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ABSTRACT Threat detection in a Cyber-Physical System (CPS) platform is a key feature of ensuring
the reliability and security of these connected methods, but digital elements interface with the physical
world. CPS platforms are popular in sectors like healthcare, industrial automation, smart cities, and
transportation making them vulnerable to different cyber-attacks. Threat detection in CPS contains the
detection and mitigation of cybersecurity risks, which disrupt physical processes, compromise data integrity,
and potentially cause safety concerns. Machine learning (ML) and deep learning (DL) systems are exploited
for detecting anomalies by learning the normal behaviour forms of the CPS and recognizing deviations. This
study presents an Automated Threat Detection using the Flamingo Search Algorithm with Optimal Deep
Learning (ATD-FSAODL) technique in a CPS environment. Initially, the ATD-FSAODL technique applies
FSA-based feature subset selection to elect the better group of features. In addition, the ATD-FSAODL
technique makes use of a modified Elman Spike Neural Network (MESNN) model for threat recognition and
classification. Finally, the slime mold algorithm (SMA) is used for the optimal selection of the parameters
related to the MESNN approach to ensure that the threat detection rate is improved. To estimate the solution
of the ATD-FSAODL technique, a sequence of simulations can be carried out on benchmark databases. The
performance values portray the capable solution of the ATD-FSAODL methodology with other methods
with a maximum accuracy of 99.58%, precision of 99.58%, recall of 99.58%, F-score of 99.58%, and MCC
of 99.16%.

INDEX TERMS Cyber-physical system, industry 4.0, threat analysis, feature selection, deep learning.

I. INTRODUCTION
With the fast development of information and technologies,
network security is developing major importance over time

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Pau .

accordingly the attention that enterprises, businesses, and
industries are positioned on systems namely cyber-physical
security systems [1]. Cybersecurity professionals detect the
importance of making an efficient network intrusion detec-
tion system (IDS) for providing safety networks [2]. Cyber-
physical systems (CPSs) embedded sensing, computing,
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control, and networking into physical components and frame-
works, connecting them to the Internet and each other [3].
IDS is a foundational layer that should rapidly assess, detect,
and respond to risky cyber traffic [4]. Network intrusion
detection has been significant in detecting and monitoring
possible attacks [5]. There is frequently the main asymmet-
rical information in open databases for intrusion detection
[6]. The management of a massive quantity of information
in a difficult network framework has been another problem
that these approaches generally fail to address [7]. As a
result, conventional IDSs that depend on traditional machine
learning (ML) techniques usually have some disadvantages,
namely lower real-time performance, and poor generalization
capability [8]. In recent years, researchers have proposed var-
ious IDSs using deep learning (DL), ML, and other statistical
methods [9].
A recent study on intrusion detection designs in work

determines the improved performance of ML methods [10].
The IDS utilizes software and hardware for detecting intru-
sions from the networks [11]. The utilization of an embedded
method allows the network-level execution of safety reg-
ulation. IDS are categorized into host- and network-based
[12]. The virtual data are employed to feature extracts for
classification-based IDSs. The ML approaches comprise
unsupervised and supervised techniques and DL techniques
are often used in IDSs [2]. Monitoring every packet from
the network traffic would be computationally intensive and
time-consuming due to the rising network traffic and various
types of attacks. The DL is a robust device for detecting
attacks and monitoring entire packets. The DL is to detect
automatically correlations in data [13]; hence, it could be
used for detecting zero-day attacks and obtaining a higher
detection rate. Latest advances in DL methods are leading
to breakthroughs in long-term AI tasks such as cyber-
security image, text, and speech detection and language
translation [14].

This study presents an Automated Threat Detection using
the Flamingo Search Algorithm with Optimal Deep Learn-
ing (ATD-FSAODL) technique in a CPS environment. The
ATD-FSAODL technique applies FSA-based feature subset
selection to elect the better group of features. In addition,
the ATD-FSAODL technique makes use of a modified Elman
Spike Neural Network (MESNN) model for threat recog-
nition and classification. Finally, the slime mold algorithm
(SMA) is used for the optimal selection of the parameters
related to the MESNN approach to ensure that the threat
detection rate is higher. To estimate the solution of the ATD-
FSAODL technique, a sequence of simulations can be carried
out on a benchmark database. In short, the key contributions
are given as follows.

• Design a new ATD-FSAODL technique comprising
FSA-based feature subset selection, MESNN-based
classification, and SMA-based parameter tuning has
been developed. This innovative approach is designed
to improve the accuracy and efficiency of threat

recognition, ultimately contributing to the cybersecu-
rity and reliability of CPS.

• Develop FSAwhich optimizes the selection of the most
relevant features, enhancing the efficiency of the threat
detection process by reducing the dimensionality of the
data and focusing on critical information.

• MESNN is adapted to handle the specific challenges
of CPS environments, ensuring accurate threat detec-
tion in real-time scenarios. The design of the SMA
for the optimal selection of parameters related to
the MESNN approach ensures that the model is
fine-tuned for maximum effectiveness in identify-
ing and classifying threats, enhancing overall system
security.

II. RELATED WORKS
Catillo et al. [3] examined a novel intrusion detectionmethod-
ology CPS-GUARD depends on a single semi-supervised AE
and the method to set the threshold utilized for discriminat-
ing normal activities in threats. CPS-GUARD was estimated
using direct testing with intrusion and normal data points
relating to separate sensing tools. The authors [15] devel-
oped a novel hybrid method for intrusion prediction in CPS
communication networks. The authors utilize a bio-inspired
hyper-parameter search algorithm for making an improved
DNN structure depending on the core hyper-parameters of an
NN. In [16], the authors suggested an innovative federatedDL
technique (DeepFed). Primarily, DL-based IDS for industrial
CPSs by utilizing CNN and GRU. Secondarily, a federated
learning approach is designed to enable several industrial
CPSs to make comprehensive IDS.

Umer et al. [17] introduced the CPS model as a layered
method comprising the physical, network, and applica-
tion layers with respect to functionality. Later, various
cyber-physical attacks on every layer were enhanced. Subse-
quently, DLmethods are examined for intrusion detection and
malicious URLs in CPSs. In [18], the authors recommended a
technique to extract valuable features from particular features
and later employ a DL approach for categorizing the intru-
sions. A distinctive Generic-Specific AE design is developed,
where the specific ones learn features that can be related only
to that domain, and the generic one learns the features, which
are general around every type of network intrusion. The
authors [19] suggested a knowledge distillation technique that
depends on Triplet CNN to higher the solution of the method
and dramatically increase the anomaly detection speed for
industrial CPS.

Almutairi et al. [20] recommended a Quantum Dwarf
Mongoose Optimizer with Ensemble DL-based Intrusion
Detection (QDMO-EDLID) approach from the CPS plat-
form. The introduced QDMO-EDLID method objectives are
to detect the existence of intrusions by ensemble learn-
ing and the FS method. The QDMO-EDLID approach uses
the QDMO method for feature subset selection purposes.
Duhayyim et al. [21] present a novel Stochastic Fractal
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FIGURE 1. Workflow of ATD-FSAODL system.

Search Algorithm with DL Driven IDS (SFSA-DLIDS).
The SFSA was used for selecting feature subsets. Further,
a chicken swarm optimizer (CSO) with a deep stacked AE
(DSAE) approach is employed to detect and classify the
intrusions.

CPSs contain a wide range of applications in industrial
control systems to smart cities and are characterized by
difficult connections among physical and digital modules.
Existing threat detection methods frequently fall short in
adjusting to the unique data sources and real-time desires of
CPS, necessitating new methods for FS to extract vital data
and hyperparameter tuning to optimize detection accuracy.
Besides, resource constraints, dynamic operating conditions,
and safety-critical implications underscore the resolve of
emerging robust and effectual approaches, which improve
the reliability and security of CPS in the face of developing
cyber-attacks. Bridging this research gap is paramount to
advancing the recent CPS security and ensuring the continued
safe process of essential structures.

III. THE PROPOSED MODEL
In this manuscript, we have derived a novel ATD-FSAODL
approach for the automated detection and classification of
threats from the CPS platform. The ATD-FSAODL tech-
nique aims to exploit feature selection and classification
processes for automated threat detection. To accomplish
this, the ATD-FSAODL technique incorporates FSA-based
feature subset selection, MESNN-based classification, and
SMA-based parameter tuning. Fig. 1 demonstrates the entire
flow of the ATD-FSAODL algorithm.

A. FEATURE SELECTION USING FSA
For an effectual selection of features, the FSA is used. Due
to the high capability of global search and high applicability
with minimal parameters, Optimization is commonly used in
various applications [22]. Flamingos are migratory birds that
acquire food from small worms, algae, small shrimps, clams,
and larvae.

The major feature of FSA is to calculate the optimum
feature for the classification model. The foraging and migra-
tory behaviours are used to develop the optimum features
of FSA. The features of the flamingos are inhabitant in the
region of food available and after foraging, it moves towards
another location using the migration process. The features of
the flamingo are given in the following:

1. The changing position can be evaluated by the foraging
andmigration behaviours of flamingos. As the foraging
behavior includes two features namely flamingo foot
movement and foraging behavior.

2. For local communication, flamingo sings to one
another on food accessibility.

3. The flamingo population does not alert of the existing
search region food accessibility. Rather, to find the high
food region interacts with one another.

The procedure in FSA is discussed in the following: The
food source could not be identified to the flamingo; it is
required for spreading the data regarding position and alters
in location. The global optimum was dependent upon the
availability and position of food sources for assessment to
develop the optimum performance from the searching region.
Consider the food source from the jth dimensional of xbj.
The beak scanning behavior can be assessed by the ith

flamingo location from the jth dimensional population as xij to
each flamingo. However, the foraging behavior was exposed
to the error based on the data broadcast in smaller probability
values. The maximum foraging behaviour dependent upon
maximal distance was represented by |G1 × xbj + ε2×xij|,
with the arbitrary integer of −1 or 1. The scanning behavior
is assessed by the uniform distribution-based variation curve
with a beak scan range of G2 ×|G1× xbj +ε2× xij, whereas
G2 refers to the arbitrary value of normal distributions.

The flamingos are foraging and scanning their beak and
claws toward the food in large ranges for an entire population,
The food position is referred to as xbj with the distance taken
as ε1×xbj, the arbitrary integer ε1 is represented as −1 or
1 enhances dependent upon the searching space. The iteration
of the flamingo in the foraging distance is evaluated by the
following expression:

btij = ε1×xbtj + G2 ×

∣∣∣G1 × xbtj + ε2 × x tij
∣∣∣ (1)

The position updating of the flamingo foraging behavior is
shown below:

xr+1
ij = x tij + ε1×xbtj + G2 ×

∣∣∣G1 × xbtj + ε2 × x tij

∣∣∣
G

(2)
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FIGURE 2. Flowchart of FSA.

where x t+1
ij represents the ith flamingos and jth population

dimension for t + 1iteration. The flamingo location is indi-
cated as x tij for the t overall amount of iteration. The optimum
fitness value for the flamingos from the populations at t
iteration is signified as xbtj with a chi-square distribution
with a degree of freedom. Fig. 2 describes the flowchart
of FSA.

The flamingo population migrated to the next region with
high food accessibility. The migration behaviors of flamingo
populations are shown below

xr+1
ij = x tij + ω×

(
xbtj − x tij

)
(3)

where he x tij shows the location of flamingos at t iterations.
The optimum fitness function (FF) for the population is rep-
resented by ω = N (0,n) with a Gaussian arbitrary integer
with the degree of freedom value for an increase in searching
space.

The FF deployed in the FSA approach was intended to
take a balance among the count of FSs in every outcome
(minimal) and classifier accuracy (maximal) attained by
employing these FSs, Eq. (4) signifies the FF for evaluating

performances.

Fitness = αγR (D) + β
|R|

|C|
(4)

whereas γR(D) demonstrates the classifier rate of errors of a
provided classifier. |R| denotes the cardinality of the elected
subset and |C| stands for the whole feature counts from the
database, α and β are 2 parameters equal to the impact of
subset length and classifier quality.

B. CLASSIFICATION USING MESNN MODEL
In this work, the MESNN system can be deployed for the
automated threat detection process. The presented MESNN
is an adapted version of ENN as a partial recurrent spike NN
model [23]. The invisible, input, context, and output layers
are four different layers of the presented architecture. Dur-
ing the training process, this architecture takes self-feedback
with variables obtained from the context layers, whereas
the feedback in the invisible to-context layers has feedback
weight,W hc that is adaptive. The spike criteria of the trained
method accelerated the training method for an active node
that reaches the threshold value should be upgraded. The
dynamics of the MESNN are discussed.

X (k) = f
(
W xcX c (k) ,W xuU (k)

)
(5)

X c (k) = α (k)X c (k − 1) +W hcX (k − 1) (6)

Ym (k + 1) = W yxX (k) (7)

where, X ck and X (k) denote the node layer vector of context
and invisible layers, correspondingly. Ymk andU (k) show the
output and input of MESNN. f (·) refers to a non-linear func-
tion.W xu,W xc, andW yx represent the weight vectors among
the input and invisible layers, among the context and invisible
layers, and the invisible and output layers, correspondingly.
During the context layer, the self-feedback α is updated until
it attains an accurate value.

C. PARAMETER TUNING USING SMA
At this stage, the SMA can be utilized for the better choice
of the MESNN parameters. The SMA is based on the mor-
phological changes and foraging behaviours of Physarum
polycephalum [24]. Simultaneously, in the foraging, the neg-
ative and positive feedback produced is inspired by theweight
in SMA, thereby forming 3 dissimilar SM morphological
varieties. The organic mass in SM searches for food during
the active feeding stage surrounds it, and secrete enzymes for
digesting it. They form connected venous networks using dif-
ferent food sources based on the properties of SM. Once the
venous network of SM systems a food source, its biological
oscillator produces a propagating wave to raise cytoplasmic
flow by the veins. Decreased flow constricts veins that con-
secutively shrink vein diameter, while increased cytoplasmic
flow extends vein diameter. SM can establish a strong path but
food concentration is maximum, thereby ensuring rich nutri-
ent concentration. With the fusion of positive and negative
feedback, SM establishes the best path to interconnect food
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in a better way. Simultaneously, it utilizes food sources due to
the unique biology of SM. If the SM determines a low-density
food source, it leaves to search for another one.

Based on the smell from the air, SM approaches food,
and the contraction mode can be inspired by the subsequent
equation:

−−−−−→
X (t + 1) =

{ −−−→
Xb (t) +

−→
vb ·

(
−→
VV ·

−−−→
XA (t) −

−−−→
XB (t)

)
, r < p

−→vc ·
−−→
X (t), r ≥ p

(8)

where
−→
vb denotes the parameter within [−a, a] ;−→vc reduces

linearly in [1-0], t shows the existing iteration; r obtains an
arbitrary integer within [0, 1],

−→
Xb indicates the single →

position with the high odor concentration;
−→
X indicates the

location of SM;
−→
XA and

−→
XB denote the two individuals selected

randomly from SM;
−→
W shows the weighted of SM; Parameter

p is demonstrated as:

p= tanh |S (i) − DF | , i= 1, 2, . . . ,Npop (9)

where Npop refers to the size of populations S(i) denotes the
fitness of

−→
X DF indicates the better fitness attained in all the

iterations. vb and a parameters are described as follows:

−→
vb = [−a, a] (10)

a = arctanh
(

−

(
t

maxt

)
+ 1

)
(11)

Now maxt signifies the maximal amount of iterations:

−−−−−−−−−−−−→
W (SmellIndex (i)) =



1 + r · log
(
bF − S (i)
bF − wF

+ 1
)

,

condition

1 − r · log
(
bF − S (i)
bF − wF

+ 1
)

,

others

(12)

SmellIndex = sort (S) (13)

Eq. (12) inspires the negative as well as positive feed-
back mechanisms among the explored food concentration
and the width of the SM venous network. The weight near
the region becomes larger once the food concentration is
higher. r denotes the random integer with [0 1]. bF indicates
the optimum fitness attained in the existing iteration. wF
shows the worse fitness attained from the existing iteration
and SmellIndex denotes the fitness value order (in ascending
for the minimized problem and descending order for the
maximization problem) [24]:

−→
X∗

=


rand · (UB− LB) + LB, rand < z
−−−→
Xb (t) +

−→
vb ·

(
−→
W ·

−−−→
XA (t) −

−−−→
XB (t)

)
, r < p

−→vc ·
−−→
X (t), r ≥ p

(14)

TABLE 1. Description of two databases.

FIGURE 3. Confusion matrices of (a-b) 80:20 of TR set/TS set on the
NSLKDD2015 database and (c-d) 80:20 of TR set/TS set on the CICIDS2017
database.

where UB and LB represent the upper as well as lower
boundaries of the searching range. rand and r show the
randomly generated integer within [0, 1].Z indicates the
parameter value defined that ranges between [0, 0.1]. Gen-
erally, z= 0.03 is suggested because it maintains the between
balance exploiting known areas and SM exploring new areas.
The SMS primarily consists of the process of initialization,
fitness estimation, ranking, weight, and position upgrade. N
signifies the cell counts of SM, D signifies the dimension of
the function, and T signifies the maximal iteration count. The
SMA system develops an FF for gaining improved classifier
solutions. It explains a positive integer for illustrating the
good solution of candidate performances. In this work, the
reduction of the classifier rate of errors is considered FF.

fitness (xi) = Classifier Error Rate (xi)

=
No.of misclassified instances

Total No.of instances
∗ 100 (15)

IV. RESULTS AND DISCUSSION
The proposed model is simulated using the Python 3.8.5 tool
on PC i5-8600k, GeForce 1050Ti 4GB, 16GB RAM, 250GB
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TABLE 2. Threat detection outcome of ATD-FSAODL technique on
NSLKDD2015 database.

FIGURE 4. Average result of ATD-FSAODL technique on NSLKDD2015
database.

FIGURE 5. Accuy analysis of ATD-FSAODL technique on the NSLKDD2015
database.

SSD, and 1TB HDD. The parameter settings are given as
follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch
count: 50, and activation: ReLU. In this study, the simulation
outcome of the ATD-FSAODL approach was tested on two
databases as NSLKDD2015 and the CICIDS2017 database.
Table 1 demonstrates a detailed explanation of two databases.

The confusion matrices of the ATD-FSAODL system
are depicted in Fig. 3. The outcomes show that the

FIGURE 6. Loss curve of ATD-FSAODL technique on NSLKDD2015
database.

FIGURE 7. PR curve of ATD-FSAODL technique on NSLKDD2015 database.

ATD-FSAODL methodology appropriately categorizes the
normal and anomaly instances.

In Table 2 and Fig. 4, the overall threat detection out-
come of the ATD-FSAODL approach is tested on the
NSLKDD2015 database. The results represented that the
ATD-FSAODL approach reaches effective performances.
On 80% of the TR set, the ATD-FSAODL technique
offers average accuy, precn, recal , Fscore, and MCC of
99.52%, 99.52%, 99.52%, 99.52%, and 99.04% respec-
tively. Also, on 20% of the TS set, the ATD-FSAODL
method offers average accuy, precn, recal , Fscore, and
MCC of 99.58%, 99.58%, 99.58%, 99.58%, and 99.16%
respectively.

Fig. 5 demonstrates the training accuracy TR_accuy
and VL_accuy of the ATD-FSAODL system on the
NSLKDD2015 database. The TL_accuy is defined by the
estimation of the ATD-FSAODL method on the TR database
whereas the VL_accuy is calculated by evaluating the per-
formance on an individual testing dataset. The outcomes
revealed that TR_accuy and VL_accuy rise with an upsurge
in epochs. Therefore, the performance of the ATD-FSAODL
technique gets enhanced on the TR and TS dataset with an
increase in the number of epochs.
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FIGURE 8. ROC curve of ATD-FSAODL method on NSLKDD2015 database.

TABLE 3. Threat detection outcome of ATD-FSAODL technique on the
CICIDS2017 database.

FIGURE 9. Average result of ATD-FSAODL approach on the CICIDS2017
database.

In Fig. 6, the TR_loss and VR_loss analysis of the
ATD-FSAODL approach on the NSLKDD2015 database is
presented. The TR_loss determines the error between the
predicted performance and original values on the TR data.
The VR_loss signifies the measure of the performance of
the ATD-FSAODL system on separate validation data. The
outcomes indicated that the TR_loss and VR_loss tend to
reduce with increasing epochs. It depicted the improved
performance of the ATD-FSAODL method and its ability

FIGURE 10. Accuy curve of ATD-FSAODL methodology on CICIDS2017
database.

FIGURE 11. Loss curve of ATD-FSAODL methodology on CICIDS2017
database.

to generate accurate classification. The minimalized value
of TR_loss and VR_loss shows the superior performance of
the ATD-FSAODL technique in capturing relationships and
patterns.

A comprehensive PR investigation of the ATD-FSAODL
method is revealed in the NSLKDD2015 database in Fig. 7.
The results stated that the ATD-FSAODL system outcomes
in raising values of PR. Furthermore, the ATD-FSAODL
algorithm can reach superior PR values on 2 class labels.

In Fig. 8, a ROC analysis of the ATD-FSAODL method is
demonstrated on the NSLKDD2015 database. The simulation
value defined that the ATD-FSAODL method has led to
enhanced ROC values. Also, the ATD-FSAODL algorithm
attained higher ROC values on 2 class labels.

In Table 3 and Fig. 9, the overall threat detection out-
come of the ATD-FSAODL methodology is tested on
the CICIDS2017 database. The outcome inferred that the
ATD-FSAODL approach reaches effective results. On 80%
of the TR set, the ATD-FSAODL algorithm offers average
accuy, precn, recal , Fscore, and MCC of 99.21%, 99.21%,
99.21%, 99.21%, and 98.42% respectively. Further, on 20%
of the TS set, the ATD-FSAODL method offers average
accuy, precn, recal , Fscore, and MCC of 99.39%, 99.39%,
99.39%, 99.39%, and 98.78% correspondingly.
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FIGURE 12. PR curve of ATD-FSAODL methodology on CICIDS2017
database.

FIGURE 13. ROC curve of ATD-FSAODL methodology on CICIDS2017
database.

Fig. 10 illustrates the training accuracy TR_accuy and
VL_accuy of the ATD-FSAODL method on the CICIDS2017
database. The TL_accuy is determined by the estimation of
the ATD-FSAODL algorithm on the TR dataset whereas
the VL_accuy is calculated by evaluating the performance
on a separate testing dataset. The outcomes exhibited that
TR_accuy and VL_accuy rise with an upsurge in epochs.
Therefore, the performance of theATD-FSAODL system gets
enhanced on the TR and TS dataset with an increase in the
number of epochs.

In Fig. 11, the TR_loss and VR_loss analysis of the
ATD-FSAODL method on the CICIDS2017 database is
demonstrated. The TR_loss defines the error between the
predicted performance and original values on the TR data.
The VR_loss denoted the measure of the performance of the
ATD-FSAODL system on individual validation data. The out-
comes represent that the TR_loss and VR_loss tend to reduce
with increasing epochs. It revealed the improved performance
of the ATD-FSAODL approach and its ability to generate
accurate classification. The decreased value of TR_loss and
VR_loss shows the greater performance of the ATD-FSAODL
system in capturing patterns and relationships.

TABLE 4. Comparative outcome of ATD-FSAODL technique with other
methodologies [20].

FIGURE 14. Comparative outcome of ATD-FSAODL technique with other
methodologies.

TABLE 5. TRT and TST outcomes of ATD-FSAODL method with other
algorithms [20].

A comprehensive PR analysis of the ATD-FSAODL sys-
tem is revealed on the CICIDS2017 database in Fig. 12.
The results inferred that the ATD-FSAODL algorithm out-
come in raising values of PR. Also, it is noticeable that
the ATD-FSAODL approach can reach greater PR values on
2 class labels.

In Fig. 13, a ROC analysis of the ATD-FSAODL algorithm
is shown on the CICIDS2017 database. The outcome
demonstrated that the ATD-FSAODL method has led to
enhanced ROC values. Further, the ATD-FSAODL system
can extend superior ROC values on 2 class labels.
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FIGURE 15. TRT and TST outcomes of ATD-FSAODL technique with other
methodologies.

In Table 4 and Fig. 14, a comparative outcome of the
ATD-FSAODL technique with other approaches is given
[20]. The simulation value shows that the OT and RF models
have shownworse results than the other ones. Next to that, the
ATMMF-TDS, DBN, LSTM, and RNN models have accom-
plished closer performance. Meanwhile, the QDMO-EDLTD
technique has shown moderate performance with anaccuy of
99.51%, precn of 99.51%, recal of 99.51%, and Fscore of
99.51%. However, the ATD-FSAODL technique surpassed
the existing models with a maximum accuy of 99.58%, precn
of 99.51%, recal of 99.51%, and Fscore of 99.51%.
The computation time examination of the ATD-FSAODL

system with existing approaches is given in Table 5 and
Fig. 15. The outcome indicates that the ATD-FSAODL
methodology accomplishes better performance. Based on
training time (TRT), the ATD-FSAODL technique provides
a decreasing TRT of 0.33m while the QDMO-EDLID,
AIMMF-IDS, DBN, LSTM, RNN, DT, and RF models
offered increased TRT values. Besides, depending on testing
time (TST), the ATD-FSAODL method provides a reduc-
ing TRT of 0.19m while the QDMO-EDLID, AIMMF-IDS,
DBN, LSTM, RNN, DT, and RF techniques offered improved
TRT values. These outcomes show the optimum solution of
the ATD-FSAODL algorithm over other approaches.

The ATD-FSAODL approach gains scalability and robust-
ness through an integration of newmethodologies. Scalability
is addressed by the FSA that optimizes feature selection,
ensuring that only the most important features are assumed,
thereby decreasing the computational burden once relating to
wide data from large-scale CPS. Furthermore, the use of the
SMA for parameter optimizer adjusts the system performance
and adaptability to distinct data volumes. The ATD-FSAODL
approach’s robustness was obtained by its reliance on an
MESNN and the optimized parameters determined by SMA,
enabling it to efficiently classify and detect attacks across
different conditions, even as the threat landscape evolves.
This robust and scalable model empowers the process for
maintaining its performance in safeguarding CPS, making it

a useful tool for addressing security problems in real-world
deployments.

V. CONCLUSION
In this manuscript, we have derived a novel ATD-FSAODL
algorithm for the automated recognition and classification
of threats from the CPS platform. The ATD-FSAODL tech-
nique aims to exploit feature selection and classification
processes for automated threat detection. To accomplish
this, the ATD-FSAODL technique incorporates FSA-based
feature subset selection, MESNN-based classification, and
SMA-based parameter tuning. In this work, the SMA is
used for the optimal selection of the parameters related
to the MESNN approach to ensure that the threat detec-
tion rate is improved. For estimating the solution of the
ATD-FSAODL technique, a sequence of simulations is per-
formed on the benchmark database. The simulation values
portray the capable outcome of the ATD-FSAODL method-
ology with other approaches with a maximum accuracy of
99.58%, precision of 99.58%, recall of 99.58%, F-score of
99.58%, and MCC of 99.16%. In the future, outlier detection
outcomes will be involved to better the rate of detection of
the ATD-FSAODL system. In real-world deployment, the
ATD-FSAODL approach can face challenges connected to
data diversity and acquisition approaches, as CPS environ-
ments are extremely heterogeneous. Adapting to many data
sources, formats, and quality levels but preserving consistent
attack detection solutions is a vital challenge. Furthermore,
the computational resources needed for DL approaches
like MESNN, may pose limitations in resource-constrained
CPS. Additionally, these method capabilities for addressing
zero-day threats and novel attack vectors require continual
monitoring and updates. However, by addressing these prob-
lems and acknowledging their limitations, the ATD-FSAODL
algorithm is refined to offer a widespread and adaptable
solution to secure difficult CPS ecosystems.
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