 6, · · ·
−0.2π sin(0.2π t), k = 1, 3, 5, 7, · · ·

(75)
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FIGURE 8. Control input during the 29th iteration (barrier ILC).

FIGURE 9. x1 and x1,d during the 30th iteration (barrier ILC).

FIGURE 10. x2 and x2,d during the 30th iteration (barrier ILC).

It is obvious that x1,k (0) ̸= x1,d (0). The control law and
learning laws (40)-(45) is adopted for simulation with λs =

5, µ = 0.1, γ1 = 5, γ2 = 1, γ3 = 0.05, bε = 0.15,
tδ = 1s,T = 7s. The number of RBF network neurons in (38)
is set to be m = 5, with centers cj, j = 1, 2, · · · ,m, evenly
spaced on [−2, 2] × [−2, 2], and the corresponding width
bj = 3, j = 1, 2, · · · ,m.

The simulation results are shown in Figs. 2-16. The track-
ing responses of angle position and angular velocity during

FIGURE 11. The error e1 and e∗

1 during the 30th iteration (barrier ILC).

FIGURE 12. The error e2 and e∗

2 during the 30th iteration (barrier ILC).

FIGURE 13. ε1 during the 30th iteration (barrier ILC).

the 29th iteration are shown in Figs. 2-3 and the tracking
responses during the 30th iteration are shown in Figs. 9-10.
The angle tracking error and angular velocity tracking error
during the 29th iteration are plotted in Figs. 4-5, while the
tracking error profiles during the 30th iteration are given in
Figs. 11-12. From Figs. 2-5 and Figs. 9-12, we can see that
[x1,k , x2,k ]T can precisely track [x1,d , x2,d ]T for t ∈ [tδ,T ]
during the 29th iteration and the 30th iteration. Meanwhile,
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FIGURE 14. ε2 during the 30th iteration (barrier ILC).

FIGURE 15. Control input during the 30th iteration (barrier ILC).

FIGURE 16. History of ε1,k convergence (barrier ILC, dashed line: bε and
solid line: Jk ).

it is observed from Figs. 4-7 and Figs. 11-14 that e1 and e2
can follow e∗1 and e

∗

2 over t ∈ [0,T ], respectively. The control
input during the 29th iteration and the 30th iteration are
shown in Fig. 8 and Fig. 15, respectively. Fig. 16 provides the
convergence history of ε1,k , where Jk ≜ maxt∈[0,T ] |ε1,k (t)|.
From Fig. 16, we can see that |ε1,k (t)| < bε holds during
system operation.

FIGURE 17. x1 and x1,d during the 29th iteration (PD-type ILC).

FIGURE 18. x2 and x2,d during the 29th iteration (PD-type ILC).

FIGURE 19. x1 and x1,d during the 30th iteration (PD-type ILC).

In the following text, two traditional control algorithms,
including robust PD-type ILC algorithm and PID control
algorithm, are adopted for comparison as follows.

1). PD-type ILC with forgetting factor [30]:

uk+1 = λf uk0 + (1 − λf )uk + lp(x1,d − x1,k ) + ld (x2,d
− x2,k ), (76)

in which 0 ≤ λf < 1 is the forgetting factor, uk0 is the
preset value of uk , lp > 0 and ld > 0. In this simulation,
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FIGURE 20. x2 and x2,d during the 30th iteration (PD-type ILC).

FIGURE 21. History of Jek (PD-type ILC, dashed line: bε and solid line:
Jek ).

FIGURE 22. x1 and x1,d (PID control).

they are set as λf = 2−(k+1), uk0 = 0.5, lp = 5
and ld = 5. The profiles of angle position tracking and
angular velocity tracking during the 29th iteration are shown
in Fig. 17 and Fig. 18, respectively. The tracking results
during the 30th iteration are shown in Fig. 19 and Fig. 20,
respectively. By comparing Figs. 17-18with Figs. 2-3, as well
as Figs. 19-20 with Figs. 9-10, we can be observed that the
proposed error-tracking based neuro-adaptive ILC scheme

FIGURE 23. x2 and x2,d (PID control).

FIGURE 24. The error e1 (PID control).

FIGURE 25. The error e2 (PID control).

possesses better tracking performance, which indicates that
the control algorithm (76) is not suitable for the non-uniform
trajectory tracking ILC design for PAM systems with nonzero
initial errors. In Fig. 21, Jek denotes maxt∈[tδ,T ] |e1,k (t)|
with tδ = 1. Comparing Fig. 16 and Fig. 21, we can
see the constraint property is guaranteed in the proposed
proposed error-tracking based neuro-adaptive ILC, whereas
no constraint property is met in PD-type ILC with forgetting
factor.
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FIGURE 26. The absolute value of e1 (PID control).

2). PID control:

u = λp(x1,d (t) − x1(t)) + λi

∫ t

0
(x1,d (τ ) − x1(τ ))dτ

+ λd (ẋ1,d (t) − ẋ1(t)), (77)

where x1,d = 0.5 cos(0.4π t) and the control parameters are
chosen as λp = 18.2, λi = 0.5, λd = 10. The tracking
response of deflection angle and deflection angular velocity
under PID control are shown in Figs. 22-23, respectively.
Figs. 24-25 display the profiles of deflection angle error and
deflection angular velocity error for the case of using PID
control law, respectively. By comparing Figs. 22-23 with
Figs. 2-3, as well as Figs. 24-25 with Figs. 4-5, we can see
that the higher control precision has been achieved for the
case of using error-tracking based neuro-adaptive ILC law.
Comparing Fig. 16 and Fig. 26, we can see the constraint
property observed in the proposed ILC scheme is violated in
PID control scheme.

Thus, compared with both PD-type ILC with forgetting
factor and PID control, the proposed neuro-adaptive ILC
scheme is reasonable for the target of non-uniform trajectory
tracking of PAM systems with nonzero initial errors. The
above simulation results verify the effectiveness of theoretical
analysis in this work.

VII. CONCLUSION
In this paper, for dealing with the non-uniform angle
trajectory tracking tasks for PAM systems under nonzero
initial errors, high nonlinearities, uncertainties, and time-
varying characteristics, an output-constrained error-tracking
neuro-adaptive ILC scheme is proposed, which achieves
satisfactory accurate tracking control performance. Error-
tracking method is used to solve the initial position problem
of ILC. A difference-learning neural network is introduced
to compensate for the unknown uncertainties in the PAM
system. The angle tracking error and angle velocity tracking
error can follow the desired error trajectories over the whole
time interval as the iteration number increases, which means
excellent tracing performance of angle position and angular

velocity can be obtained during the preset interval. Moreover,
the system output is restrict in the preset bound during system
operation. Lyapunov analysis is applied to derive the control
law and analyze the stability and learning performance.
In addition, the simulation comparison between the proposed
control algorithm and two traditional control algorithms,
including PID control algorithm and PD-type ILC algorithm
are made to verify the effectiveness of the proposed ILC
scheme.
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