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ABSTRACT In various fields, such as those with high-reliability requirements, there is a growing demand
for high-performance microprocessors. Whereas commercial microprocessors offer a good trade-off between
cost, size, and performance, they often need to be adapted to meet the reliability demands of safety-critical
applications. To address this challenge, a Supervised Triple Macrosynchronized Lockstep architecture for
multicore processors is presented in this work. Multiple recovery mechanisms, including rollback and roll-
forward, have been implemented to harden the system. By integrating these mechanisms, the microprocessor
becomes more robust and capable of mitigating potential errors or failures that may occur during operation.
A quad-core ARM Cortex-A53 processor has been used as a case study, and an extensive fault injection
campaign in the register file has been conducted to evaluate the effectiveness of our proposed approach. The
results show that the hardened system exhibits high reliability, with 100% error coverage and error correction
capabilities of up to 86.40%.

INDEX TERMS ARM, fault tolerance, lockstep, microprocessor, radiation hardening.

I. INTRODUCTION
Nowadays, electronic systems are becoming more and more
prevalent in our lives, and the demand for these systems to
exhibit high reliability is also on the rise. Reliable high-end
microprocessors are required in safety-critical applications
and harsh radiation environments, including aerospace
applications where the need for computational capacity is
increasing. Current available radiation-hardened (rad-hard)
microprocessors cannot provide the required performance,
size, weight, and power consumption [1], [2], [3]. As a result,
Space agencies, private actors, and satellite manufacturers
have shown interest in utilizing Commercial Off-The-Shelf
(COTS) due to their benefits related to low power consumption
and cost, as well as high performance [4]. However, the
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reliability of COTS microprocessors cannot be taken for
granted and must be thoroughly studied [5], [6], [7].
One approach to address this challenge is to explore

high-end COTS microprocessor architectures to propose
reliable solutions that meet the new requirements for high
computational capability. Several hardening architectures
based on temporal or spatial redundancy can be found
in the literature [8]. Another approach is to use lockstep
microprocessors that contain many microsynchronized cores,
and any discrepancy between the cores indicates an error. This
approach requires specific hardware support, whichmay not be
present in all architectures. ARM Cortex-R microprocessors,
such as the Cortex-R5 [9], are examples of microprocessors
that can support this lockstep behavior.
In order to explore solutions that are not limited to micro-

processors with lockstep architectural support, we proposed
in [10] a multiprocessor hardened system with self-recovery
capabilities named Macrosynchronized Lockstep (MSLS).
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The approach effectively combines several techniques that can
detect errors and implement various levels of recovery actions
for optimizing availability without external intervention. The
proposed approach is flexible, providing multiple levels of
rollback capabilities.

This paper presents a Supervised Triple Macrosynchronized
Lockstep (STMLS) architecture, which focuses on enhancing
system reliability for multicore processors. The proposed
approach utilizes four cores, with one core supervising
the execution of the three redundant cores working in
macrosynchronized lockstep mode. Multiple recovery and
error correction mechanisms are implemented to ensure
robustness. In addition to a 100% error coverage, the proposed
hardened system achieves an improvement in the error
correction capabilities, thanks in part to the utilization of
an additional macrosynchronized core in lockstep mode and
the roll-forward process, reaching a 86.40% compared to the
51.4% and 65.87% obtained in [10] and [11], respectively.
This paper is organized as follows. Section II summarizes

related work in the field. Section III details the proposed
hardened system and a case study using a quad-core ARM
Cortex-A53 processor. In Section IV, the methodology to
validate the proposed approach is detailed. Next, in Section V,
the experimental results for the fault injection campaign are
presented and discussed. Finally, Section VI summarizes the
conclusions of this work.

II. RELATED WORK
There are several approaches to enhance microprocessor
reliability [12]. Typically, these approaches face challenges
such as a lack of information about circuit implementation
and limited observation points for microprocessor behavior.
Redundancy is a common approach for enhancing the

reliability of microprocessor systems. Temporal redundancy
involves executing the algorithm multiple times on the
same microprocessor to compare the results. In contrast,
spatial redundancy entails using multiple microprocessors
or cores to execute the same algorithm or some parts of
it and compare the outputs. System reliability can also be
improved by employing different microprocessor architectures
or algorithm implementations. For instance, Dual Multiplexed
in Time (DMT) and Dual duplex Tolerant to transients
(DT2) are examples of successful redundancy techniques
implemented and tested in space missions by the French Space
Agency (Centre National d’Études Spatiales, CNES) [13].
These techniques utilize temporal and spatial redundancy,
respectively, to harden microprocessors against failures.

An effective solution based on spatial redundancy is using
redundant Central Processing Units (CPU). There are options
available where these redundant CPUs are integrated on
a single chip, and the outputs of all CPUs are compared
every clock cycle to detect any discrepancies. ARM Cortex-
R [9] microprocessors feature built-in hardware support for
microsynchronization, also known as lockstep. The ARM
Cortex-R5 can operate in a Dual-Core Lockstep (DCLS)
configuration where both cores share inputs and caches,

or in split mode where each core runs a different software
application. The ARM Cortex-R5 is equipped with hardware
mechanisms such as parity checking and Error-Correcting
Code (ECC) to handle soft and hard errors, making it suitable
for safety-critical applications. However, since there are only
two CPUs, majority voting cannot be performed, allowing
for error detection but not correction. Another example of a
lockstep built-in feature is the Texas Hercules microprocessor
[14], designed to enhance microprocessor reliability.
In the literature, there are alternative approaches for

implementing DCLS in processors that lack this built-
in feature. For instance, in [15], DCLS is successfully
implemented using an ARM Cortex-A9 microprocessor and
tested with heavy ions, resulting in a significant reduction in
cross-section by one order of magnitude. Another hybrid tech-
nique that combines a dual-core microprocessor with thread
replication and a trace Intellectual Property (IP) observer is
proposed and tested with protons in [16]. Both approaches
rely on microsynchronization to achieve system reliability.
Additionally, in [10], we proposed a macrosynchronization
approach to design a hardened microprocessor system with
a dual-core Cortex-A9, resulting in error coverage of up
to 99.3% in irradiation experiments and a reduction in
cross-section by up to two orders of magnitude.

A third redundant CPU could be added to the DCLS system
to enhance reliability and allow for error correction capability.
In [17], Iturbe et al. introduced a Triple Core Lockstep (TCLS)
architecture using the ARM Cortex-R5 microprocessor,
discussed in more detail in [18]. TCLS provides the capability
of rapid, automatic, and transparent error recovery within
microseconds, a feature that is not present in DCLS. According
to the authors, in a representative telecom satellite operating
in a Low Earth Orbit (LEO) for a 10-year mission, the TCLS
processor offers a significant advantage over COTS Cortex-
R5 DCLS processors. It can detect errors in the CPUs and
swiftly recover from them, typically within microseconds.
This remarkable capability results in a dramatic reduction
in system downtime, up to 1000 times less compared to the
COTS Cortex-R5 DCLS processors. Although this proposal
constitutes an excellent solution, to date and to the best of
our knowledge, it is not offered commercially, and only a
proof-of-concept TCLS chip using 32-nm Complementary
Metal-Oxide Semiconductor (CMOS) Low-Power process
technology has been implemented and evaluated [19].

In another study, a dual-core Cortex-A9 was combined with
a MicroBlaze soft core to implement a TCLS with diverse
microprocessor architectures, incorporating rollback and
roll-forward capabilities [20]. The authors propose the TCLS
approach to enhance dependability in a system consisting
of two ARM cores in the Processing System (PS) and
one MicroBlaze core implemented in the Programmable
Logic (PL) of the Field-Programmable Gate Array (FPGA).
To protect the MicroBlaze core against soft errors, a Triple
Modular Redundancy (TMR) scheme is employed. The goal
is to achieve replicated execution of the same application in a
lockstep manner while ensuring consistency through a checker
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module that monitors and verifies the outputs of the ARM
cores. The novelty of this research lies in the introduction of a
MicroBlaze core in a lockstep-based methodology, combined
with hard-core ARM processors, to support both rollback and
roll-forward recovery. However, it is important to note that
this specific TCLS implementation may not be feasible for all
systems due to potential constraints in size, weight, and cost,
as it requires the use of a soft core.
In this paper, we present a Supervised Triple Macrosyn-

chronized Lockstep (STMLS) architecture for multicore
processors. The proposal implements several recovery and
error correction mechanisms. In contrast to the proposed
approach presented in [10] focused on dual-core processors,
this approach utilizes four cores to harden the system and
incorporates the roll-forward process. One core acts as
the primary core, and the other three cores are considered
secondary cores. The secondary cores run the same software
application that needs to be hardened and are kept in
macrosynchronization, controlled by the primary core. Using
three cores for system hardening, based on Triple Modular
Redundancy (TMR), allows for identifying the core where
the failure occurred and correcting the error through the
roll-forward mechanism. In the roll-forward, the error-free
saved status of the non-erroneous secondary cores is utilized
to overwrite the faulty state of the affected core. During
this process, specific register values are adjusted to match
the program memory region of the target core. In the event
of an unsuccessful roll-forward, a rollback process can be
performed. The proposed approach is validated through a fault
injection campaign, demonstrating a 100% error coverage and
system recovery with error correction up to 86.40%.

III. SUPERVISED TRIPLE MACROSYNCHRONIZED
LOCKSTEP (STMLS)
STMLS utilizes triple spatial redundancy to harden a
microprocessor system. The tripling of cores, as in a typical
TMR system, enables the STMLS to perform majority voting.
With this approach, the hardened system is able to detect
errors in one or multiple cores and execute the appropriate
implemented recovery mechanism to correct errors. The
general architecture and the system design are detailed in
the following subsections.

A. SYSTEM ARCHITECTURE
STMLS utilizes all four cores of a quad-core processor,
with one core acting as the primary core and the other
three considered as secondary cores. The architecture also
comprises safe memories and bidirectional communication
mechanisms (modules) between the primary core and the
secondary cores. In Fig. 1, a simplified block diagram of the
architecture of the proposed approach is presented.

Each core has its safe memory where the data to be used in
the proposed recovery mechanisms are stored. Safe memories
are memory regions embedded into the system or external to it,
preferably independent from one another, and equipped with
data protection mechanisms against errors. The safe memory

FIGURE 1. Simplified block diagram of the proposed approach.

is accessed by its respective core to store (context saving) or
restore (rollback or roll-forward) the processor’s status data
when needed. Both read and write operations are performed
in safe memories: the context-saving process requires writing
to the safe memory, whereas the rollback and roll-forward
process requires reading from the safe memory (although
it also entails overwriting the processor’s memory). In the
roll-forward process, the safe memory is accessed by another
specific core, as shown in Fig. 1 with dashed lines, for memory
read operation. The context-saving, rollback, and roll-forward
processes will be explained in subsection III-B.
Different approaches can be used for safe memory

implementation depending on the availability of the selected
architecture. Special attention must be paid to the speed and
size of the memories, the availability of single or separate
interfaces for read/write operations, and Error Detection
and Correction (EDAC) capabilities. Data size can be the
most problematic issue and can limit the memory selection
options, especially for software applications that occupy a
large amount of memory. The amount of data to be stored
for system recovery determines the level of reliability, but
there is always a memory limit in a system architecture.
In such a case, the usual choice is to limit the amount of
data to be protected, i.e., the replication sphere [21]. The
concept of the replication sphere, also used in [22], [23],
[24], and [25], encompasses both the physical redundancy
found in a lockstepped system and the logical redundancy
inherent in a Simultaneous and Redundantly Threaded (SRT)
processor. Components operating within the replication sphere
benefit from fault tolerance through replicated execution,
while those outside do not and thus necessitate alternative
techniques. Accurately determining a system’s replication
sphere helps implement an appropriate but not excessive set
of replication and comparison mechanisms. Adjusting the
size of the replication sphere is a trade-off between reliability
(protected data) and overheads in terms of performance and
area (in this case, occupied memory). EDAC capabilities are
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also fundamental factors as they ensure data integrity in the
event of errors in this part of the architecture. Both internal and
external memories can be used to implement safe memories.
Opting for internal memory is often preferred to avoid adding
external components and the performance degradation that can
affect the system with external memory connections. However,
one disadvantage is that internal memory cannot be directly
protected against soft errors if the memory does not provide
this kind of protection. An external memory with additional
protection against soft errors can be used. In the context
of System on Programmable Chip (SoPC), it is possible
to implement custom-protected memory blocks within the
Programmable Logic (PL), incorporating various techniques
such as ECC and scrubbing to mitigate the impact of soft
errors.
To facilitate data sharing between the primary core and

the secondary cores, a mechanism must be established.
The bidirectional communication mechanism is utilized
to exchange information regarding synchronization, and
additional information is used to compare the current status
of the secondary cores. Different strategies can be used
depending on the architectural choices available. An option to
consider is a shared (internal or external) memory. In System-
on-Chips (SoCs), On-Chip Memory (OCM) can be used,
which offers the advantages of being integrated into the
system and designed to provide fast and efficient access.
A shared memory strategy can be combined with Software
Generated Interrupts (SGI) to notify when the information is
available. Customized alternatives can also be used, such as
the implementation in PL of modules designed specifically
for this purpose.

B. SOFTWARE DESIGN
Control tasks of the hardening technique are performed on
the primary core. The control tasks include synchronization,
majority voting, triggering the recovery mechanisms, or trig-
gering the processor context-saving process. The processor
context saving is the basis of two of the three available recovery
mechanisms in the proposed hardening technique. It consists
in storing in the safe memory all the relevant information that
defines the state of the processor. This relevant information
may include the content of cache memories (or part of it),
register file, variables, etc. The recovery mechanisms utilize
an error-free saved context to overwrite the current erroneous
context and return to a previous execution point in the software
application. Achieving a successful return of the processor to a
previous execution point requires storing the processor context
using as much information as possible. The processor context
can include both local and global variables, and the more
information is stored, the more comprehensive the processor
status will be. This also results in a higher reliability, but it will
increase performance and memory overheads. For this reason,
if the amount of data to store is very large, it is necessary to
decide which variables are critical for the execution of the
software application and store only those variables to reduce
overheads but at the expense of losing reliability. As a first

approach, we have selected to protect all local variables and
the register file.

During function calls, local variables are stored on the stack
for context switching, along with the register file. Therefore,
the stack can be utilized for the context-saving process.
The stack consists of multiple frames, with each software
application function having its unique frame to store its context.
The Frame Pointer (FP) register points to the start of the
frame, whereas the Stack Pointer (SP) register points to the
last element of the frame. By using the FP and SP special
registers as references, it is possible to copy the program
stack partially or entirely. This enables the creation of copies
for all local variables or a subset of variables belonging to
specific software application functions. We have implemented
the context-saving process through an SGI.When the Interrupt
Service Routine (ISR) is called, the microprocessor context is
automatically stored in the stack. Then, the stack (containing
all local variables and register file), as well as special registers,
are stored in the safe memory. When the context-saving
process is complete, the application returns from the ISR to
the main program function.
As we mentioned before, the primary core oversees the

control tasks of the STMLS. A software application without
reliability requirements can be executed on the primary core
besides the STMLS control tasks since this core is not designed
to offer reliability in the software application it runs (no
redundancy has been implemented).
The secondary cores are macrosynchronized cores con-

trolled by the primary core. The same software application
runs on each of the secondary cores. The software application
is divided into several blocks, and several verification points
(VP) are defined along the entire application. The VP is used as
a stopping point to keep themacrosynchronization between the
secondary cores and to perform the majority voting process
by the primary core. Comparing all relevant data included
in the processor context between each core to determine if
a mismatch has occurred is not recommended due to the
significant performance overhead it implies. A better practice
is to generate a signature that involves the parameters we want
to compare. Fig. 2 shows the stages of execution in the system
considering both primary and secondary cores and the usage
of the signature.
The arrow in Fig. 2 indicates signaling sent using the

bidirectional communication mechanism. When a VP is
reached, a signature involving the most significant parameters
of the processor state, such as the status register and
application software variables, is computed on each secondary
core. The signatures are sent to the primary core for
majority voting and mismatch detection. Signature sending
is carried out through the bidirectional communication block,
and interrupts are used to notify the primary core of the
availability of the signatures. If an error is detected (signatures
are different) through the voting process, the appropriate
recovery mechanism will be performed. Otherwise (signatures
are identical), the context of each core is stored in its
corresponding safe memory. Once the action triggered by
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FIGURE 2. Stages of execution in the system considering the primary core
and a secondary core.

the majority voting decision (processor context storage or
recovery mechanism) has been completed in each secondary
core, the primary core is notified. If the primary core has
also finished storing the processor context or performing the
recovery mechanism, it sends a notification to the secondary
cores to continue with the execution.
In our proposed hardening technique, multiple strategies

are implemented as recovery mechanisms when errors
are detected: rollback, roll-forward, and restart. All these
mechanisms achieve system recovery; however, it is essential
to make the following clarification. Rollback and roll-forward
mechanisms are error recovery and correction mechanisms,
meaning they recover the system by correcting the produced
error. On the other hand, the restart mechanism recovers the
system, not by error correction, but by performing a reboot.
Restart can be performed by software (software restart) or
when a watchdog timer reaches zero (watchdog timer restart).
The software restart is performed by writing the adequate
system control register and has a similar effect to a Power-
On reset. The watchdog timer is used to detect and recover
from system malfunctions. It is commonly used to prevent
system lockup, such as when the software becomes stuck in
a deadlock. The watchdog timer is restarted by the primary
core in the verification process, and the timeout period can
be easily selected by the user regarding the specific needs of
each application.

The rollback process restores an error-free processor con-
text that was previously stored. It is performed simultaneously
in all three secondary cores when their outputs (signatures)
are all different from each other, and thus, there is no
majority in the voting process. The maximum number of
consecutive rollbacks is defined as rollback depth, and it
can be set depending on the total available safe memory for
context saving, as well as the specific characteristics of the
software application. When a first attempt at rollback fails,
a consecutive second attempt is made, and so on, until the
rollback depth is reached. Once the rollback depth is reached
without success, a software restart is performed.

The roll-forward process is performed when the signatures
of two of the secondary cores match but differ from the
signature of the remaining secondary core. To overwrite the
erroneous state, the current error-free processor context of
one of the other two secondary cores is used. The values of
specific registers are modified in the process to match the
program memory region of the target core. If the roll-forward
is unsuccessful, consecutive rollbacks are performed as many
times as needed until a successful rollback is achieved or the
rollback depth is reached. Once the rollback depth is reached,
a software restart is performed. The roll-forward and rollback
processes are done by using SGI.

In scenarios requiring high reliability, an unresponsive state
of the processor resulting from radiation-induced exceptions
is undesirable [26]. To overcome this situation, exception
recovery is also implemented through a rollback mechanism.
When an exception occurs, some elements related to the
processor state must be modified to effectively return from
the exception through a recovery mechanism. Status-related
register fields that are checked andmodified if needed when an
exception is triggered can encompass execution state controls,
exception mask bits, access control bits, etc. After modifying
status-related register elements, a rollback is performed, and
the execution continues from a previous error-free execution
point. If an exception occurs in the primary core, the rollback
process is performed on this core but not the secondary
cores; otherwise, the primary core performs a rollback in all
four cores (secondary cores and primary core itself). When
recovering from exceptions, the rollback depth can also be
reached if the rollbacks were unsuccessful. In this case,
a software restart is carried out.
All recovery mechanisms (rollback, roll-forward, and

restart) have been implemented in all secondary cores.
However, the proposed approach does not use redundancy
in the primary core. That means that in the event of a data
error in this core, the proposed approach is not able to detect
it. Despite that, we have implemented some mechanisms to
ensure robustness against failures that may cause a hang in
the primary core. Consequently, the primary core has the
following two peculiarities: roll-forward is not performed in
the primary core, and rollbacks performed in this core are due
to the recovery process of exceptions. An interesting feature to
consider for future improvement is using temporal redundancy
in the primary core to provide robustness against data errors.
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C. CASE STUDY: QUAD-CORE ARM CORTEX-A53
IMPLEMENTATION
As a case study, we have selected the quad-core ARM Cortex-
A53 [27]. In this subsection, the main characteristics of the
ARM Cortex-A53 processor are presented, as well as the
implementation of STMLS in this processor.

1) ARM CORTEX-A53 PROCESSOR
The Cortex-A53 processor is a mid-range processor known
for its low power consumption [27]. It features up to
four cores, each with its own separate L1 cache memory
for instructions and data, with sizes of 8, 16, 32, or
64 kB, and a single shared L2 cache with sizes of 128,
256, 512, 1024, or 2048 kB. It implements the Armv8-A
architecture [28], supporting both AArch32 and AArch64
execution states. It supports several exception levels in each
execution state and for A32, T32, and A64 instruction sets.
The Cortex-A53 processor is designed to support various
advanced features, including Single Instruction Multiple Data
(SIMD) and floating-point extension for efficient integer
and floating-point vector operations. Additionally, it also
includes the Armv8 Cryptography Extensions to enhance its
cryptographic capabilities. Fig. 3 shows the main features of
the ARM Cortex-A53 processor architecture.

FIGURE 3. Simplified ARM Cortex-A53 processor architecture.

The ARMv8 exception model defines multiple exception
levels, namely EL0-EL3, each with different levels of software
execution privilege. EL0 is the lowest level, also known as the
unprivileged execution level. As the exception level increases
from 1 to 3, the privilege level of the software execution
also increases. EL2 is designed for processor virtualization,
whereas EL3 supports the secure state. The Cortex-A53
processor implements all exception levels, EL0-EL3, and
supports both AArch64 and AArch32 execution states at each
level.
The execution state of the processor encompasses various

aspects, such as supported register widths, instruction sets,
and key elements of the execution model, Virtual Memory
System Architecture (VMSA), and the programmer’s model.

The two execution states are AArch64 and AArch32, which
define the processor’s execution environment and capabilities.

AArch64 is the 64-bit execution state, which encompasses
several key features. It includes 31 64-bit general-purpose
registers (X0-X30), along with 64-bit Program Counter (PC),
Stack Pointer (SP), and Exception Link Registers (ELRs).
It should be highlighted that the X30 register is the Link
Register (LR) and is used to store the return address after
a subroutine or function call. On the other hand, the ELR is
specifically used to store the return address after an exception
or interrupt occurs.
AArch64 provides a single instruction set known as A64

and defines the ARMv8 exception model mentioned before.
An additional aspect is the introduction of the Process State
(PSTATE) register. PSTATE is an abstraction for process
state information, encompassing fields that contain relevant
information exclusively in the AArch32 state, fields that
contain relevant information exclusively in the AArch64 state,
and significant fields in both execution states. The PSTATE
register is similar to the Current Program Status Register
(CPSR) in ARMv7 [29]. Both PSTATE in ARMv8 and CPSR
in ARMv7 are status registers that store flags regarding the
current state of the processor. Whereas there are specific
differences in the flags and supported functionalities of these
registers in their respective architectures, their fundamental
purpose remains: to provide information about the processor’s
state and enable instructions and operations to be executed
correctly based on that state. The A64 instruction set includes
instructions to operate on these PSTATE elements.

2) ARM CORTEX-A53 BASED IMPLEMENTATION
We have selected the quad-core ARM Cortex-A53 processor
as a case study. We have used the Zynq UltraScale+
Multiprocessor System-on-Chip (MPSoC) ZU3EG A484
device [30], which contains a Cortex-A53 processor, a dual-
core ARM Cortex-R5F processor [9], an ARM Mali-400MP2
Graphics Processing Unit (GPU), and a 16 nm FinFET+

Programmable Logic (PL). The system is divided into two
main parts: the PS (Processing System) and the PL. The
PS contains, among others, the Application Processing
Unit (APU) with the quad-core ARM Cortex-A53. The PL
can accommodate various hardware designs based on the
application requirements and available resources. The selected
device contains 154K System Logic Cells, 141K Configurable
Logic Block (CLB) Flip-Flop (FF), 71K CLB Lookup Tables
(LUTs), 360 Digital Signal Processing (DSP) slices, and Block
RandomAccessMemory (BRAM) that make a total of 7.6MB.
Only the ARM Cortex-A53 processor and the PL are used to
implement the STMLS. A simplified block diagram of the
Zynq UltraScale+ MPSoC ZU3EG A484 device is shown in
Fig. 4.
The safe memories and the bidirectional communication

blocks of the proposed STMLS are located in the PL. Safe
memories are implemented in BRAM using Block Memory
Generator IP [31] and Advanced eXtensible Interface (AXI)
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FIGURE 4. Simplified block diagram of the Zynq UltraScale+ MPSoC ZU3EG
A484.

BRAM Controller IP [32] core from AMD. The Block
Memory Generator core leverages embedded block memory
primitives in AMD Field-Programmable Gate Array (FPGA)
to enhance the functionality and capacity of a single primitive,
allowing for memories of varying widths and depths. This core
has two fully independent ports that enable access to a shared
memory space. Ports A and B have separate interfaces for both
write and read operations. In cases where not all four interfaces
are required, it is possible to select a simplified memory
configuration, such as a Single-Port Memory or Simple
Dual-Port Memory, to reduce FPGA resource consumption.
Key features of the Block Memory Generator core include
optimized algorithms that minimize block RAM resource
usage or optimize for low power consumption, as well as the
ability to configure memory initialization according to specific
requirements. In our implementation, the Block Memory
Generator IP is utilized with the AXI BRAM Controller IP.
The AXI BRAM Controller core offers flexible configuration
options for utilizing the BRAM block. It can be set up to use
a single or both ports to access the BRAM block in either an
AXI4 or AXI4-Lite controller configuration. Additionally, the
AXI BRAM Controller IP supports ECC functionality on the
datapath. ECC allows an AXI master to detect and correct
single-bit errors and detect double-bit errors in the BRAM
block. The ECC functionality can be enabled regardless of
whether the BRAM access is single port or dual port. If ECC
will be used, it must be enabled during the design stage.
ECC feature is only available when the BRAM block is
configured with a data width of 32, 64, or 128 bits, offering
both Hamming code and HSIAO [33] algorithms for 32 and
64 bits, whereas only the HSIAO algorithm is available
for 128-bit configurations. To implement the STMLS safe
memories, each BlockMemory Generator has been configured
in BRAM controller mode, with a size of 64 kB, True Dual
Port RAM mode, and ECC enabled using HSIAO.

For bidirectional communication between the primary core
and the secondary cores, AMD Mailbox IP [34] core is used.

The Mailbox core facilitates bidirectional communication
between processors or cores in the same processor and
serves as a connection point between separate systems. Apart
from facilitating data transmission, the Mailbox core also
supports the generation of interrupts between the systems.
The Mailbox core features two bus interfaces that provide
access to internal resources. Each interface can be individually
configured to utilize either an AXI4-Lite or AXI4-Stream
interface. Three mailboxes have been implemented with the
same configuration, allowing for the use of one mailbox for
communication between each secondary core and the primary
core. For both port 0 and port 1, the AXI4-Lite interface is
utilized. To implement the First In First Out (FIFO) memory of
the mailbox, the distributed Random Access Memory (RAM)
type has been chosen. The depth of the FIFO in the Mailbox,
which can range from 16 to 8192, is set to 16. Increasing
the depth of the FIFO in an FPGA results in higher resource
consumption, primarily in terms of memory block and logic
utilization. Due to the relatively small amount of information
to be exchanged between secondary cores and the primary
core, a size of 16 has been selected. This size not only meets
the requirements of the hardening technique but also avoids
excessive use of memory and programmable logic, as well as
an increase in latency.

There are multiple types of connections between the PL and
the device. Each connection has significant characteristics
that can impact the design. The connection types include
AXI interfaces, interrupts, clocks, dedicated streams, etc. The
primary mechanism for communication between components
in the Zynq UltraScale+ MPSoC device is the ARM AXI
interconnect. Numerous AXI links between the PS and
the PL are available. Selecting the appropriate AXI link
for communication between the PS and PL is one of
the crucial decisions when developing applications for the
Zynq UltraScale+ MPSoC device. The selected interfaces
for connecting the PS with the modules implemented in
the PL are M_AXI_HPM0_FPD and M_AXI_HPM1_FPD.
Since more than two modules need to be connected, the
AXI SmartConnect IP [35] core from AMD is used. AXI
SmartConnect is a versatile solution commonly used in
systems that employ AXI memory-mapped transfers. Each
instance of AXI SmartConnect supports up to sixteen Slave
Interfaces (SI) and up to sixteen Master Interfaces (MI). It is
fully compliant with the AXI protocol, allowing each SI
and MI to be connected to a master or slave IP interface
of type AXI3, AXI4, or AXI4-Lite. Many interface data
widths are supported, and transactions between interfaces
with different data widths are automatically converted by
SmartConnect. The address width can be up to 64 bits. In the
proposed design, two slave interfaces (S00_AXI and S01_AXI,
S from Slave) and fourteen master interfaces (M00_AXI to
M13_AXI,M fromMaster) are used in the AXI SmartConnect
IP. The slave interfaces of the AXI SmartConnect IP, S00_AXI
and S01_AXI, are connected to the two high-performance
AXI interfaces provided by AMD to push a large amount of
data from the PS to the PL: Master AXI High-Performance
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Full-Power Domain Interface 0 (M_AXI_HPM0_FPD)
and Master AXI High-Performance Full-Power Domain
Interface 1 (M_AXI_HPM1_FPD) [30]. Full-power domain
(FPD) refers to one of the four power domains: Low-
power domain (LPD), Full-power domain (FPD), PL power
domain (PLPD), and Battery power domain (BPD), each of
which can be isolated independently. The PS considers the
Real-time Processing Unit (RPU) and APU MPCores as two
separate power domains: the low-power domain (LPD) and
the full-power domain (FPD), respectively. As our focus is on
the APU with the ARM Cortex-A53, we utilize the master
interfaces of the FPD.
The blocks implemented in the PL do not occupy all the

available resources in the Zynq UltraScale+ device. When the
PS attempts to access an unused area, it can result in a hang.
To address this behavior, we have modified the attributes of
the device’s translation table, protecting the unused memory
regions. This allows for exceptions to be generated when
attempting to access one of these regions from the PS, enabling
the exception recovery mechanism.

In Fig. 5, a simplified block design of the proposed STMLS
in the Zynq Ultrascale+ MPSoC ZU3EG A484 is shown. The
design includes the four Safe Memories (each Safe Memory
consists of a BRAMMemory and an AXI BRAM Controller),
the three Mailboxes used for bidirectional communication
between the secondary cores and the primary core, and the
AXI SmartConnect for connecting all the implemented blocks
in the PL with the PS. This design represents a possible
implementation and interconnection of the blocks required in
the STMLS architecture. Other designs and interconnections
can be implemented depending on the platform used.

FIGURE 5. Simplified block design of the proposed STMLS in the Zynq
Ultrascale+ MPSoC ZU3EG A484.

An overview of the PL resources utilized is presented in
Table 1. The following resources are reported in the table:
Lookup Tables (LUT), Lookup Table RandomAccessMemory
(LUTRAM), Flip-Flops (FF), Block Random Access Memory
(BRAM), and Buffer Gates (BUFG).

The recovery mechanisms of the proposed STMLS have
been effectively implemented in the ARM Cortex-A53 using
the AArch64 execution state (64-bit) and considering its
specific features. The exception level EL3 is used to provide

TABLE 1. Summary of resource utilization in PL.

the highest privilege level in executing the STMLS control
tasks. For the implementation of rollback and roll-forward,
no specific considerations need to be taken into account,
except for exception recovery. The PSTATE fields must be
modified to return from exceptions. The PSTATE fields that
are verified and, if necessary, modified when an exception
is triggered include the execution state controls, exception
mask bits, and access control bits. In the context-saving
process, we have included the entire register file of the 64-bit
architecture (X0-X30 general-purpose registers and special
registers). The restart mechanism performs not only a PS
reset but also a reset and reprogramming of the PL. The
software restarts are performed by accessing and writing the
reset control (RESET_CTRL) register of the Zynq. This is
an internal reset with a system-level software restart effect.
To implement watchdog timer restart functionality, one of
the three system watchdog timer (SWDT) units in the PS
can be utilized. These watchdog timers are all built upon
the ARM system watchdog timer architecture and have
the same programming model and similar control registers.
We have used the Full-Power Domain (FPD) watchdog timer,
FPD_SWDT, that protects the Application Processing Unit
(APU) Multiprocessor core (MPCore) and its interconnect.

IV. METHODOLOGY FOR EVALUATING THE
PROPOSED APPROACH
A. PLATFORM SELECTION FOR TESTING
In order to assess the effectiveness of the proposed hardening
approach, we utilized an Ultra96-v2 development board [36]
from Avnet. The Ultra96-v2 contains a Zynq UltraScale+
MPSoC ZU3EG A484 [30]. The board features 2 GB of
DDR4 memory and a microSD card slot. The Ultra96-
v2 includes various connectivity options, such as Gigabit
Ethernet, Wi-Fi, and Bluetooth. It also provides USB 3.0 ports
and Mini DisplayPort for connecting peripherals and displays.
The board offers multiple expansion interfaces, including
Pmod connectors, allowing users to connect a wide range
of expansion boards and peripherals. The Ultra96-v2 supports
the Vitis software development platform from AMD [37],
enabling software developers to leverage the power of the
FPGA fabric alongside the processing cores. It also supports
various operating systems, such as Linux, providing a familiar
development environment.

This board has been chosen to validate our proposed harden-
ing technique because it constitutes a flexible heterogeneous
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computing platform for prototyping and developing advanced
applications easily. By utilizing a singlemicroUSB connection,
the Ultra96 USB-to-JTAG/UART Pod enables communication
with both the UART and JTAG headers on the Ultra96 board.
The Ultra96 USB-to-JTAG/UART Pod is a programming and
debugging device that offers a cost-effective and convenient
solution for incorporating USB-to-UART and AMD USB-to-
JTAG functionality. This gives engineers access to a serial
terminal and AMD JTAG tools, facilitating tasks such as
communication, debugging, and simulation.

B. REGISTER FILE INJECTOR
To validate the proposed technique, we implemented a
software-based fault injector considering the one used in [38],
and we conducted an extensive fault injection campaign. The
injector is implemented in core 0 (primary core) of the ARM
Cortex-A53 processor.
The injector randomly produces a bit-flip in one of the

selected registers of the register file, in one of the four cores of
the quad-core ARM Cortex-A53 processor at a random time
instant. The selected registers for injection are all the X0-X30
general-purpose registers, the ELR, the Control Processor
Trace Register (CPTR), and the PSTATE register. During
the experiments, we collect information about fault injection
and errors for later analysis, as well as application execution
and processor state-related information. To this purpose,
we connected the Ultra96 board to a computer through a serial
connection. This information allows us to detect and classify
events using specific identification codes.

C. BENCHMARKS
In order to assess the reliability of microprocessors in radiation
environments, a variety of benchmarks are commonly
employed [39]. For the injection experiments, we have used
three different benchmarks: Matrix Multiplication (Mmult)
algorithm, Advanced Encryption Standard (AES) algorithm
[40], and NIR HAWAII-2RG application [41].

TheMmult benchmark consists of several matrix multiplica-
tions, with 20×20matrices of 16-bit integers, whereas theAES
algorithm encrypts a data value of 16 bytes with a key length
of 128 bits. In both benchmarks, the software application is
partitioned into 12 blocks of code, with a verification point
(VP) established after each block. An additional VP is inserted
at the beginning of the software application, resulting in a
total of 13 VPs. For both algorithms, 10 000 iterations are
performed in each block of code to increase the processing
time of each block and ensure that a high percentage of total
faults are injected into the piece of code related to the software
application.
The NIR HAWAII-2RG application [41], provided by the

European Space Agency (ESA), serves as a benchmark for
processing images captured by the Teledyne Near InfraRed
HAWAII detector [42]. It offers synthetic image generation
capabilities, eliminating the need for a physical sensor
during testing. This benchmark is designed to generate a

high computational load by utilizing a large amount of
data. It has been widely used to evaluate the performance
impact of different processors when considering various
pre-processing steps. The Near InfraRed HAWAII detector
requires multiple readouts to obtain a final pre-processed
image for compression. Each readout or frame from the
detector consists of a 2048×2048 pixel size. Multiple frames
are combined to form a group, and an exposure can comprise
several groups. The number of frames and groups can be
configured. The algorithm encompasses several blocks or
steps, as shown in Fig. 6. Firstly, the Saturation detection
block identifies pixels that have reached saturation, halting
the flux estimation in subsequent steps. Next, the Co-adding
step reduces readout noise by summing the frames within
each group (typically 1-8 frames). The Super-bias subtraction
block removes pixel-to-pixel offset variations by subtracting a
bias frame from the frame obtained by the detector. Following
that, the Non-linearity correction step corrects for detector
non-linearity, whereas the Reference pixel subtraction step
eliminates common noise. In the final two steps of the
algorithm, Cosmic ray detection and Linear least square fit,
the flux is estimated, and disturbances caused by cosmic rays
are detected.

FIGURE 6. Steps of NIR HAWAII-2RG algorithm.

Each step of the algorithm is processed as an individual
block of code, and a VP has been established between each
algorithm step, resulting in 8 VPs. In addition to these 8 VPs,
we have introduced 5 additional VPs, resulting in a total
of 13 VPs. The first extra VP is positioned at the beginning,
preceding the initialization of data. Another VP is placed
before the generation of random input data. The third extra VP
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is established before the first step of the algorithm. The final
two additional VPs are positioned before the copying of data
arrays for a new iteration and at the end of the infinite loop.
Since the application uses a large amount of data, we have
followed the same strategy presented in [11]: not all data are
stored in the stack and saved in safe memories. Contrary to the
original NIR HAWAII-2RG algorithm, frames and data arrays
are not overwritten when processed. In a block of code, a new
data array is used to avoid overwriting the array utilized in
the previous block. While this allows the data from previous
blocks of code to be available for rollbacks and enhances
system reliability, it also entails an increase in both time
and memory. Therefore, for such data-intensive applications,
a trade-off must be established between reliability and the
memory and time overhead the system permits.

All benchmarks are compiled without optimization (no opti-
mization flag, -O0), using the GNUC++ ARM cross-compiler
for AMD MPSoC devices, targeting the aarch64 architecture
without operating system (aarch64-none-elf-gcc). The gcc
10.2.0, among other GNU toolchain components, is installed
with the Vitis software platform version 2021.2. For each
benchmark, all secondary cores run the same C language
software application in an infinite loop. Although the software
application is identical, each core has an independent software
application located in a distinct memory location, resulting in
each core accessing different memory addresses.

V. RESULTS AND DISCUSSION
A. MEMORY AND PERFORMANCE OVERHEAD
Table 2 provides an overview of the memory overhead of
the proposed system when considering both unhardened
(Unhard.) and hardened (Hard.) versions of the benchmarks.
The unhardened version has been implemented on a single
core, where the software application is executed. The software
application in the unhardened version is the same as that which
runs on secondary cores in the hardened version, except for the
code related to the STMLS hardening technique. The results
show that the proposed technique does not impose significant
overhead in terms of program and data size, considering
Mmult and AES benchmarks. However, for the NIR Hawaii
algorithm, the overhead reaches a value of 2.33, mainly due
to the increase in data memory size. As previously stated,
frames and data arrays are not overwritten in the hardened
version to ensure that data from previous blocks of code
remain available in case a rollback is required. Most of the
variables used by the algorithm are 2048×2048 matrices of
32 bits integers, and each of these variables occupies 16 MB.
Therefore, replicating these variables to ensure high reliability
leads to an increase in data memory size. It is also important
to note that, in all benchmarks, additional memories (safe
memories 0, 1, 2, and 3, each with a size of 64 kB) are added
to the hard-core microprocessor, and the execution is carried
out simultaneously in three secondary cores.
Table 3 summarizes the performance overhead required

for the STMLS. The microprocessor operates at a frequency

TABLE 2. Memory overhead.

TABLE 3. Performance overhead.

of 1.2 GHz. The first row of the table shows the additional
execution time incurred due to the verification and context-
saving processes. This time is added to each block of code
in the software application; therefore, the total overhead
depends on the number of blocks of code defined by the
user. Additionally, the time for the context-saving process
depends on the amount of data being protected in the software
application.

The second and third rows of Table 3 present the execution
time for the verification process plus rollback and roll-forward,
respectively. It is observed that the Verification& roll-forward
category requires a time that is approximately 5.53 and 1.75
times the one required by the Verification & rollback category,
considering Mmult and AES, respectively. This is because,
in addition to increasing the number of instructions needed
for performing roll-forward, it includes the context-saving
processes performed by the non-faulty cores, as well as the
context-saving process of the faulty core once its context
has been overwritten. Considering that in the NIR Hawaii
application, the blocks of code are all different, the time
required to perform context saving, rollback, and roll-forward
processes varies depending on the block of code. Additionally,
since the algorithm has been modified to avoid overwriting
frames, it would not be convenient to compute average
times for context saving, rollback, and roll-forward processes,
as they do not include the total time added to the original
algorithm. Hence, the fourth and fifth rows in Table 3 show
the total execution time of the software application for both
unhardened (Unhard.) and hardened (Hard.) versions. It can
be observed that whereas the total time overhead in Mmult
and AES is practically negligible, in NIR Hawaii, it reaches
a value of 3.76, which corresponds to the large amount of
data handled in the algorithm. Table 3 also shows the time
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required for booting after a software restart. It is important to
highlight that the system boot time has not been considered
when measuring the execution time of the software application.

B. POWER CONSUMPTION CONSIDERATIONS
Determining power specifications for FPGA and MPSoC
is a critical task that needs to be addressed early in the
product design cycle, often before the Register Transfer Level
(RTL) description is fully developed. To facilitate this process,
AMD Vivado Integrated Design Environment (IDE) [43],
which is used to design, simulate, and program AMD FPGA
devices, provides an estimation of power consumption. The
Environment tab for generating the power report offers various
user-editable options. These settings can notably impact the
overall estimated power. Among the user-editable selections is
the process option, which can be chosen as either ‘‘typical’’ or
‘‘maximum.’’ The default ‘‘typical’’ setting provides a closer
representation of statistically measured values, but switching
to ‘‘maximum’’ will adjust the power specification to worst-
case values.
The power estimation provided by Vivado constitutes a

powerful tool. However, it should be highlighted that this
analysis assumes that both the RPU and GPU are powered on.
In the design we have implemented for STMLS evaluation,
only the APU containing the quad-core ARM Cortex-A53
processor is utilized. Therefore, a more accurate estimation
can be obtained if both these elements, RPU and GPU, are
considered powered down. Furthermore, it is also assumed
that all cores of each processor are active. This results in a less
precise estimation for the scenario without STMLS, in which
only one core of the ARM Cortex-A53 processor should be
active.
In addition to the power report offered by Vivado, AMD

provides the Xilinx Power Estimator (XPE) tool [44] that
allows fine-tuning the parameters and obtaining a more
accurate estimation. It allows the importation of parameters
from the Vivado power report but also enables additional
adjustments. For instance, it can be chosen whether other
PS elements are powered on or down, and even the number of
cores utilized in the processors.

To obtain a more accurate estimation of power consumption,
the XPE tool has been utilized. First, a power consumption
analysis was conducted using Vivado, and then the values
provided by the power consumption report were imported
into XPE. In XPE, both the RPU and the GPU were powered
down, and two scenarios were considered. In the first scenario,
the STMLS technique is not used; therefore, only the PS of
the device is used, and no blocks are implemented in the PL.
Additionally, the first scenario uses a single-core configuration.
In the second scenario, a four-core configuration is utilized.
In addition to using the PS, the necessary blocks for the
STMLS technique are implemented in the PL. Concerning
the user-editable options, we chose the ‘‘maximum’’ process
setting for a worst-case analysis. The power estimation results
using XPE are shown in Fig. 7.

FIGURE 7. Power consumption estimation from Xilinx Power Estimator
(XPE).

In Fig. 7(a), the single-core case without STMLS is shown.
The overall power consumption is 1.588 W, with 76%
attributed to dynamic power and 24% to static power. The
PS consumes 99.6% of the dynamic power since no blocks are
implemented in the PL. On the other hand, Fig. 7(b) presents
data for the scenario employing four cores with STMLS.
In this case, the total consumption is 2.194 W, marking an
increase of 0.606 W (38.2%) in comparison to the design
without STMLS. Both dynamic and static power consumption
of the PS increases due to the usage of additional cores in the
ARM Cortex-A53 processor (four-core configuration instead
of single-core configuration): in the dynamic power of the
PS, there is an increase of 0.206 W (17.2%, from 1.201 W
to 1.407 W), while in the static power, there is an increase of
0.025 W (19.8%, from 0.126 W to 0.151 W). Furthermore,
using BRAM and other PL blocks in the STMLS technique
leads to an escalation in total dynamic power from 1.206 W
to 1.779 W (47.5%). Regarding the static power, there is an
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increase of 0.033W (8.6%). In conclusion, it can be confirmed
that XPE reports more accurate power consumption values,
and there is an approximate increase of 38.2% in the total
consumption when implementing the STMLS technique.

Today’s safety-critical applications, besides reliability and
high performance, also require efficient power consumption.
This attribute is impacted by factors such as software
structure, execution characteristics, and how the code
leverages the hardware intricacies of the execution platform.
The arrangement of the processor’s internal architecture
can significantly affect power consumption, depending on
how effectively the operations specified in the software
application can be matched with the functional components
of the processor. Typically, the power dissipation in such
systems is viewed as a hardware concern. Nevertheless,
it can be efficiently addressed by combining hardware and
software approaches to implement power-saving techniques.
As recovery mechanisms devised for STMLS entail additional
power consumption in contrast to the unhardened single-core
version (due to the use of additional software code, hardware
implemented in PL, and extra cores), power-saving techniques
can be employed to enhance power efficiency during error
correction procedures in the proposed hardening strategy.
Several studies can be found in the literature in which
power-saving techniques are applied on hard or soft core
microprocessor-based systems to accomplish an efficient
power consumption [45], [46], [47], [48], [49], [50], [51],
[52]. In [53], the authors integrate Dynamic Voltage and
Frequency Scaling (DVFS) and thread parallelism while also
considering various novel metrics to assess the performance
and energy consumption of an application. DVFS is an
energy-saving method that doesn’t necessitate modifying
an HW/SW design afterward. This technique modifies the
power usage and performance of an embedded device
in real time, depending on its workload and operational
conditions. The work presented in [54] examines the power
monitoring and scaling functionalities of AMD Zynq-7000
SoCs and UltraScale+ MPSoCs, and a real-time operating
system (RTOS) is used to administer application resources,
voltage/frequency scaling, and power monitoring through its
preemptive scheduling policies.

The present work focuses on analyzing the effectiveness of
the proposed technique. Although it may impact the power
consumption of the entire heterogeneous system, this analysis
requires extensive study and consideration of the specific
characteristics of the system in which it will be implemented.
Therefore, the analysis of the energy efficiency of the system
is deferred for future research.

C. FAULTS INJECTION OVERVIEW
The summary of the injection campaign is presented in Table 4.
Over 90 000 faults were injected for each benchmark, with
the number of faults injected in each of the four cores ranging
from 24.79% to 25.30% of the total. An 8.82%, 4.59%, and
5.65% of the total injected faults resulted in errors for Mmult,

TABLE 4. Summary of injection campaign.

TABLE 5. Injections and errors per register for the primary core.

AES, and NIR Hawaii, respectively, as shown in the last
column.
A more detailed analysis is presented considering the

injected registers. Since the primary core is unable to detect
data errors, the occurrence of errors differs when compared to
secondary cores. In this sense, we should analyze separately
the data related to the primary core, and the data associated
with the rest of the cores (secondaries). Table 5 reports the
total injected faults for the most significant registers, as well
as the percentage of these injections that caused errors for the
primary core, whereas Table 6 shows the registers with the
most significant amount of errors for secondary cores.
Both Table 5 and Table 6 display the percentage of errors

for each presented register relative to the total faults injected
in that register. In both cases, over 75% of the faults injected in
the ELR register resulted in an error, as well as approximately
16.67% to 23.15% of faults injected in the PSTATE register.
In the case of the X0-X4 registers, errors were only detected in
the secondary cores with a significant percentage, unlike the
primary core, where data are not protected. X0-X4 registers
are the most frequently used general-purpose registers when
no optimization is applied (-O0). For this reason, faults
injected into these registers are more likely to result in an
error. However, differences can be observed in the error rates
produced for the same register when comparing the three
benchmarks. In Mmult, 8.78% of the faults injected into X4
led to an error, whereas in AES and NIR Hawaii, it was only
0.15% in both cases. Similar behavior can be observed for
X2 and X3 registers: in Mmult, the error percentage is higher
compared to the values obtained in AES and NIR Hawaii. This
is because the utilization of these three registers (X2, X3, X4)
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TABLE 6. Injections and errors per register for secondary cores.

is higher in the Mmult benchmark, where they are used as
indices in the implemented matrix multiplication loops.
The X30 register is a particular case. This register in

ARMv8 is the Link Register (LR), which stores the return
address after a subroutine or function call. In the primary core,
no specific software application is running. Only tasks related
to the STMLS technique are executed. Therefore, there are no
subroutine and function calls, and faults injected into the X30
register do not cause errors (the X30 register is not included in
Table 5). However, as shown in Table 6, the behavior of X30 in
the secondary cores differs for each benchmark. In Mmult, the
loops for multiplications are implemented in the main function
without using subroutines or functions, resulting in 0% errors
in X30. In AES, there is moderate usage of subroutines and
functions (9.81% errors in X30). In contrast, in NIR Hawaii,
due to the complexity of the application, there is a much
higher usage, leading to a higher occurrence of errors in X30
(41.43%).

For the rest of the registers, the percentage of error
occurrence is very low (0.13% to 0.26% for the primary core
and 0.08% to 0.14% for the secondary cores), since these
registers are hardly used without optimization.

D. STMLS EFFECTIVENESS ANALYSIS
In Fig. 8, the results of the effectiveness of the STMLS
technique are presented, considering the corrected errors, soft-
ware restart (SW restart), or watchdog timer (WDT). We can
distinguish between two main classifications: recovered errors,
when the system is able to recover from the occurrence of an
error through any of the recovery mechanisms; and corrected
errors, when the proposed technique corrects the error without
triggering a restart. It should be highlighted that all observed
errors were detected by the proposed technique, achieving a
100% error coverage. Considering the total number of detected
errors (8010 inMmult, 4476 in AES, and 5226 in NIRHawaii),
a 86.40%, 79.96% and 84.50% was corrected in Mmult, AES
and NIR Hawaii, respectively. In [10], we obtained a 51.4%
error correction rate in the fault injection campaign, whereas in
an enhancedMSLS in [11], we obtained 65.87%; therefore, the
architecture proposed in this work achieves an improvement
of up to 35.0% in error correction. The errors processed by

rollback or roll-forward that are not corrected are recovered
through a restart.

FIGURE 8. Distribution of recovered and corrected errors.

The error correction values achieved by the STMLS
technique not only exceed the MSLS results proposed in
[10] and [11] but also other approaches available in the
literature. In [15], Oliveira et al. propose and evaluate a
DLCS technique on the dual-core hard-core ARM Cortex-
A9 processor, achieving 33% and 45% masked and mitigated
errors, respectively, in the best case of the injection campaign.
This results in a recovery percentage of up to 78%. On the
other hand, Kasap et al. present a TCLS technique for
commercial processors in [20], which uses a dual-core hard-
core ARM Cortex-A9 processor and a Microblaze soft-core
processor implemented in PL. In addition to evaluating the
effectiveness of the proposed TCLS technique, the authors
present experimental results corresponding to a version of
DCLS. According to the data provided by the authors,
in DCLS, 52% of corrected errors and a 21% system restart
rate are achieved, resulting in a total recovery percentage of
73%. Regarding the TCLS technique, the authors report a
51.1% corrected error rate and a 21.3% system restart rate for
a total recovery rate of 72.4%. In Table 7, a comparison of error
correction, system restarts, and total recoveries is presented
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for the mentioned techniques, as well as the proposed STMLS.
It is worth noting that in the case of the DCLS technique
proposed by Oliveira et al. [15], the masked errors reported by
the authors do not encompass all the corrected errors. Some
corrected errors are classified as mitigated errors; for instance,
those corrected soft errors triggered exceptions. However,
system recoveries reported by the authors, encompassing
both masked and mitigated errors, provide a more accurate
comparison value with the rest of the techniques.

TABLE 7. Comparison between different DCLS and TCLS approaches.

Considering the results presented in Fig. 8, corrected errors
can be divided into corrected errors through rollback and
corrected errors through roll-forward. Out of the total detected
errors for each benchmark, 32.32%, 50.20% and 59.07%
were corrected by rollback, whereas 54.08%, 29.76% and
25.43% were corrected by roll-forward, for Mmult, AES and
NIR Hawaii, respectively, resulting in the percentages of the
corrected errors presented in Fig. 8. However, it should be
noted that in the case of NIR Hawaii, a peculiarity occurs.
Unlike Mmult and AES, in which, when the roll-forward
process is performed, either the error is corrected, or a restart
is done (SW restart or WDT), in NIR Hawaii there are cases in
which a roll-forward process failed, and a subsequent rollback
process was triggered ending in a successful error correction.
Therefore, out of the 59.07% of errors corrected through
rollback in NIR Hawaii, 5.80% corresponds to roll-forward
processes that ended with a successful rollback process.
In Fig. 9, the rollbacks (ROLB) and roll-forwards (ROLF)

performed in each benchmark are shown to analyze the
effectiveness of these mechanisms. Most rollbacks and
roll-forwards are successful (errors are corrected), and their
high error correction capability is confirmed. Taking into
account the rollbacks, they were successful in over 98.00%:
99.54%, 99.21%, and 98.41% in Mmult, AES, and NIR
Hawaii, respectively. In the case of roll-forwards, the success
rate is lower, but it remains high: 90.19%, 90.61%, and 74.20%
for Mmult, AES, and NIR Hawaii, respectively. It should
be clarified that in addition to the 74.20% of successful
roll-forwards in NIR Hawaii, 16.92% of the roll-forwards
resulted in error correction but through the execution of
rollbacks, as mentioned before.
We have also analyzed the occurrence of rollbacks and

roll-forwards and their effectiveness considering the core
where the event occurred. Table 8 shows the total number
of rollbacks and roll-forwards per core, as well as the amount

FIGURE 9. Effectiveness of rollback and roll-forward mechanisms for error
correction.

of those events that were corrected. Also, the percentages of
errors corrected through rollback and roll-forward, relative to
the total number of rollbacks and roll-forwards, respectively,
are shown. The percentage of error correction through rollback
is higher than 96.86% in all four cores and benchmarks. In the
case of errors corrected through roll-forward, they are higher
for the three secondary cores in Mmult and AES and lower
for NIR Hawaii. It should be noted that the roll-forwards that
appear in the column of the primary core (6 roll-forwards in
Mmult and 6 roll-forwards in NIRHawaii) have been triggered
by an error produced in this core, but the roll-forwards have
not been performed on this core. These errors occurred during
the signature verification process of the three secondary cores,
which is carried out on the primary core. As a result, one
of the signatures resulted in being different from the others,
and therefore, the roll-forward process was triggered in the
corresponding secondary core. It is worth noting that the
primary core lacks the ability to perform roll-forward within
the primary core itself.
In Fig. 10 and Fig. 11, the number of corrected rollbacks,

corrected roll-forwards, SW restarts, and WDT are presented
considering the affected register. The results related to
primary core are presented in Fig. 10: Fig. 10(a) Mmult,
Fig. 10(b) AES and Fig. 10(c) NIR Hawaii; whereas the
results related to secondary cores are shown in Fig. 11:
Fig. 11(a) Mmult, Fig. 11(b) AES and Fig. 11(c) NIR
Hawaii.
In Fig. 10, registers with the highest number of errors are

shown, considering the primary core. Most errors occur in
ELR (76.38% in Mmult, 73.26% in AES and 71.88% in NIR
Hawaii) and PSTATE (19.96% in Mmult, 20.16% in AES
and 19.64% in NIR Hawaii). Since the primary core is
not capable of detecting data errors through comparison,
most injected faults in general-purpose registers do not result
in observable errors. If we analyze the errors specifically
produced in ELR, it is observed that 76.29%, 69.31% and
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TABLE 8. Distribution of rollbacks and roll-forwards per core.

FIGURE 10. Distribution of errors considering the affected register on the primary core.

FIGURE 11. Distribution of errors considering the affected register on secondary cores.

72.67% of them (444, 393 and 351) were corrected through a
rollback process, followed by 19.07%, 30.69% and 25.47%
(111, 174 and 123), that were detected through the WDT,
considering Mmult, AES and NIR Hawaii, respectively. When
analyzing errors in PSTATE, the behavior is similar to ELR:
the highest percentage also corresponds to errors corrected
through rollbacks, followed by errors detected through the
WDT.

In Fig. 11, it can be observed that most errors produced
in the secondary cores are related to PSTATE and ELR
registers, as in the primary core case, but in addition, the
X0-X4 registers and X30 are involved. The STMLS technique
ensures the detection and correction of most data errors (X0-
X4 errors) through the roll-forward mechanism. In X0-X4
registers, 92.21%, 93.30% and 95.95% of errors produced
are corrected (4263, 1128 and 1491): 84.56%, 89.33% and
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TABLE 9. Distribution of exceptions per core.

85.52% are corrected through roll-forward (3909, 1080 and
1329), and 7.65%, 3.97% and 10.43% through rollback (354,
48 and 162). Only 7.79%, 6.70% and 4.05% needed to
be recovered using restarts: 1.30%, 3.72% and 2.90% SW
restarts and 6.49%, 2.98% and 1.15% WDT. The X0-X4
registers are general-purpose registers used as data registers,
and consequently, errors in these registers are corrected inmost
cases. It should be noted that in Fig. 11(c), cases in which
a roll-forward process is started, then the rollback process
is triggered, and finally the error is corrected, are shown
as Corrected roll-forwards via rollback. This situation only
occurs in the NIR Hawaii benchmark.
In Fig. 11, it can also be observed the high correction

capacity in the rest of the registers. Regarding register
X30, it can be observed that in Mmult, there are no errors
corrected or recovered through any mechanism because no
errors occurred in that register. However, in both AES and
NIR Hawaii, the majority of errors produced are corrected
through rollback: 153 in AES and 603 in NIR Hawaii,
representing 68.88% and 76.51% respectively, of the total
errors produced in X30. If we analyze the behavior in the
PSTATE register, it can be observed that there are no errors
corrected through roll-forward nor errors recovered through
SW restart. All errors were corrected through rollback or
resulted in a restart through WDT. This results from all errors
in PSTATE being associated with exceptions since it contains
important information regarding the processor’s state. Due to
the significance of exceptions and their impact on the proper
functioning of the processor, it is important to analyze the
level of recovery and correction provided by STMLS against
this type of failure.
When a failure occurs, it can result in an exception,

incapacitating the system to continue executing the software
application. Addressing this issue is essential to obtain a
high error correction rate with the hardening technique.
Table 9 shows the total and corrected exceptions per core. The
percentages of exceptions corrected for each core, considering
the total exceptions generated in that core, are also reported.
The percentages of exception correction range from 69.62%
to 83.89%. As a result, the system was able to correct through
rollback, 72.87%, 73.66% and 80.56% of the total exceptions
in Mmult, AES, and NIR Hawaii, respectively. This high
percentage of exception correction has contributed to the

high error correction capacity demonstrated by the STMLS
technique.

VI. CONCLUSION
This work presents a novel Supervised Triple Macrosynchro-
nized Lockstep (STMLS) architecture designed to enhance
the resilience of high-end multicore COTS processors. This
technique is specifically tailored for multicore processors
with more than three cores, addressing the unique challenges
and benefits of a higher core count. The STMLS hardening
technique not only implements the rollback but also the
roll-forward mechanism to enhance the error correction
capabilities. The roll-forward process involves overwriting
the erroneous state of the faulty core using the current
error-free context from one of the other two secondary cores.
Additional recovery mechanisms, such as Watchdog timer,
software restart, and program memory delimitation, are also
employed to enhance system reliability. In the proposed
hardened architecture, lockstep is carried out at the software
level without specific hardware support.
For the implementation and evaluation of the proposed

approach, the quad-core ARM Cortex-A53 processor embed-
ded into the AMD Zynq UltraScale+ MPSoC ZU3EG A484
device was used, and an extensive fault injection campaign
was conducted. The experimental findings demonstrated that,
apart from achieving full error coverage, the proposed STMLS
achieved enhanced error correction capabilities, yielding
86.40%. This represents a notable improvement compared
to the 51.4% and subsequent 65.87% we previously obtained
in related work. Remarkably, these results substantiate the
high efficacy of the STMLS in enhancing the reliability of
high-end multicore COTS processors.
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