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ABSTRACT Machine learning (ML) based bearing fault detection is an emerging application of Artificial
Intelligence (AI) that has proven its utility in effectively classifying various faults for timely measures.
There are myriad studies dedicated to the effective classification of bearing faults under different
conditions and experimental settings. In this study, we proposed a weighted voting ensemble (WVE) of
three low-computation custom-designed convolutional neural networks (CNNs) to classify bearing faults
at 48 KHz. Some of the recent studies have exploited 1-d time-series signals and time-frequency based
2-d transformations for bearing fault classification. However, 1-d signals lack contextual information
and higher-dimensional interpretations whereas time-frequency based transformations provide a more
appropriate, visually perceivable and explainable representation of the time and frequency changes.
Therefore in this study, a scalogram based representation of the signals is leveraged for classification using
the CNN. Furthermore, the class imbalance is a significant challenge that affects the modelling behavior and
possibly create biases. This study provides a novel density and distance hybrid over-sampling approach
namely Density-Aware SMOTE(DA-SMOTE) built upon the SMOTE methodology for a more refined
representation of synthetic samples within the minority class distribution. The experimentation procedures
were carried out before and after the oversampling and it was observed that the balanced dataset acquired
much better accuracy then the imbalanced dataset. This is evident by the fact that the highest validation
accuracy for the proposed ensemble method (WVCNN) reached at 0-HP and 1-HP reached 99.28% and
99.13% while for the over-sampled dataset the accuracy soared to 99.71% and 99.87% for 0 and 1-HP
respectively. The performance was evaluated for other metrics apart from the accuracy to assess the model’s
performance in terms of chance occurrences and the class wise performance.

INDEX TERMS Bearing fault detection, deep convolutional neural network, transfer learning, fine tuning,
time series, data pre-processing.
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I. INTRODUCTION
In order to ensure reliable performance of mechanical
systems, condition monitoring of bearings is paramount. This
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process is heavily reliance upon various data sources and
techniques, each of which plays a critical role in detecting
potential failures. The key data sources are inclusive of
vibration analysis, temperature sensing, lubrication analysis,
and acoustic sensing [1]. The vibration analysis is quite
instrumental in highlighting changes within the respective
vibrational patterns that serve as early fault indicators.
Temperature sensors track the heat signatures during bearing
operations, further revealing the underlying issues like
friction or other lubrication problems. The acoustic sensors
extract sound signals produced by the bearings and analyze
them for deviations indicating potential fault types [2], [3].

An accurate classification of the detected bearing faults is
important to effectively monitor the condition and apprising
of the severity of entailing consequences. In such regards,
the deep learning techniques, especially the convolutional
neural networks (CNN), have time after time demonstrated
their efficacy in accurate pin-pointing the fault types for
enhanced monitoring [4]. These CNN models excel at
processing varying data representations like time-frequency
based vibration spectrograms. As deep learning models
struggle to find patterns and suffer from over-fitting when
the data set is insufficient or monotonous, hence pre-trained
models provide a substantial edge by cutting the training costs
and the accumulation of large data-sets. Transfer learning,
a strategy that fine-tunes pre-trained neural network models,
expedites model training, particularly when dealing with
limited labeled data. Non-conventional approaches, such
as Siamese networks and graph neural networks, provide
unique perspectives on bearing fault classification. Siamese
networks facilitate one-shot learning, while graph neural
networks capture intricate dataset relationships [5], [6].

However, the bearing faults classification comes with some
challenges, the primary one being the class-imbalance which
arises due to varying distribution of faults in real-world
systems. Some of the faults, like wear and misalignment
are marked as common, while the others like corrosion or
brinelling, are much rarer. Additionally, the data collection
biases have a tendency to further complicate this class
imbalance, as certain faults classes are more receptive during
inspections, ultimately leading to over-representation in the
dataset [1].

Hence an effectively addressed class imbalance remains
pivotal for achieving accurate fault classification results.
There are several strategies that are employed to mitigate
this imbalance issue and consequently improve the fault
classification accuracy [4]. The strategies that are com-
monly employed include oversampling, which increases
the minority class instances, while under-sampling reduces
the majority class samples to match the minority class.
Oversampling usually involve synthetic data generation tech-
niques including traditional methods like SMOTE, ADASYN
sampling and other interpolations while the AI based
techniques i.e. Generated Adversarial Networks (GAN)
employ learned patterns for artificial instances generation
for minority classes to diversify the dataset. Additionally in

cost-sensitive learning, classes are assigned different mis-
classification costs, ultimately prioritizing minority class
accuracy during the training. Techniques like these contribute
collectively to overcome challenges posed by imbalance
classes in bearing fault classification [7], [12].

With the fast-paced emergence of effective deep learn-
ing algorithms being refined each data, developments in
convolutional and Time Series algorithms have pushed
the research in condition monitoring to new heights [20].
Techniques employing novel combinations [21], [22] have
surfaced, enabling effective diagnoses and prognosis of
bearing failures. Similarly, the constraints of large data-sets
have been entertained by novel architectures and transfer
learning models being used interchangeably with certain
architectural modifications for required results, as suggested
in [23]. Some non-conventional CNN techniques such as
Siamese networks [24] and the graph neural networks have
effectively been integrated into the classification pipeline for
effective results. Overall these techniques have proven to be
successful in effectively distinguishing various faults types in
bearings.

Being a newly tapped domain there are many challenging
gaps and unaddressed facets that form a plethora of
possibilities for improvement in bearing fault classification.
One such aspect is the evaluation criteria. Accuracy has
been taken as a primary measure or the sole assessing
criterion in most of the studies, which deprives the model
of thorough evaluation [24], [25], [26]. Owing to the
imbalanced lineament of the data [27], the biases and
class-wise agreements for proposed techniques should be
properly weighed across various performance matrices for
reliance [28], [29]. Additionally, the computational costs of
classification and fault diagnosis should be considered for
deployable scenarios. This study contributes by leveraging
three distinct convolutional neural networks (CNN) to create
a weighted voting ensemble for a robust classification of
signals at 0 and 1 HP Load. Three custom built CNN architec-
tures were proposed for the ensemble model-ling to evaluate
performance, assess computational costs, robustness, and
effectively com-pare against existing techniques. Moreover,
the class imbalance of the dataset was dealt with using a novel
density and distance weighted hybrid SMOTE methodology
allowing for a more refined oversampling of minority class
instances and an improved classification. Furthermore, the
time-frequency based representation of the fault signals
was implemented using wavelet transform for efficaciously
utilizing the abilities of an adaptive spatial feature oriented
classification approach. This study contributes as follows:

1) A weighted voting ensemble of three streamlined and
resource efficient convolutional neural networks is
proposed for robust classification of bearing faults.

2) A density-distance weighted hybrid SMOTE method-
ology is implemented by refining the SMOTE gen-
erated samples through a ranking of density values
for a uniform weighted distance and density aware
oversampling.
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TABLE 1. Comparison of existing studies on ball bearing fault diagnosis.

3) The time-frequency based scalogram representation of
bearing fault signals is used for a more transient spatial
features extraction.

The remaining part of the paper is organized as follows:
Section II, the Literature Review is given. In Section III,
the methodologies used are described. The Results and
Discussions are given in Section IV respectively. While the
Section V concludes the paper.

II. LITERATURE REVIEW
The literature study pertaining to bearings reveal a scintil-
lating insight into the re-search and development focused
on fault detection and diagnosis. Various studies have been
sieved through to reveal the state-of-the-art methodologies
being employed in regard to the effective diagnosis of
bearings for possible abnormalities while highlighting their
significance.

One such study by Tang et al. [23] provided a novel
take on the process of bearing fault diagnosis by employing
Wasserstein Generative Networks (WGAN) for combating
the imbalanced classes. The vibrational signals were con-
verted to gray-scale images and then fed to a generative
network to create synthetic samples, representatives of the
minority class. Moreover, a novel convolutional neural
network (CNN) named SECNN was then used for fault
identification with an achieved accuracy of 98.2% on SKF
dataset for 9 classes. Another study byWu et al. [26] proposed
a novel architecture name SE-ResNet by modifying an
existing residual connections-based network called ResNet.
The author explicitly opted for automated feature extraction
by converting raw signals to image-based representations
using continuous wavelet transform (CWT). In this study
conducted on the CWRU dataset for 4 classes, the signals
were converted to Spectrogram prior to being subjected
to SE-ResNet for classification. The model achieved an
accuracy of 96.42%.

CWRU has been used recurrently for its diversity and
reliability in the domain of bearing faults classification, along
with its open-sourcing enabling researchers to reproduce
the results of the experimentations and build upon the
experiment. Hence another study on this dataset by Ver-
straete et al. [30] demonstrated the results of time-frequency
analysis of the fault waveform by employing STFT, Wavelet
Transform and Hilbert-Huang transforms respectively. These
transforms curbed the need for manual- labor-intensive fea-
ture extraction and automated the process. These respective
transformations were then fed to a convolutional neural
network for fault identifications. The highest accuracy
achieved for the following dataset in terms of scalogram
and Spectrogram inputs approached 99.5% for 4 class
classifications.

Some studies drifted away from the conventional classifi-
cation of CNN networks to shift the perspective onto other
networks in order to enhance performance. One such study
by Xiao et al. perfectly emulated this idea by harnessing
the power of graph neural net-works for effective classifi-
cation [25]. The graphical approach took into account the
correlation between weak and strong fault signals. A graph
of similarity between samples was created first and then
forward to a Graph Neural Network for effective detection.
The validation results achieved on the similar CWRU dataset
for 4 classes were 99.1%. Another study by Zhao et al. [24]
proposed a Siamese Network-based approach to not only
classify the faults but to get insights into the similarity
relation between samples. The authors utilized the network
to train the model on a small dataset. The authors modified
the standard Siamese network in a way that a classification
head was added while the Euclidean distance measurement
was replaced with a network measurement. Different tests at
varying input samples were conducted to evaluate themodel’s
performance. The maximum achieved validation accuracy on
private datasets using the custom-defined ISNN method was
around 98.1% for 5 classes respectively.
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Some more studies effectively exploiting the potential of
CNN were seen during the literature analysis. One such
study by Yan et al. proposed MTF-ResNet an architecture
inspired by ResNet and Markov Transition Field for effective
identification of fault patterns in the data [22]. The authors
used augmentation techniques along with a time-frequency
conversion of vibrational data for the classification. The
problems pertaining to vanishing gradients and raw signal-
to-image conversion have been addressed using the Markov
Transition Field (MTF) based conversion of signals into
2-dimensional representations. The achieved validation accu-
racy for 10 classes was around 98.52% on the CWRU dataset.

Another feature fusion-based ensemble Convolutional
Neural Network was pro-posed by Li et al. [21] the
network named CNNEPDNN was used to classify varying
vibration sensor signals in an ensemble to get highly accurate
outputs. Moreover, the proposed method by the respective
authors effectively entertained the loss of significant signal
in-formation during the pooling operations. The validation
accuracy achieved for the 4 classes on the CWRU dataset was
98.10%.

Being a aspect of machine learning models, data imbal-
ance poses a significant problem. Several studies have
proposed innovative techniques and algorithms to address
the challenges associated with accurate fault diagnosis
under imbalance conditions. These techniques have utilized
both the traditional and deep learning based approaches
for effective up-sampling. In regards to the tradition up-
sampling, Hang et al. [13] proposed an improvement to
Synthetic Minority Over-sampling Technique (SMOTE),
by incorporating Principal Component Analysis (PCA) in
order to enhance the performance in high-dimensional imbal-
anced fault diagnosis data for rolling bearings. The respective
work the authors demonstrated significantly improved classi-
fication performance, which is an imperative part of accurate
detection of faults. In a similar vein, Wei et al. proposed
TMD-SMOTE algorithm, further improving SMOTE’s up-
sampling capabilities. The algorithmic approach put forth by
the authors not only considers the problem of distribution
marginalization but also addresses complexity of algorithm
itself [15].

Similarly, Li et al. proposed the Minority-class Sensitive
Fault Diagnosis approach (MSFD), aiming to reduce imbal-
ance and enhance diagnostic model’s sensitivity to minority
samples. This approach addresses a crucial aspect of fault
diagnosis in imbalanced datasets [16]. Duan et al. introduced
the MeanRadius-SMOTE algorithm, an enhancement of the
traditional SMOTE oversampling technique. This algorithm
effectively avoids the generation of useless and noisy sam-
ples, leading to improved prediction accuracy in unbalanced
datasets. Addressing the challenge of generating meaningful
samples is vital in fault diagnosis [17].

The above literature study provides insight into the ongo-
ing and previous research with the domain of bearing fault
analysis and identification under balanced and imbalanced
states. The research elucidates certain aspects of the research

and the techniques employed in effectively harnessing the
potential of current deep learning and traditional tools.
Moreover, being a recently tapped domain, there is still a need
for effective research in fault diagnostics and explainability.
The related literature on the detection and classification of
ball bearing fault has been summarized in Table.1.

III. METHODOLOGY
A. DATASET DESCRIPTION
An open-source and widely used benchmark dataset for
the bearing fault diagnosis CWRU (Case Western Reserve
University) [27] is used herein for the purpose of evaluating
the proposed method against bearing fault diagnosis.

The apparatuses used in extracting the data consist of a
2 horsepower motor, a torque transducer and a dynamometer.
As shown in Figure 1, varying range of fault conditions were
deliberately imprinted on individual bearings, including inner
race, outer race, and ball faults, as well as their combination.
Moreover, the dataset was extracted for two frequencies i.e.,
12Khz and 48Khz at 0,1,2,3 Horse Power(HP). [31].

FIGURE 1. Experimental setup to acquire faulty bearing signals.

In this study, the fault dataset for drive-end 48K samples
at no-load condition (NLC) and single load condition
(SLC) was used due to the presence of class-imbalance
serving as an optimal application for our proposed approach.
Within the 48Khz, the fault diameter of 0.007, 0.014 and
0.021 inches were also taken at the mentioned load conditions
for classification. Additionally, the normal baseline data
was merged with the prior mentioned data to be classified
alongside. The empirical procedures to evaluate the proposed
model’s efficiency were based on 14 classes respectively.

B. DATA PREPROCESSING
1) PRE-PROCESSING OF BEARING FAULT VIBRATIONS
The pre-processing stage plays a significant part in preparing
the acquired data for further analysis and training. In this
study, we experimented on the vibration signals acquired
at 48,000 Hz (48KHz), under 0 and 1 HP load conditions.
The data points at 48KHz were subjected to specific
pre-processing steps to augment the effectiveness of the
subsequent analysis and cope with any unbalanced classes
that may skew the model’s classification behavior. In this
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regard we implemented a novel synthetic oversampling
method by using a weighted-distance and density hybrid
approach involving the SMOTE generated samples and
refining them.

FIGURE 2. Visualization of fault waveforms for 0-HP.

FIGURE 3. Visualization of fault waveforms for 1-HP.

For NLC and SLC at 1797 rpm, the dataset for 48 KHz
was extracted for 3 fault diameters, having a total of
14 classes. The class distribution included normal baseline
class values, 3 classes each for Inner Race Faults(IRF) and
Ball Faults(BF), 7 classes for Outer Race Faults(ORF) at
varying orientations and fault diameters respectively, and
given in Figure 4 and Figure 5. These classes were segregated
and processed using Matlab. The visual illustration of the
raw waveform at aforementioned specifications is given in
Figure 2 and Figure 3 for O and 1 HP based load conditions
respectively.

FIGURE 4. Class distribution for 0-HP 48 KHz samples.

FIGURE 5. Class distribution for 1-HP 48 KHz samples.

The Figure 4 and Figure 5 illustrates the distribution for
normal and faulty classes at 48KHz under NLC and single
load. The y-axis represents the sample size whilst the x-axis
represents the class name. Each class name mapped on the
x-axis for each colored bar represents the fault type and
the diameter of the respective fault. Except for the ORF,
where the orientation is also mentioned along with type and
diameter. The acronym representation for each class in x-axis
is given such that BA represents the BF, OR represents the
ORF, IR represents the IRF and the N represents the normal
baseline. The number before the acronyms separated by an
underscore represents the diameter of the fault in mills (where
1 inch = 1000mills). The number after the ORF acronym
represents three orientations depicted by 1,2 and 3 at 0’,
90’ and 180’ respectively. In case of NLC, the number of
samples for the majority classes lies between 243K to 249K
respectively, while theminority classes have a varying sample
size ranging from the lowest tier class 14IR having a sample
size of 63788 and the rest ranging from 124K to 130K
respectively. Similarly for SLC, the majority samples lie
between 482K to 489K samples, while the minority samples
lie between 128K to 248K samples.

2) OVER-SAMPLING
The class distribution for the faulty samples is uneven, hence
rendering the classification susceptible to biases. In order
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FIGURE 6. Sample distribution for SMOTE and DA-SMOTE.

to prevent this potential shortcoming within the dataset we
proposed a novel over-sampling algorithm derived from
SMOTE. Synthetic over-sampling via SMOTE is open to
a number of possible complications that may influence the
classification behavior of the models. The generated samples
from SMOTE more often then not display signs of potential
over-fitting, information loss, noise-sensitivity and decision
boundary influence. These significant drawbacks can affect
the models accuracy and other distinguishing traits. Herein
we propose a Density-Aware oversampling methodology
(DA-SMOTE) to effectively refine the generated samples
acquired through SMOTE algorithm and applying a density
based sample selection for a more appropriate adjustment
within the bounds of minority class distribution as shown in
Figure 4.

For the over-sampled dataset Ds Let Xmin be the matrix of
minority class features while Xgen be the SMOTE generated
feature matrix of minority class and k be the number of
nearest neighbors. The distance di of each synthetic sample
with its k-neighbors under the bounds of the minority region
is given by:

di = distance(X(min(i)),X(min(neig[i]))) (1)

where,
neigh[i] = Indices of neighbors surrounding the minority

sample
Next we calculate the average distance davg for each

synthetically generated sample as:

d(avg[i]) =
1
k

k∑
m=1

di[m] (2)

While the distribution density Dρ of minority class around
a synthetic samples is given such that:

Dρ[i] =
1

davg[i]
(3)

After calculating the density of each synthetic sample
generated via SMOTE, we will rank the samples based on
their density values in a descending order. With the higher

density samples at the top and the lower density values at the
bottom. We can define the density based ranking R as

R = sort[Dρ,Descending] (4)

Out of the sorted densities, top N densities are chosen to
be further refining. For each one of the selected synthetic
samples, the indices of the k-nearest neighbors are computed
with lying within Xmin. Furthermore, the average features
values are computed for the nearest neighbors such that,

Navg[i] =
1
k

k∑
j=1

Xmin[j] (5)

where,
Navg[i] = Average feature values of the nearest neighbors
Finally the average values of synthetic samples are

adjusted towards the Average value Navg[i] of the nearest
neighbors using:

Xref [i] = Xgen[i] + α(Navg[i] − Xgen[i]) (6)

here,
Xref [i] = Refined Sample
α = Adjustment parameter

FIGURE 7. Density-Aware (DA) SMOTE oversampling.
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C. WINDOW SEGMENTATION
For the extraction of meaningful information from the
raw over-sampled vibration signals, they were divided into
windows or smaller segments. The segmentation helps to
extract localized features along with any recurrent patterns
associated with fault types. Continuous vibrational wave-
forms were converted in fixed-length segregation also known
as time-windows or frames. The size of stride determines
the extent of overlapping segments and often used to
capture temporal dynamics. The experimentations herein
were performed on a window size of 1024 with a strides of
800. The mathematical expression for window segmentation
can be given as

Wi = S[i ∗Ws : i ∗Ws +Wl] (7)

where,
S = Time series signal
Wi = Segmented Window
i = Index
Ws = Stride size
Wl = Window length

FIGURE 8. Raw signal segmentation.

1) TIME-FREQUENCY REPRESENTATION
Once segmented over-sampled signals are generated, they are
transformed into scalogram for the representation of signals
in the time-frequency domain. The respective transformation
holds viable potential to enhance the representation of both
frequency and time components of the signals, providing a
visual representation of the signal’s energy distribution across
both time and frequency dimensions This allows for the
identification and extraction of key features and patterns that
are crucial and relevant for fault classification tasks.

Let S ′[t] represent the segmented signal at time index t
from the dataset D′. The scalogram W[a,b] of S ′ at a specific
scale a and translation b is calculated as:

W [a, b] =

∫
∞

−∞

S ′[t] ∗ φ∗(
t − b
a

)dt (8)

where,
a = scale parameter to controls width of the wavelet.
b = translation parameter to shift the wavelet along the

time axis.
t = time index.
φ∗

= complex conjugate of analyzing wave-function.

FIGURE 9. Raw over-sampled signals to Scalogram.

D. CONVOLUTIONAL NEURAL NETWORKS(CNN)
In this context, several approaches toward CNN-based classi-
fication have been explored. Deep learning-based automated
feature extraction methods that make use of hierarchical
structure to capture significant high and low-level details
at varying levels. CNN have repeatedly demonstrated itself
effective in classification of bearing faults, owing to its auto-
mated extraction of intricate details from both hierarchical
and local patterns.

1) CONVOLUTIONAL LAYERS
The Convolutional Layers make use of a set of filters
or kernels for convolving across an input image in order
to extract features. For an image input I ∈ D, where
D is the dataset of converted 2d images. The filter F is
convolved with Ito produce an output feature map.The math-
ematical representation of convolutional operation is given
as

m(i, j) = f [
∑

(F ∗ I )] (9)

where,
m(i,j) = feature map obtained after convolving.
f = activation function

2) ACTIVATION LAYER
Non-linearity is added to the convolved output element-wise,
by means of an activation function. More often ReLU is used
as an activation function and represented as follows:

ReLU [t] = max(0, t) (10)

where,
t = Input to activation function

3) POOLING LAYER
The feature maps obtained through convolution undergo
pooling operations to reduce their spatial dimensions. This
ensures the extraction of dominant features and aids in
achieving translational invariance. The most commonly
used pooling operation is max pooling, which selects the
maximum value within each pooling region. Mathematically,
the output of the pooling layer can be represented as

Pi = g(mi) (11)
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FIGURE 10. Block diagram of proposed - methodologies.

where,
Pi = pooled feature map
mi = input feature map
g = pooling function

4) FULLY CONNECTED LAYER
The fully connected layer is responsible for classifying the
features extracted by the convolutional and pooling layers.
It consists of neurons that are connected to all the neurons
in the previous layer. Mathematically, the output of the fully
connected layer O can be represented as:

O = σ (
∑

(W ∗ F) + b) (12)

where,
O = Output vector
F = Input feature vector
W = Weight matrix
b = Bias term
σ = Activation function (e.g., softmax for classification)

that introduces non-linearity.

E. TRANSFER LEARNING AND PRE-TRAINED NETWORKS
Transfer learning is an efficacious remedy to a small dataset
or under -performing models. Transfer learning includes the
training of a model on a large dataset usually on millions of
samples to learn generic feature representations of objects.
These feature representations are then used by freezing the
initial layers and using the knowledge of the previous layers
to navigate the training of custom data. Some of the most

effective transfer learning models that are also employed in
this study include VGG-19 [32], NasNet [33], ResNet50 [34]
and VGG16 [35].

F. PROPOSED METHODOLOGY
In this study, a robust ensemble approach was employed,
utilizing a weighted voting ensemble strategy that combines
the outputs of three individual CNN models. Each of these
CNN models was meticulously crafted with varying parame-
ters to explore a diverse range of computational complexities
and performance characteristics. Through comprehensive
evaluation, the ensemble method was bench-marked against
cutting-edge transfer learning models as well as the proposed
methodologies. The interplay between these models and their
performance nuances are elucidated within the schematic
diagram presented in Figure 9, showcasing the effectiveness
of the ensemble’s weighted voting mechanism in harnessing
the collective predictive capabilities of the three CNN
models.

1) WEIGHTED VOTING ENSEMBLE(WVE)
In the following paper, we implemented an effective strategy
to enhance the precision and reliability of classifying
scalogram representations of bearing fault signals through a
Weighted Voting Ensemble of three distinct Convolutional
Neural Network (CNN) models namely WVCNN. The
respective ensemble technique is meticulously tailored to
address the complexities of bearing fault classification by
harnessing the collective predictive abilities of individual
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TABLE 2. Architectural description for proposed CNN models.

CNN models. Each of the corresponding CNN network
proposed for this ensemble is configured with distinct
architectural variations and hyper-parameters to capture
diverse characteristics of the scalogram data. The weighted
voting ensemble operation entails averaging the predictions
of the individual models while manually assigning specific
weights based on their respective validation performance.
The weight coefficients are computed to maximize the
influence of models with superior validation accuracy on the
final prediction. The models designed for this ensemble are
explicitly defined in the forthcoming sections. Whereas the
ensemble method is mathematically formulated as:

Pensemble =

∑3
i=1 wiPi∑3
i=1 w

(13)

where,
wi = Weights assigned to CNN model i
Pi = Weighted predictions

2) PROPOSED ENSEMBLE MODEL 1 (SCNN1)
The first model SCNN1 in Figure 10 consists of five layers.
First of which is a convolutional layer for initial feature
extraction. The number of feature maps obtained from the
first layer(L1) is 48 with kernel size Ksize of (4,2) and
default stride S of 1. The activation function → Afun used in
successive layers is ReLU. The output feature maps from the
L1 are max pooled (Pmax) to reduce the dimension via a Ksize
(2,2). In the second layer(L2), 96 feature maps → fmap were
extracted using a Ksize of (4,2) followed by a Pmax operation
on a receptive field of (2,2). The output from L2 is flattened to

form a 1-d feature vector, which is then fed to a dense layer
having 144 neurons and for the final classification a dense
layer of 14 neurons is used, depicting the number of classes
from 48KHz input data. The probability distribution for each
class is obtained via softmax classifier. The optimizer used
during the back propagation is Adam, set at a learning rate
of 0.0001. Categorical Cross Entropy (C.C.E) was used as a
loss function to estimate the discrepancy between the ground
truth and predicted labels. The training was performed on a
batch size of 64 and iterated for 50 epochs.

FIGURE 11. Architecture for SCNN1.

3) PROPOSED ENSEMBLE MODEL 2 (SCNN2)
The second model namely SCNN2 shown in Figure 11
consists of 5 layers. L1 is a convolutional layer with fmap of
24 with the Ksize kept at (5,5). The convolution operation is
swiftly followed by Pmax operation having aKsize (4,2) with S
at (1,1). For L2, 48 fmap were obtained by convolving a Kernel
of size (4,4), shortly followed by a Pmax operation with Ksize
of (4,2). The third layer also involved a convolution operation
at a Ksize of (3,3) acquiring a fmap of 48. The outputs from the
respective fmap were flattened using a flatten layer to form
a latent vector and strictly followed by a dropout layer set
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a 0.1 to mitigate the risk of overfitting. The output from the
dropout layer is fed to a dense network of 14 neurons for fault
classification. The optimizer used in this setting was Adam
with a learning rate of 0.0001. The loss function used was
C.C.E and the number of epochs was set to 50 with an input
batch size of 64.

FIGURE 12. Architecture for SCNN2.

4) PROPOSED ENSEMBLE MODEL 3 (SCNN3)
L1 of the third model SCNN3 shown in Figure 12 is set at a
Ksize of (4,4) to acquire the fmap of 36. Pmax is applied on fmap
obtained through L1 with the Ksize of (4,2) in order to reduce
the dimensionality. L2 follows along with a fmap of 72 having
a receptive field set at (3,3), followed by a Pmax operation
with Ksize of (4,2). The outputs are then fed to a flatten layer
to obtain a 1-d vector of features. An intermediate dropout
layer set at a 0.1 is placed before the last dense layer of
14 neurons for reducing the risks of over-fitting. The final
dense layer consists of 14 neurons for obtaining the class
probability score through the softmax classifier. Adam is
used an optimizer with a learning rate of 0.0001 with a loss
function C.C.E. Accuracy, MSE and MAE are specified as
evaluation metrics. The batch size and the number of epochs
are set at 64 and 50 respectively.

FIGURE 13. Architecture for SCNN3.

G. EVALUATION METRICS
1) PRECISION
Precision represents accurately predicted instances, specifi-
cally the True Positives, in regards to all predictions labeled as
Positive, inclusive of both True Positives and False Positives.
Mathematically, it can be represented as:

Precision(PR) =
TP

TP + FP
100% (14)

2) ACCURACY
Accuracy calculates the ratio of correctly classified instances
to the total number of instances i.e., all true and false
instances. It can be expressed mathematically as:

Accuracy(AC) =
TP + TN

TP + TN + FP + FN
(15)

3) RECALL
Recall assesses the model ability in reducing the False
Negatives. It is quantified by the ratio of True Positives to the
sum of False Positives and True Positives. Mathematically,
Recall is expressed as:

Recall(RC) =
TP

TP + FP
100% ⇒ 1 − RateFalseNeg (16)

4) F1-SCORE
The F1-Score provides a numerical representation of equi-
librium between precision and recall. It can essentially
be defined as the harmonic mean of precision and recall.
F1-Score is particularly valuable when addressing the class-
imbalanced data. Its calculation is expressed as:

F1Score(FS) =
2 × TP

2 × TP + FP + FN
(17)

5) KAPPA STATISTICS
The Kappa Statistics, also known as Cohen’s Kappa Coef-
ficient, is a statistical metric that represents the agreement
between actual and predicted class labels. It evaluates the
possibility of chance or random agreement. Themathematical
representation of the Kappa Statistics is given by:

Kappastats(KS) =
po − pe
1 − pe

(18)

IV. RESULTS AND DISCUSSIONS
The respective section provides description in regards to the
evaluation of the proposed ensemble technique along with
a comparison with some other state-of-the-art methods. The
experimental procedures undertaken in this study involve
three custom Convolutional Networks carefully designed and
integrated into a weighted voting ensemble for a robust and
reliable classification on faults samples. The experimentation
was performed on an imbalanced and an over-sampled dataset
in order to evaluate the impact of class balancing on the
model’s performance. Furthermore, the performance of our
proposed methods was evaluated with pre-trained models as
comprehensively defined in the coming discussion.

A. CLASSIFICATION WITHOUT OVERSAMPLING
The acquired validation accuracy(VA) from the training
of scalogram representations given in the Figure 14 and
Figure 15 using the proposed models were 99.08%, 99.16%
and 99.22% for the individual models and 99.28% for the
weighted ensemble in case of NLC. While for the SLC, the
VA attained by training the individual models on imbalanced
dataset is 98.43%, 98.66 % and 99.10 % for the three CNN
models and 99.13 % for the ensemble. These results were
encouraging and were further assessed for reliability by
weighing them across multiple matrices including F1-score,
recall, MCC and KS. These matrices provided insight into
the individual models performance for each class and were
indicative of any possible biases towards a class. The results
were further compared with state-of-the-art transfer learning
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models including ResNet50, VGG-19, NasNet and VGG-16
to analyze the ability of these models in addressing the
classification challenge. The results however alluded to an
under-performance of these models except for the VGG-16
and VGG-19 which managed to perform well by obtaining a
VA of 92.63% and 93.47% for NLC and 95.02% and 96.51%
for the SLC. The rest of the models achieved VA accuracy of
82.32% and 73.73% for NLC and 84.93 % and 72.01 % for
SLC respectively.

FIGURE 14. (a) Val accuracy of pre-trained models on 0-HP imbalanced
dataset (b) Val accuracy of proposed methods On 0-HP imbalanced
dataset.

FIGURE 15. (a) Val accuracy of pre-trained models on 1-HP imbalanced
dataset (b) Val accuracy of proposed methods On 1-HP imbalanced
dataset.

FIGURE 16. Confusion matrix of voting ensemble model (WVCNN) for
imbalanced dataset.

The above evaluation results from each of the proposed
methodologies and the transfer learning models provide
the thorough insight into the results obtained from the

imbalanced dataset. It can be seen that the proposed method-
ologies achieved high training and validation accuracy while
from the transfer learning models VGG-19 and VGG-16
were on par with the results of our proposed methods.
The rest of the pre-trained models under-performed in this
scenario. The confusion matrix of WVCNN revealed the
class wise classification score for 14 classes of 48KHz data
under-imbalance data for 0-HP. The left diagonals depict the
true predictions while on the horizontal and vertical axis lay
the false predictions. The count for each class is normalized
for proportional representation of class wise predictions.

FIGURE 17. Kernel density estimation of both synthetic and original
samples.

B. CLASSIFICATION WITH PROPOSED OVERSAMPLING
TECHNIQUE (DA)
1) EVALUATION OF PROPOSED DENSITY-AWARE (DA)
SMOTE OVER-SAMPLING
The proposed Density Aware Weighted Hybrid SMOTE
approach generates synthetic samples by addressing both
the distance and density in order to maintain a more
balanced sampling approach. By emphasizing regions with
high density and appropriate distances the generated samples
are refined. In order to evaluate the sample generation for
the under-represented classes of bearing faults signals, quan-
titative and qualitative assessment methods are considered.
The first of which is the Kernel Density Estimation of the
DA-SMOTE refined and the original samples as shown in
Figure 17. The figure above illustrates a kernel density
estimation of both the original and synthetic datasets. In the
figure above, the synthetic data is depicted as a smooth
blue line, while the original data is represented by a red
line characterized by substantial spikes. The stark contrast
between the blue line of the synthetic data and the red line
of the original data can be attributed to the way the data was
generated and its implications:

1) The synthetic data, generated using DA-SMOTE,
emphasizes creating new data points in a manner
that fosters even distribution across the feature space.
This results in a smooth, continuous distribution in
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the kernel density estimation plot. The synthetic data,
by design, aims to bridge gaps between minority class
instances and, in doing so, mitigates the presence of
concentrated spikes.

2) The original data exhibits substantial spikes in its
kernel density estimation. This un-even distribution
could stem from inherent characteristics of the dataset,
such as clustering and class imbalance. The presence
of pronounced spikes suggests that there are regions of
high density where data points are clustered together,
contributing to the unevenness in the distribution.

FIGURE 18. Cumulative distribution function (CDF) of SMOTE.

The even distribution of synthetic data (blue line) supports
the learning process of deep learning models. By populating
previously underrepresented regions, it allows models to
better capture the underlying data distribution and patterns.
This, in turn, enhances their ability to generalize and
make accurate predictions on unseen data. The Cumulative
Distribution Function (CDF) graph in Figure 18, visually
illustrates the cumulative probability of both the original
dataset and the dataset generated using the SyntheticMinority
Over-sampling Technique (SMOTE).

The CDF of a distribution serves as a mapping function
that associates each value within the distribution with its
cumulative probability. In simpler terms, the CDF informs
us about the likelihood that a randomly chosen value from
the distribution will be equal to or less than a specific
value.

In the graphical representation, the x-axis signifies the
values present in the distribution, while the y-axis cor-
responds to the cumulative probability. The gray solid
line illustrates the CDF of the original data, whereas the
maroon line portrays the CDF of the DA-SMOTE generated
data.

The rightward shift of the generated data’s CDF can be
seen in comparison to the CDF of the original data. This shift
indicates that the generated dataset has a higher likelihood of
containing larger values in comparison to the original data.
In other words, the generated data encompasses a greater

proportion of values that are larger or more extreme than
what’s seen in the original dataset.

FIGURE 19. QQ-Plot Of DA-SMOTE and original data.

The reason for this shift can be attributed to the way
synthetic samples are generated. DA-SMOTE introduces
synthetic samples by interpolating between existing minority
class samples on the basis of the densities and distances of
the neighbors. As a result, the new synthetic samples can
exhibit more diverse characteristics, leading to an expansion
of the dataset’s range. This shift in the CDF signifies
that the over-sampling technique, by design, influences
the distribution to include a broader spectrum of values,
potentially contributing to improved model generalization
and predictive accuracy. The QQ-Plot, a graphical tool
for distribution comparison, displays the quantiles of two
datasets, the synthetic and the original, against each other.
Ideally, the points should follow a straight line, indicating
similar distributions. A slightly curved plot, as illustrated
in Figure 19, indicates that the generated data adheres to
the distribution of the original data. The points deviating
from the line — the one in the top-right and the other in
the bottom-left imply outliers and variations. The top-right
outlier suggests larger values in the SMOTE-generated data
than expected, possibly due to synthetic sample interpolation.
The bottom-left dot implies smaller values in the original
data, indicating inherent variability. These deviations, though
minor, highlight disparities and demand consideration within
the broader analysis and model development to ensure their
impact is appropriately managed.

FIGURE 20. (a) val accuracy of pre-trained models on over-sampled
dataset for 0 - HP (b) Val accuracy of proposed methods on over-sampled
dataset for 0 - HP.
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TABLE 3. Performance comparison of proposed methods with pre-trained models at NLC.

FIGURE 21. (a)Val accuracy of pre-trained models on over-sampled
dataset for 1 - HP (b) Val accuracy of proposed methods on over-sampled
dataset for 1 - HP.

FIGURE 22. Confusion Matrix of Voting Ensemble Model (WVCNN) for
over-sampled dataset.

2) EVALUATION OF WEIGHTED VOTING ENSEMBLE ON
PROPOSED OVER-SAMPLING METHOD
The validation accuracies (VA) obtained through training
the proposed models on scalo-gram representations yielded
impressive results of 99.13%, 99.57%, and 99.63% for
individual models, reaching a notably enhanced 99.71%

accuracy after employing the weighted ensemble technique
following DA-SMOTE augmentation for NLC. Similarly,
the oversampled results for SLC yeilded 99.04%, 99.42%
and 99.82% for individual CNN models and 99.87%
for the respective ensemble. These outcomes provided a
promising foundation, further weighed by comprehensive
assessment across multiple evaluation metrics encompassing
F1-score, recall, Matthews Correlation Coefficient (MCC),
and Kappa statistic(KS). These metrics offered insights
into the performance of individual models across different
classes, shedding light on potential class-specific biases.
The results were subsequently assessed against state-of-the-
art transfer learning models such as ResNet50, VGG-19,
NasNet, and VGG-16. Notably, the outcomes indicated an
increase in performance of most transfer learning models as
compared to the under-sampled counter-parts, with VGG-16
and VGG-19 achieving commendable validation accuracies
of 93.45% and 94.87%, respectively. The remaining models
achieved VA accuracies of 82.79% and 77.72% for NLC.
For the SLC the validation accuracies of the pre-trained
models are 95.97%, 96.61% for VGG_16 and VGG_19,
while 78.08% and 85.51 % for ResNet50 and NasNet.
These interpretations underscore the significant impact of
the DA-SMOTE technique in enhancing the accuracy of the
classification process and highlight the relative advantages of
the ensemble approach in comparison to individual models
and existing transfer learning methodologies.

3) COMPARISON WITH EXISTING STUDIES
There has been ongoing research in bearing fault detection
domain, and as such many new algorithms and techniques
have been proposed in the literature to effectively diagnose
the bearing faults. Existing techniques have employed
innovative approaches toward bearing classification with
some including generative models to counter class imbalance
and biasing whilst others opted for a time-frequency based
approach [36], [37]. These novel takes at one end effectively
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FIGURE 23. Visualization of original and synthetic wave-forms for imbalanced classes (a) 21OR2 (b) 21OR3 (c) 7OR2 (d) 7OR3 (e) 14IR .

TABLE 4. Performance comparison of proposed methods with pre-trained models at SLC.

countered the associated problems but still had a large margin
for improvement due to their complex lineament, inadequate
evaluation criteria and lower accuracy. Additionally, most of
the studies didn’t address the class balancing while those
which did were computationally expensive and complex in
this regard. Whereas the proposed methods in this study
effectively provide a straight forward take on data augmen-
tation and class balancing by proposing a novel distance
and density weighted hybrid take on SMOTE oversampling

of under-represented bearing fault classes. Furthermore,
the scalogram based representation was procured for a
transient representation of time-frequency components with
a weighted ensemble for robust classification. Our proposed
ensemble method achieved state-of-the-art results on both
imbalanced and balanced data, complemented by a variety of
quantitative and qualitative evaluation criterion to ascertain
the reliability of the models and the augmentations. These
evaluations further reveal the relevance and performance
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TABLE 5. Comparative analysis of this study with recent works.

of our proposed methodologies in contrast to the recently
published works.

C. LIMITATIONS AND CHALLENGES
While our study proposed innovative take on bearing
fault classification under imbalanced settings, there are
some limitations that can further be worked upon. The
proposed CNN algorithms although posses lower individual
parametric count as given in Table 2, when used in
ensemble the computational costs are somewhat increased.
This can be improved in the future by working on more
lightweight models or optimizing the proposed methods
to suit the use-case. Furthermore, the generalizability of
our proposed ensemble technique to diverse data-sets
and industrial settings warrants further investigation. For
instance, emphasizing the model’s explainability while
addressing the practical considerations, including compu-
tational resource requirements and real-world deployment
challenges. The proposed DA-SMOTE, albeit performing
efficiently in this scenario may need further evaluation on
diverse data for a more credible insight into its potential and
limitations.

V. CONCLUSION AND FUTURE WORK
The present study delves into the endeavor of precisely
classifying bearing faults for an effective condition mon-
itoring. These strives were directed towards classification
across varying fault diameters and types which is a pivotal
facet impacting machinery performance in both industrial
and domestic contexts. The faulty conditions have far-
reaching economic and safety implications, hence a focused
exploration is undertaken at a sampling frequency of 48KHz
to refine the study’s scope.

In this context, an effective ensemble approach is used by
combining the predictions of the three efficient individual
CNN models in a weighted voting, while harnessing the
collective potency of its constituents in an attempt to
elevate the classification accuracy of fault conditions. This
proposed approach leverages time series signals that are
trans-formed into the respective scalogram representations—
to fully exploit CNN’s capacity for spatial analysis and
feature extraction. Furthermore, a significant addition to
this endeavor is the incorporation of the DA-SMOTE
technique, which substantially enhanced the dataset quality

by incorporating the interpolated samples within the
under-represented classes while amplifying the robustness of
the proposed models against skews and biases. The proposed
ensemble model showed adaptability in handling the classi-
fication of scalogram images, while being robust to varying
computational complexities through parameter adjustments.
Within the 48KHz framework, the classification extended
to 14 classes and yielded notably promising outcomes.
In order to evaluate the adaptability of our methodologies
across diverse conditions, transfer learning techniques are
used for the effective comparison of our model’s outcome
with the state-of-the-art methods. In this regard, rigorous
evaluation, employing metrics such as Accuracy, Recall,
Precision, F1-Score, and Kappa Statistics, provides insights
into model performance for each class, unearthing potential
biases.

In summation, our weighted voting ensemble models
outshine established transfer learning techniques and models
featured in analogous studies concerning the same dataset.
The acquired efficiency of our model shows considerable
promise for real-time classification applications. While the
study is anchored to specific fault diameters, frequency
and classes, the work can be extended to the applica-
tion of adept bearing fault detection and classification,
driving improvements in maintenance practices, curbing
downtime, and enhancing safety in industrial and domestic
spheres. Future investigations will include further refining
of the proposed methodologies and testing them on other
datasets with requisite modifications within the oversampling
methodology and the data-refining procedures.
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