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ABSTRACT Extracting road networks from remote sensing images holds critical implications for various
applications including autonomous driving, path planning, and road navigation. Despite its importance, the
task remains arduous due to the complex backdrops in remote sensing imagery, intricate road geometries,
and the challenges arising from vegetation and structural obstructions. To address these multifaceted issues,
we introduce a specialized model for road extraction in remote sensing images, termed DRCNet. This
model employs a pre-trained DenseNet-121 as its encoder and is fortified with both Recurrent Criss-Cross
Attention (RCCA) and Convolutional Block Attention Module (CBAM). RCCA facilitates the capture of
global contextual information across all pixels, thereby enriching the model’s understanding of global image
relationships. Simultaneously, CBAM is integrated within the skip connections to optimize the network’s
focus on significant road features. Comprehensive experiments conducted on both the DeepGlobe Road
and Massachusetts Road datasets substantiate that DRCNet outperforms other benchmark models in road
detection tasks.

INDEX TERMS Road extraction, remote sensing image, DenseNet-121 network, attention module.

I. INTRODUCTION
Owing to advancements in remote sensing technology, the
availability of high-resolution imagery has surged, finding
applications across a spectrum of fields such as environ-
mental monitoring, natural resource management, urban
planning, and geographic information systems (GIS) [1].
Among these applications, the extraction of road information
from high-resolution remote sensing images serves as a
pivotal component for GIS mapping and updates [2].
Despite growing interest and research efforts, automated road
extraction remains a complex challenge due to the inherent
complexities presented by roads in high-resolution imagery.

Road features in high-resolution remote sensing images
mainly include geometric features, spectral features,
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topological features, and texture features [3]. According
to these features, many road extraction methods have
been proposed, which can be divided into two categories:
traditional road extraction methods and deep learning-based
road extraction methods. Traditional road extraction methods
are based on experience, which mainly uses the shallow
features of the image, such as gray level, edge, texture, and
geometric shape. Deep learning-based methods mainly use
deep convolutional neural networks to implicitly extract deep
abstract features from original images, and use these features
to automatically extract road information.

Traditional techniques for road extraction predominantly
encompassmethods such as threshold segmentation, template
matching, region growing, edge detection, andmorphological
algorithms. For instance, Singh and Garg [4] developed an
automated road extraction technique that employs adaptive
global thresholding followed by morphological operations
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to eliminate small, non-road regions. Similarly, Xie et al. [5]
introduced an adaptive variable bandwidth templatematching
algorithm aimed at extracting linear roads from remote sens-
ing images. Lu et al. [6] devised a rapid road network extrac-
tion strategy based on region growth, tailored for remote
sensing images of varying resolutions. Darweesh et al. [7]
proposed an algorithm reliant on Canny edge detection
using the Canny operator, while Zhou et al. [8] advanced an
automatic road extraction algorithm founded on topological
derivatives andmathematical morphology. Despite the degree
of success achieved by these traditional methods, they
come with notable limitations, including but not limited
to, a lack of robustness in handling complex terrains
and road occlusions, the necessity for substantial manual
intervention and post-processing, limited extraction accuracy,
and an inability to support real-time and large-scale data
processing.

With the development of deep learning, deep convolutional
neural networks (DCNN) have achieved significant success
in tasks such as remote sensing data classification [9],
object detection [10], [11], [12] and semantic segmenta-
tion [13], [14], [15], [16]. Concurrently, deep learning-based
road extraction methods have overcome the inherent lim-
itations of traditional approaches, leading to a substantial
surge in the advancement of road extraction technology.
Various deep learning architectures have demonstrated their
efficacy in producing high-quality road extraction outcomes.
For example, Ronneberger et al. [17] introduced the U-Net
architecture, an extension of fully convolutional networks
(FCNs) [18]. U-Net utilizes transpose convolutions for
upsampling and employs skip connections to integrate
features from both the encoder and decoder segments of
the network. This integration enables effective fusion of
information across multiple layers, thereby aiding in the
recovery of finer spatial details crucial for segmentation.
Zhang et al. [19] melded deep residual learning [20] with
U-Net to develop the ResUnet framework specifically for
road area extraction. Similarly, Chen et al. [21] presented
DeepLabV3, which incorporates an atrous spatial pyramid
pooling (ASPP) module, employing dilated convolutions at
varying rates to expand the receptive field and to better
capture multi-scale contextual information. This significantly
enhances segmentation performance, particularly for smaller
objects. Zhou et al. [22] unveiled D-LinkNet, featuring a
LinkNet [23] architecture with a pretrained encoder and an
embedded ASPP module, effectively boosting the network’s
ability to connect road features. Finally, Wang et al. [24]
proposed the DDU-Net model, which amalgamates dilated
convolutions and attention mechanisms to enhance the
extraction of global contextual semantic features. Moreover,
DDU-Net employs a dual-decoder structure to preserve a
higher proportion of low-level features, thereby offering
more detailed detection for smaller roads. While these
DCNN-based methods have demonstrated good performance
in road extraction, there are still several challenges in road
extraction:

1) Roads in high-resolution remote sensing images can
often be affected by a multitude of intricate environ-
mental and contextual interferences, such as buildings,
trees, and vehicles. These disruptive elements share
similar textures and colors with the roads, making it a
formidable challenge for road extraction algorithms to
distinguish roads from surrounding objects effectively.

2) Roads may be partially obscured by buildings, trees,
or other objects, and the presence of shadows can
further introduce variations in brightness and color
within the road areas, compounding the complexity of
road extraction. These occlusions and shadows result
in discontinuities in the road network, necessitating
algorithms capable of identifying and reconstructing
these missing road segments.

3) Roads exhibit a diverse range of shapes and topological
structures, including straight segments, curves, intersec-
tions, and roundabouts, among various other forms and
connectivity patterns. This implies that road extraction
algorithms must be endowed with a high degree of
flexibility, enabling them to adapt to roads of differing
shapes and topological configurations.

In order to identify approaches for tackling the afore-
mentioned challenges, we conducted an extensive review of
existing deep learning techniques [25], [26], [27]. During this
review, we observed that many of these methods commonly
employ ResNet as the backbone for feature extraction.
The use of atrous spatial pyramid pooling (ASPP) is also
prevalent, as it broadens the receptive field of the network
and enhances its ability to accumulate multi-scale contextual
data. Additionally, the incorporation of upsampling oper-
ations with skip connections is widely adopted to enable
the network to amalgamate both low-level and high-level
features. However, these methods are not without drawbacks:
(1) they tend to lose crucial road features during the image
downsampling process; (2) they often struggle to capture
long-range dependencies in remote sensing imagery, leading
to suboptimal extraction accuracy; and (3) while skip connec-
tions do facilitate the blending of deep and shallow seman-
tic features, this straightforward fusion approach neglects
the spatial and channel-wise distribution of road infor-
mation, thereby constraining the network’s segmentation
capabilities.

To address these challenges, we draw upon the strengths
of DenseNet [28] and attention mechanisms in deep learn-
ing [29], [30] to introduce a novel encoder-decoder network
optimized for high-resolution road segmentation in remote
sensing images, whichwe designate asDRCNet. Our network
employs a pre-trained DenseNet-121 architecture as the
encoder to extract feature maps endowed with varying levels
of semantic information from its dense blocks. To capture
rich, global contextual data, we incorporate a Recurrent
Criss-Cross Attention (RCCA) module at the core of both
the encoder and decoder segments of the network. Moreover,
in the skip connections, we deploy the Convolutional Block
Attention Module (CBAM) [31] to weight both spatial and
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channel-wise information within the feature map, thereby
enhancing the ability to precisely locate and extract road
information.

The main contributions of this paper are as follows:

1) A specialized DRCNet model has been introduced for
the automatic extraction of intricate road networks from
high-resolution remote sensing images. By incorpo-
rating a pre-trained DenseNet-121 as the network’s
encoder, it effectively enhances the model’s capacity to
represent features, resulting in an improved precision in
remote sensing road extraction.

2) We enhance the network’s ability to capture long-range
dependencies between pixels and improve its under-
standing of image context information by introducing
the RCCA module into the network. This ensures
that the model can better recognize the interaction
between roads and their surrounding environment,
ultimately improving the accuracy and continuity of
road extraction.

3) By incorporating the CBAM module into skip connec-
tions, it facilitates the provision of precise road structure
information while minimizing background interference,
effectively mitigating challenges related to inaccurate
information and misclassification in road prediction.

4) By conducting a thorough analysis of the results
obtained from comparative experiments and ablation
studies on two publicly available road extraction
datasets, our findings underscore the compelling neces-
sity of the proposed DRCNet model. These experiments
clearly demonstrate that the DRCNet not only markedly
enhances the quality of road extraction results but also
exhibits robust generalization capabilities. In the realm
of road extraction, DRCNet’s superior performance
surpasses that of some cutting-edge models.

The remainder of the paper is organized as follows:
Section II provides a comprehensive discussion of relevant
literature. In Section III, the proposed method is introduced
in detail. Section IV meticulously outlines the experimental
setup, encompassing information about the dataset, exper-
imental environment, and evaluation metrics. Section V
conducts a thorough analysis of the experimental results using
a variety of metrics. Finally, Section VI summarizes the
paper’s key findings and contributions and offers insights into
future prospects.

II. RELATED WORKS
A. ROAD SEGMENTATION MODEL
Road segmentation networks based on deep learning typically
employ an encoder-decoder architecture. The encoder serves
as the feature extractor for the entire network, and archi-
tectures such as VGG [32] and ResNet [20] are commonly
used in road segmentation networks to gradually extract
feature maps containing high-level semantic information
from input images. The role of the decoder is to upsample
the high-level features extracted by the encoder and perform

pixel-wise classification to obtain prediction results at the
same spatial level as the input image. Zhang et al. [19] intro-
duced the ResUnet network for road area extraction, which
combines the advantages of residual learning and U-Net to
achieve excellent road segmentation results. Zhou et al. [22]
proposed D-LinkNet, which uses LinkNet as its backbone
network and incorporates the ASPP module in the central
part. By enlarging the receptive field and fusing multi-scale
features in the central part while preserving detailed infor-
mation, D-LinkNet can address issues related to narrow,
connectivity, and long-span roads to some extent. Ding
and Bruzzone [33] presented DiResNet, which introduces
directional supervision into the network. This imparts the
model with directional awareness, thereby enhancing the
detection of linear features and improving the integrity and
connectivity of road extraction. Ge et al. [34] introduced a
deep feature-review transmit network to review and promote
contour features back to the encoder network. This effectively
mitigates road fragmentation and missing connection points
commonly encountered in road extraction. Jiang et al. [35]
proposed a road semantic segmentation model that integrates
attention mechanism, gated decoding block, and dilated
convolution. The central part of the network combines serial
and parallel dilated convolutions with coordinate attention
modules, effectively expanding the network’s receptive
field while enhancing its feature extraction capabilities in
spatial and domain channel information. Additionally, gated
convolutions are introduced in the decoder part to enhance
the model’s ability to extract road edges. Wang et al. [36]
introduced NL-LinkNet, which effectively captures contex-
tual information by incorporating a non-local neural network,
leading to more accurate road segmentation. Dai et al. [37]
combined deformable convolutions with spatial self-attention
mechanisms and proposed a road enhancement deformable
attention network to learn long-range dependencies for
specific road pixels, thereby enhancing road segmentation
results.

B. ATTENTION MECHANISMS
The attention mechanism is a method that mimics the human
visual system and is widely cited in the field of computer
vision. Mnih et al. [38] designed the attention mechanism
on the RNN model for image classification and achieved
good performance. SENet proposed by Hu et al. [39] uses
attention weights to adaptively calibrate channel features
to improve the representation ability of neural networks.
Woo et al. [31] proposed CBAM, which realizes the adaptive
selection of channel and spatial features of convolutional
neural networks by combining channel attention and spatial
attention modules; and improves the representation and
discrimination ability of the network. SKNet proposed
by Li et al. [40] is an attention module based on feature
combination. SKNet can adaptively adjust the receptive field
size of the convolution kernel, to better capture features
of different scales. Fu et al. [41] proposed a Dual Attention
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FIGURE 1. The overall structure of the DRCNet network.

network (DANet) to adaptively fuse local features and their
global dependencies, showing good performance on image
segmentation tasks. Huang et al. [42] proposed a criss-cross
attention network (CCNet) to obtain the context information
of the whole image in a very effective and efficient way. All of
thesemodules are almost plug-and-play and can be embedded
into any existing network to improve speed, result quality, and
generalization ability.

The attention mechanism is currently widely applied
in various remote sensing image interpretation tasks. For
example, inspired by the attention mechanism, Yao et al. [14]
proposed a new multimodal deep learning framework called
ExViT for land use and land cover classification tasks.
Li et al. [43] proposed a synergistic attention perception neu-
ral network (SAPNet) for semantic segmentation of remote
sensing images. To jointly model spatial and channel affinity,
they designed a synergistic attention module (SAM) that
allows for the extraction of channel affinity while preserving
spatial details. Wan et al. [44] constructed a dual-attention
road extraction network (DA-RoadNet) using a shallow
encoder framework. This approach explores and analyzes
the correlation of road features in both spatial and channel
dimensions, allowing the extraction of road information from
complex environments.

III. DRCNET NETWORK STRUCTURE
As shown in Figure 1, DRCNet adopts an encoder-decoder
structure, where the encoder completes the encoding func-
tion of the sample features, and the decoder realizes the
restoration of the feature decoding. First, we use the pre-
trained DenseNet-121 to build an encoder to extract dense
features and ensure accurate road segmentation. Then, the
recurrent criss-cross attention module (RCCA) was used as
the connection part of the encoder and decoder to learn the

FIGURE 2. A 5-layer dense block.

long-range dependencies of road pixels from the feature map
generated by the DenseNet encoder; and provide the global
information to the feature decoding module. Finally, the
shallow feature map generated by the dense block is passed
through the CBAM module to obtain the channel attention
features and spatial attention features, which enhances the
attention degree of road information while suppressing the
background information, and provides more accurate road
feature information for the decoder module.

A. ENCODER:DENSENET-121
As verified by several experiments, the pre-trainedDenseNet-
121 achieves better results with fewer parameters. Therefore,
it is chosen as the encoder for road feature extraction. Dense
block is the core module of DenseNet-121. DenseNet-121
consists of multiple dense blocks, each of which consists
of multiple convolutional layers. Inside each dense block,
the input to each convolutional layer is the concatenation
of the feature maps of all previous layers. This densely
connected design makes DenseNet perform better in feature
reuse, effectively reducing the number of parameters of the
model and improving the overall computational efficiency.
In addition, this design also helps alleviate the vanishing
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TABLE 1. Layer configuration of DenseNet-121 in DRCNet.

gradient problem. Figure 2 illustrates a 5-layer dense block,
which is implemented as follows:

Xl = Hl([X0,X1, . . . ,Xl−1]), (1)

where Xl represents the feature map of the layer.
[X0,X1, . . . ,Xl−1] represents the feature map that is
connected to the layer and Hl(·) is a composite function
that includes batch normalization (BN), rectified linear units
(ReLU), and convolution.

However, as the number of layers of the network becomes
deeper, the number of channels becomes larger, and the
number of parameters becomes larger, which makes it
difficult to train a deeper network. To this end, DenseNet
also contains an important Transition Layer to connect two
dense blocks. The transition layer reduces the number of
channels of the obtained featuremap to half of the originaland
performs downsampling to halve the size, thereby simplifying
the calculation and improving the calculation efficiency.

The detailed network configuration of DenseNet-121 in
DRCNet is shown in Table 1, which lists the size and number
of convolution kernels in each convolutional layer, as well as
the output size of the feature map.

B. RECURRENT CRISS-CROSS ATTENTION (RCCA)
Recurrent criss-cross attention (RCCA) is an enhanced
version of Criss-cross attention (CCA), which uses the
attention mechanism to facilitate the information exchange
between different spatial locations in the feature map to
capture long-range dependencies and enhance the ability
of feature representation. RCCA consists of two CCA
submodules with shared parameters. The calculation process
of CCA is illustrated in Figure 3.

FIGURE 3. The calculation process of criss-cross attention.

FIGURE 4. An example of information propagation in the RCCA module.

In CCA, the input feature map F ∈ RC×H×W is first
processed by three parallel 1 × 1 convolution operations to
obtain the feature maps Q ∈ RC

′
×H×W , K ∈ RC

′
×H×W ,

and V ∈ RC×H×W (C ′ < C). At each position u in
the spatial dimension of Q, a feature vector Qu ∈ RC

′

can be obtained. Simultaneously, extract the feature vectors
of H+W − 1 pixels in both the horizontal and vertical
directions at the position of u in K , resulting in the set �u ∈

R(H+W−1)×C ′

. Then, the feature map D ∈ R(H+W−1)×(W×H )

is generated by affinity operation, and the softmax operation
is performed on D to transform it into a new feature layer A
with the same size.The computation of affinity operation is
shown as follows:

di,u = Qu�T
i,u, (2)

where �i,u ∈ RC
′

is the ith element in �u, and di,u ∈ D is the
degree of correlation between features Qu and �i,u.
Based on the aforementioned generation process of �u,

create the set 8u ∈ R(H+W−1)×C on V . Then, perform an
aggregation operation on the feature map A and V , resulting
in the feature map F ′

∈ RC×H×W enriched with vertical
and horizontal spatial context information. The aggregation
operation is computed as follows:

F ′
u =

∑
i∈|8u|

Ai,u8i,u + Fu, (3)

where F ′
u is the feature vector at position u in F ′, Ai,u is the

value at channel i and position u in A, and 8i,u is a feature
vector at position i of 8u.
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FIGURE 5. Convolutional block attention module.

FIGURE 6. Channel attention module.

FIGURE 7. Spatial attention module.

However, the CCA module captures remote context
information only in horizontal and vertical directions, while
the connections between pixels and surrounding pixels are
still sparse. For ease of understanding, we visualize the
information propagation in RCCA as shown in Figure 4.
In Loop1, the pixel at position (θx , θy) first passes the infor-
mation to (µx , θy) and (θx , µy). Then, in the Loop2, (µx , θy)
and (θx , µy) transfer information to (µx , µy). Therefore, the
RCCA module, which consists of two CCA submodules,
is able to obtain remote dependencies from all pixels
and generate new feature layers with dense, rich context
information.

C. CONVOLUTIONAL BLOCK ATTENTION MODULE (CBAM)
The overall structure of the convolutional block attention
module (CBAM) is illustrated in Figure 5. It consists of
a channel attention module (CAM) and a spatial attention
module (SAM). Specifically, the CAM, as shown in Figure 6,
is utilized to enhance the feature representation capability
between different channels. It achieves this by learning
channel weights to adaptively select important channel
features. On the other hand, the SAM, depicted in Figure 7,
is employed to enhance the feature representation capability
across different spatial positions. It accomplishes this by
learning spatial weights to adaptively select significant
spatial regions. This design enables the CBAM module to
flexibly perform feature selection and enhancement within
convolutional neural networks, effectively improving the
network’s feature extraction performance across various
dimensions.

Compared to SENet, CBAM not only focuses on the
relationships between channels of the input image but also
emphasizes the spatial relationships within the image. The
channel attention module highlights the significance of
eachfeature channel within the input feature map. It achieves
this by computing the internal relationships between channels
and ranking their importance to allocate specific weights for
each channel. Firstly, average pooling and max pooling are
applied on the feature map F ∈ RC×H×W to obtain feature
maps FCavg and F

C
max . Subsequently, F

C
avg and F

C
max are fed into

a weight-shared network composed of multiple perceptrons
(MLP) to generate the channel attention map MC ∈

R1×1×C . The mathematical expression for this process is as
follows:

MC (F) = σ (MLP(AvgPool(F)) +MLP(MaxPool(F)))

= σ (W1(W0(FCavg)) +W1(W0(FCmax))), (4)

where σ represents the sigmoid function, and W0 and W1
denote the shared weights in the MLP.

The spatial attention mechanism explores the internal rela-
tionships of the feature map at the spatial level, determining
which regions of features are crucial and complement the
channel attention mechanism. Firstly, average pooling and
max pooling are conducted along the channel dimension on
the input features, resulting in FSavg and F

S
max . Subsequently,

FSavg and FSmax are concatenated and convolved by a
standard convolution layer. Finally, the updated feature map
MS ∈ R1×H×W is obtained through the spatial attention
mechanism. The entire process can be represented as
follows:

MS (F) = σ (f 7×7([AvgPool(F);MaxPool(F)]))

= σ (f 7×7([FSavg;F
S
max])), (5)

where σ represents the sigmoid function, f 7×7 denotes a
convolution operation with a kernel size of 7 × 7.

The complete computation formula for the CBAMmodule
is as follows:

F ′
= MC (F) ⊗ F, (6)

F ′′
= MS (F ′) ⊗ F ′, (7)

where F ′ represents the input features after undergoing the
channel attention operation, F ′′ is the output features after
refinement, and ⊗ denotes pixel-wise multiplication.
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IV. EXPERIMENT
A. DATASET
To verify the effectiveness of the proposed method, two
different remote sensing-image road datasets are selected
to train and validate the proposed model. One of the
datasets is the DeepGlobe Road dataset and the other is
the Massachusetts Road dataset. Let’s briefly introduce two
datasets:

(1) The DeepGlobe Road dataset is a pixel-level labeled
dataset containing pixel-level annotated data from Thailand,
India, and Indonesia. The images include various scenes such
as urban, rural, and suburban. The image spatial resolution
is 0.5 m/pixel and the image size is 1024×1024 pixels. The
dataset contains 6226 pairs of training images and image
labels. All images are randomly divided into training set and
test set according to the ratio of 4:1, resulting in a total of
4981 images in the training set and 1245 images in the test
set.

(2) The Massachusetts Road dataset is a publicly available
dataset for road extraction research. It covers an area of more
than 500 square kilometers in Massachusetts and contains
a variety of different landscape types. The dataset includes
1108 training images, 49 testing images, and 14 validation
images. The size of the images is 1500×1500 pixels with a
resolution of 1.2 m. To facilitate experimentation and ensure
consistent experimental conditions, we uniformly crop the
original images to a size of 1024×1024 pixels using random
cropping.

B. IMPLEMENTATION DETAILS
This experiment utilizes the PyTorch deep learning frame-
work on a Linux system. The environment versions include
torchvision = 0.14.1, torch = 1.13.1, and python = 3.7.16.
The model is trained and tested on two NVIDIA GeForce
RTX 3090 (24GB) GPUs. We use BCE (Binary Cross
entropy) + dice coefficient loss as the loss function and
choose Adam [45] as our optimizer. The initial learning
rate is set at 2e-4 and train our network with a batch
size of 8. When the training loss stagnates, the learning
rate is reduced to one-fifth of its current value. Training
is stopped when the learning rate drops below 5e-7.
The model with the lowest loss on the training set is
chosen for testing. During the prediction phase, test time
augmentation (TTA) is applied, involving horizontal, vertical,
and diagonal flips of the images. Each image is predicted
8 times, and the outputs are then aligned with the original
images. The averaged probability of each prediction is
computed, using a threshold of 0.5 to generate binary output
results.

C. EVALUATION METRIC
In order to prove the effectiveness of the proposed method,
Precious, Recall, F1-score, and IoU are selected as the
evaluation metrics to represent the quality of road extraction.
Precious represents the ratio of pixels correctly predicted

TABLE 2. Comparative results on the DeepGlobe Road dataset.

TABLE 3. Comparative results on the Massachusetts Road dataset.

as roads to all pixels predicted as roads. Recall represents
the ratio of pixels correctly predicted as roads to the total
pixels of roads. F1-score represents the harmonic mean of
precision and recall. IoU is the ratio of the intersection and
union of the predicted and true values. It is calculated as
follows:

Precision =
TP

TP+ FP
, (8)

Recall =
TP

TP+ FN
, (9)

F1 − score =
2 × Precision× Recall
Precision+ Recall

, (10)

IoU =
TP

TP+ FN + FP
, (11)

where TP signifies pixels correctly predicted as road,
FP denotes pixels erroneously predicted as road while they
are background. TN represents pixels accurately predicted as
background, and FN indicates pixels mistakenly predicted as
background when they are road.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. COMPARATIVE RESULTS ON THE DEEPGLOBE
ROAD DATASET
To comprehensively evaluate the effectiveness of the pro-
posed DRCNet model, we conducted extensive comparative
experiments on the DeepGlobe Road dataset. We imple-
mented several mainstream remote sensing image segmen-
tation methods based on encoder-decoder architectures,
including U-Net [17], LinkNet [23], DeepLabv3+ [46],
D-LinkNet [22], NL-LinkNet [36], MAC-UNet [47], and
RCF-SNet [48]. Table 2 presents the evaluation metrics
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FIGURE 8. Visual experimental results on the DeepGlobe Road dataset. (a) input image, (b) ground truth, (c) U-net, (d) DeepLabv3+, (e) LinkNet,
(f) D-LinkNet, (g) NL-LinkNet, (h) MACU-Net, (i) RCFSNet, and (j) DRCNet. The red boxes highlight roads that are more difficult to identify, indicating a
significant improvement of our model over the reference ones.

TABLE 4. Comparison of parameters and computational complexity.

for the performance of different segmentation models on
the DeepGlobe Road dataset. Among these models, U-
Net stood out by introducing skip connections to enhance
segmentation through the incorporation of finer details
during the upsampling process, achieving IoU and F1-score
values of 64.67% and 78.54%, respectively. Additionally,
models that incorporated the Dilated Spatial Pyramid Pooling
(ASPP) module, such as DeepLabV3+ and D-LinkNet, also
demonstrated strong performance with IoU values of 70.19%
and 70.68%, respectively. We attribute this performance
to the ASPP module’s ability to extract features across
multiple scales effectively. NL-LinkNet, which introduced

Non-Local operations to capture long-range dependencies
and model contextual information, did not yield partic-
ularly ideal results. We speculate that the inclusion of
Non-Local operations might introduce excessive background
information, potentially leading to unnecessary interference
and performance degradation. MACU-Unet and RCFSNet,
as recently proposed road extraction models, sought perfor-
mance improvement by introducing attention mechanisms
but still fell short compared to some mainstream models.
DRCNet outperformed all other models, achieving the
highest values for IoU and F1-score. Compared to U-
Net, it exhibited significant improvements of 6.86% and
4.86%, respectively, highlighting its capacity for accu-
rate pixel-level classification and localization. We attribute
DRCNet’s remarkable performance to several key features:
firstly, the use of DenseNet-121 as the backbone network
for extracting richer features; secondly, the introduction
of the RCCA module, which aids in capturing dense
global context information; and lastly, the incorporation
of the CBAM module within skip connections, effectively
suppressing background information and emphasizing road
structural details. DRCNet takes into consideration the
strengths and weaknesses of other road segmentation models,
leading to significant improvements in road segmentation
results.
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FIGURE 9. Visual experimental results on the Massachusetts Road dataset. (a) input image, (b) ground truth, (c) U-net, (d) DeepLabv3+,
(e) LinkNet, (f) D-LinkNet, (g) NL-LinkNet, (h) MACU-Net, (i) RCFSNet, and (j) DRCNet. The red boxes highlight roads that are more difficult to
identify, indicating a significant improvement of our model over the reference ones.

For the purpose of a more direct comparison of road
extraction performance between different models, Figure 8
presents some visual experiment results, with red boxes
highlighting areas prone to omission due to vegetation cover
and small size. From these results, it can be observed
that DRCNet outperforms the reference models in detecting
small-sized roads and roads with complex background
information. For instance, some intermittently covered small
roads by vegetation are challenging (Rows 1 and 2). In such
cases, other reference models fail to effectively detect
these obscured roads, while DRCNet provides near-perfect
detection results. Similarly, compared to the reference
models, DRCNet demonstrates higher detection rates and
lower false positive rates for small-sized roads in complex
urban scenes (Rows 3 and 4). In rural scenes, some classical
road extraction models struggle to distinguish between dirt
roads and main roads among fields, while DRCNet exhibits
better interference resistance, particularly for dirt roads (Row
5). Furthermore, for roads with complex shapes and irregular
outlines (Row 6), DRCNet also delivers more comprehensive
road extraction results compared to the reference models.

B. COMPARATIVE RESULTS ON THE MASSACHUSETTS
ROAD DATASET
The Massachusetts Road dataset lacks pixel-level anno-
tations, with only centerline information and road width
included. Consequently, annotation errors may introduce

instability in the prediction results. As presented in Table 3,
DRCNet notably outperforms other road segmentation mod-
els in terms of F1-score and IoU, achieving scores of 79.91%
and 66.55%, respectively. While D-LinkNet attains an IoU
of 64.94%, DRCNet exhibits a noteworthy improvement of
1.61%. We also observed significant performance disparities
among models such as DeepLabV3+ and RCFSNet on
both the Massachusetts Road dataset and the DeepGlobe
Road dataset. Notably, DRCNet consistently demonstrates
superior overall performance on both datasets, underscoring
its robust generalization capabilities and suitability for remote
sensing road extraction tasks. These comprehensive results
affirm that our proposed DRCNet model excels in accurately
delineating road regions and exhibits remarkable resilience to
interference.

Figure 9 shows DRCNet’s strong performance on test
samples. It excels at detecting roads hidden by trees, improv-
ing road extraction continuity (Rows 1 and 2). Moreover,
DRCNet exhibits greater accuracy in extracting small-sized
roads, ensuring the completeness of the extraction process
(Rows 3 and 4). Additionally, DRCNet effectively harnesses
contextual information, allowing for a more precise differen-
tiation between road and non-road areas (Rows 5 and 6).

C. COMPLEXITY ANALYSIS
In order to evaluate the performance of road segmentation
models more comprehensively, Params and FLOPs are also
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TABLE 5. Ablation experiment on the DeepGlobe Road dataset with LinkNet as baseline model.

TABLE 6. Ablation experiment on the Massachusetts Road dataset with LinkNet as baseline model.

FIGURE 10. Visual comparison of ablation experiments on the DeepGlobe Road dataset.(a) input image, (b) ground truth, (c) baseline(LinkNet),
(d) DenseNet-121, (e) DenseNet-121 with CBAM, (f) DenseNet-121 with RCCA, (g) DRCNet. Red boxes highlight the hard regions to extract.

considered as important indicators, and these two metrics are
used to measure the number of parameters and computational
complexity of the model, respectively. As shown in Table 4,
the Params and FLOPs of DRCNet are 10.61(M) and
213.61(G), respectively. DRCNet has fewer parameters, only
5.49(M) more than MACU-Net, but significantly lower than
the other six models. While our model’s computational
complexity is relatively high, only smaller than RCFSNet,
considering the excellent performance of DRCNet in terms of
IoU and F1-score, the slightly higher FLOPs are not deemed
unacceptable.

D. ABLATION STUDY
To verify the effectiveness of Densenet-121, CBAM, and
RCCA, we analyze the performance of Densenet-121,

Densenet-121 with RCCA, DenseNet with CBAM, and the
proposed DRCNet. The results shown in Tables 5 and 6
report quantitative results on the DeepGlobe Road dataset
and Massachusetts Road dataset, respectively. Visual com-
parisons of ablation experiments performed on DeepGlobe
Road dataset and Massachusetts Road dataset are shown
in Figures 10 and 11. The effectiveness of the different
components in DRCNet analysis is given below.

1) EFFECTIVENESS OF DENSENET-121
We use DenseNet - 121 as the backbone to replace ResNet34
in LinkNet. The experimental results show that compared
with the baseline network LinkNet, The IoU of DenseNet-
121 on the DeepGlobe Road dataset and Massachusetts Road
dataset is increased by 0.57% and 0.72%, respectively, and

126888 VOLUME 11, 2023



D. Wei et al.: DRCNet: Road Extraction From Remote Sensing Images

FIGURE 11. Visual comparison of ablation experiments on the Massachusetts Road dataset.(a) input image, (b) ground truth, (c) baseline(LinkNet),
(d) DenseNet-121, (e) DenseNet-121 with CBAM, (f) DenseNet-121 with RCCA, (g) DRCNet. Red boxes highlight the hard regions to extract.

the F1-score is increased by 0.39% and 0.60%, respectively.
We do this because DenseNet-121 has stronger feature
extraction capability, better information transfer mechanism,
and a structure more suitable for the road extraction task,
which enables it to capture the complex features and shapes
of roads more accurately, thus improving the accuracy and
performance of road extraction.

2) EFFECTIVENESS OF CBAM
When we add CBAM on the basis of DenseNet-121. The
experimental results on two datasets show that IoU and
F1-scoore are improved, and the improvement on the
DeepGlobe Road dataset is more obvious. Compared with
DenseNet-121, DenseNet-121 with CBAM in ious and F1-
score increased by 0.36% and 0.25% respectively. This
suggests that the incorporation of the CBAM module
contributes to the model’s improved ability to discover
and utilize feature correlations effectively, along with a
more targeted emphasis on important channel and spatial
information. This further strengthens the network model’s
performance in road extraction tasks, enabling it to more
precisely capture and segment roads, thereby enhancing the
quality and effectiveness of road extraction.

3) EFFECTIVENESS OF RCCA
When we join RCCA in DenseNet-121 on the basis of the
module, the experimental results show that the DenseNet -
121 with RCCA on two data sets of all the indexes
were improved significantly. Among them, the IoU and
F1-score on the DeepGlobe Road dataset reach 71.38%and
83.30%respectively, which are 1.03%and 0.71%higher than
those of DenseNet-121. The IoU and F1-score on the

Massachusetts Road dataset reach 71.38% and 83.30%
respectively, which are 0.19% and 0.14% higher than those of
DenseNet-121. This shows that RCCA can help the network
model predict the road area more accurately; so that the
network shows better comprehensive performance.

VI. CONCLUSION
In this paper, we propose a DRCNet model for road
extraction from complex high-resolution remote sensing
images. Compared with the current popular road extraction
models, the proposed model has better performance in
road extraction. The network adopts an encoder-decoder
structure to learn road features. Among them, the pre-trained
DenseNet-121 acts as an encoder to solve the vanishing gra-
dient problem during training. The recurrent cross-attention
module is introduced into the encoder-decoder connection
part to capture dense global context dependencies. The
convolutional attention module is introduced into the skip
connection part to highlight the road information while
suppressing the background information, which effectively
solves the problem of low road recognition accuracy. The
experimental results on the DeepGlobe Road dataset and
the Massachusetts Road dataset demonstrate that this model
outperforms other comparative models in multiple metrics,
including IoU and F1-score. This validates that the approach
exhibits superior performance and extracts road structures
more comprehensively. However, the model in this paper
still needs to be further improved to improve its ability to
extract roads from more complex background information
in different scenarios; and to further optimize the model
structure under the premise of ensuring the accuracy. In the
next step, more cutting-edge and perfect deep learning
methods can be combined to study.
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In the future, the primary focus will be on expanding
and optimizing the road extraction dataset to provide better
support for neural network training and enhanced perfor-
mance. Moreover, there will be ongoing efforts to refine
neural network architectures in order to better align with
the demands of road extraction. For instance, the utilization
of encoders like ResNeSt [49] or Swin Transformer [50]
within the road extraction network is anticipated to contribute
to more accurate road information extraction. Furthermore,
as technology continues to advance, there is an expectation
that the exploration of additional innovative approaches,
including the integration of multimodal data, such as the
fusion of LiDAR and infrared images, will further enhance
the performance of road extraction.
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