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ABSTRACT In recent years, there has been a noticeable increase in the inclination towards digitizing
our surroundings, encompassing various domains such as virtual reality, cultural heritage conservation,
and architectural representation. The computation of high-resolution three-dimensional (3D) colored point
clouds and meshes holds significant importance for such applications. However, traditional structure-from-
motion (SfM) techniques may produce sparse 3D point clouds when low-resolution input images are used,
resulting in a low-quality mesh generation. Traditional point cloud upsampling techniques that improve the
3D point cloud resolution typically work on LiDAR-generated point clouds devoid of color information.
Furthermore, most learned point cloud upsampling techniques compute graph features that capture local
information by identifying a local neighborhood in a limited region around a point and hence may result
in sub-optimal representation. To address these limitations, we propose CloudUP, a colored 3D point cloud
upsampling approach that utilizes multi-scale spatial attention. Specifically, we design a novel Multi-Scale
Point-Cloud Feature Extractor (MPFE) by employing attention across the scales to extract point cloud
features and effectively capture 3D shape information of the points relative to its neighborhood. We further
extract spatial neighborhood-guided color features used to predict the color for the upsampled points. The
color prediction is trained with a content-preserving loss function that aims to maintain intricate details and
vivid colors. Our color refinement pipeline is guided by a vibrant colored dataset (collected by us) to assist
in preserving the 3D contents.

INDEX TERMS Point cloud upsampling, point cloud color upsampling, multi-scale features, local shape
approximation, vibrant colors.

I. INTRODUCTION
The interest in augmented and virtual reality and the over-
whelming response towards metaverse-like virtual immersive
environments fuel the demand for high-resolution, realistic
colored 3D models. With the much easier accessibility of
3D sensors like LiDAR, point clouds are increasingly getting
popular for the collection of data, which is crucial in robotics
[1] and autonomous vehicles [2]. However, these sensors
produce sparse and noisy point clouds and can usually not
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capture small or far away objects [3] and fine details. On the
contrary, structure from motion (SFM) methods, such as
COLMAP [4] and MVS-methods [5], [6], [7] with pose
estimation [8] and fusion [9] may also result in a sparse
(low resolution) point cloud if only a small number of
views/images are available and/or these images have low-
resolution. 3D point cloud upsampling has been pitched as a
viable scheme to add vertices, leading to better quality mesh
generation for LiDAR-based point clouds [10]. However,
since most of these techniques focus on LiDAR-based point
clouds, they do not consider color and may not be directly
applied to upsample low-resolution colored point clouds. One

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 128569

https://orcid.org/0000-0003-1189-1622
https://orcid.org/0009-0002-1229-546X
https://orcid.org/0000-0003-3056-5128
https://orcid.org/0000-0002-0742-5429
https://orcid.org/0000-0002-5062-3068
https://orcid.org/0000-0003-4809-8679
https://orcid.org/0000-0002-7542-4356


Y. Cho et al.: CloudUP—Upsampling Vibrant Color Point Clouds Using Multi-Scale Spatial Attention

FIGURE 1. Top Row: (a) Input sparse colored point cloud, (b) colors
upsampled using a KNN-based color estimation, (c) colors upsampled by
our proposed scheme, (d) high-resolution Ground Truth (GT) point cloud.
Bottom Row: Zoomed in patches to highlight differences. The KNN
upsampled point clouds suffer from smoothness and blurriness effects,
whereas our proposed strategy keeps the edges sharp.

possible way to upsample colors is to interpolate color values
using existing approaches, following points upsampling.
However, it is noted from the literature [11], [12], [13]
that most of the color upsampling methods use K-Nearest
Neighbors (KNN) based interpolation schemes for color
upsampling, which results in blurry and poor-quality colors.

For this, we presented a color upsampling method that
refines KNN colors and enhances the visual quality of the
point cloud as shown in (Fig. 1). Given a sparse point cloud
with colors in (a), (b) shows the output of color upsampling
using KNN. It is quite evident from the figure that KNN
smoothes and blurs the colors while the proposed method (c)
caters to the precision of color in the local region.

Also for the task of point upsampling, the previously
proposed methods extract dynamic graph representation.
Although they produce impressive results, they are not
expressive enough to represent the downstream task. The
proposed dynamic feature extractors in these methods, rely
on the K-nearest neighborhood (KNN) to construct a ‘‘local
neighborhood’’ to compute features. This ‘‘K’’ is fixed for
the whole point cloud. For small ‘‘K’’ the local neighborhood
will resemble a planar region and fail to capture the
surface pattern. Increasing ‘‘K’’ will result in sampling large
neighborhoods that may be too complex to be represented
by methods like DGCNN adequately. Any noise/artifact in
the up-sampled vertices (points) shall be decremental to the
overall visual quality of a colored point cloud. In this context,
we observed that the state-of-the-art [3], [14], [15], [16]
schemes for point cloud upsampling mostly rely on dynamic
graph-based feature extractors [17] in a limited neighborhood
and may fail to capture the global context of the surface
geometry.
Contributions: To overcome the discussed limitations,

we present CloudUP, a colored 3D point cloud upsam-
pling scheme. Our contributions are fourfold. Secondly,
a learned, content-preserving color predictor that produces
sharp and vibrant upsampled colored point clouds. We use
spatial neighborhood information to generate meaningful

color features representing local color content. These color
features and their corresponding spatial features predict
refinement over KNN interpolation-based initial colors.
Thirdly, a Vibrant Color Dataset (VCD) to guide the color
prediction pipeline. Fourthly, we provide a succinct analysis
of the plausibility of various quality matrices for color
up-sampling. Finally, we test our scheme on non-colored
(SkecthFab) and colored (LS-PCQA) point cloud datasets.

II. RELATED WORK
Due to significant applications in AR/VR technologies,
robotics [1] and autonomous vehicles [2] as well as medical
imaging and organs reconstruction [18], [19], point cloud
upsampling research has seen a significant improvement over
recent years. Specifically, deep learning-based methods have
been more successful than the conventional optimization
methods [20], [21], [22], [23], [24]. However, point cloud
upsampling is a difficult task, because the point cloud data
exists in unordered point sets. Thus, the optimizationmethods
may fulfill the purpose of cloud upsampling, but they are
not data-driven and may be prone to several limitations like
complex geometries [14]. Furthermore, prior information,
such as normals, is required as input in many optimization
methods. With the introduction of deep neural networks such
as PointNet++ [25] and DGCNN [17], it was possible to
encode and learn spatial features from the point clouds.

A. POINT UPSAMPLING
Deep learning based point upsampling methods can be
divided into two subcategories on the basis of processing the
input point clouds. The first set of methods takes the whole
point cloud as input and upsamples it exploiting their global
shape information [26]. The second set of approaches divides
the point cloud into patches, and upsamples the point cloud
based on local neighborhood information [3], [15], [27],
[28]. The patch-based methods have recently shown great
success in upsampling point clouds at multiple resolutions by
extracting local point information using a graph-based neural
network and then learning local approximation based on the
point features to upsample points [15].

The authors in [14] showed superior performance com-
pared to all conventional optimization methods by proposing
the first deep learning based approach for point cloud upsam-
pling, PU-Net. It uses PointNet++ to learn hierarchical
features for each point and then upsample them using multi-
branch multi-layer perceptrons (MLPs). Furthermore, PU-
Net does not consider spatial relations between neighboring
points, restricting the method from producing uniform points.
Following PU-Net, the authors of MPU [29] proposed
patch-based progressive 3D Point Set upsampling approach
capable of upsampling the points by a factor of up to 16. Since
it is a progression process, MPU requires great computation
power, and training a network is relatively non-trivial
requiring step-by-step guidance. Similarly, PU-GAN [30]
aimed to learn the distribution of the upsampled points.
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FIGURE 2. CloudUP Pipeline: Illustration of the complete block diagram of the proposed approach. Given a sparse
colored point cloud, our method upsamples the points and colors to generate a dense point cloud.

Although a great emphasis was put on the performance gain
of the discriminator, generator architecture did not contribute
much to the final output.

PUGeo-Net [15] and MAFU [31] tried to preserve the
points’ uniformity and the underlying objects’ geometry.
PUGeo-Net specifically tried to learn the first order and
second order fundamental forms of local geometry through
the supervision of normals and spatial features of points.

Moreover, PU-GCN [3] proposed a novel model,
NodeShuffle; which uses a graph convolutional network to
encode local point information from point neighborhoods.
More recently, Neural Points [27] has developed a novel
representation of point clouds where each point represents
a local geometric shape through neural fields. Ultimately,
these local neural fields are combined to form a global
surface. The aforementioned works highlight the significant
influence of learning the correspondences between local
point neighborhood in the sparse point cloud and its
upsampled resolution on the quality of upsampling the point
cloud based on local shape approximation. However, to the
best of our knowledge, none of the existing approaches used
the multi-scales information along with local neighborhoods
to extract features for points and colors during upsampling.
We thus propose a novel colored point cloud upsampling
approach with an attention-based multi-scale point-cloud
feature extraction (MPFE) module to capture the local
neighborhood, information across the scales, and the
correspondence at the input level to enhance the point
upsampling performance.

B. COLOR UPSAMPLING
In literature, very few point cloud upsampling approaches
[11], [12] consider color upsampling. The authors in YuZu
[11] used K-nearest neighbors to upsample colors in a
point cloud for volumetric video streaming. FGTV [12]
created a KNN graph by linking 3D points in a point cloud,
refining colors using weighted L1-Norm while keeping the
locations of 3D points fixed. However, these approaches
have high computational complexity and not viable for large
point clouds. While most of the techniques focus on points
upsampling [3], [14], [15], [30], only a couple of methods

tried to predict and refine colors for dense point clouds [11],
[12], [13]. To the best of our knowledge, no method provides
a combined learned pipeline for points and colors upsampling
for a given sparse point cloud. We propose CloudUP to
simultaneously upsample points and their respective colors
for a given sparse point cloud to create a high-quality colored
3D point cloud.

III. METHODOLOGY/APPROACH
We propose a two-stream architecture (Fig. 2) for the upsam-
pling of colored point clouds. The first stream upsamples
the points using a cross-attention-based multi-scale point-
cloud feature extractor (MPFE), which computes features
for each point in the input sparse-point cloud. The second
stream consists of the color predictionmodule, which predicts
and refines the colors for each point in the upsampled point
cloud. We try to preserve the color variation by introducing a
color variance conformity loss to avoid low-resolution color
generation. Features computed at different stages of the point
upsampling stream are used to compute color features by
color prediction scheme.

A. PRELIMINARIES
Let X = {xi ∈ R6×1

}
N
i=1 be a sparse point cloud having N

points with R3×1 spatial coordinates and R3×1 RGB color
values for each respective point. The aim is to generate a
colored, dense point cloud Xu = {xj ∈ R6×1

}
Q
j=1 with R

times upsampled points and colors. Q represents the number
of points in the upsampled point cloud, i.e.,Q = N×R, where
R is the upsampling ratio. Similarly, for the training process,
the corresponding upsampled ground truth point clouds are
given by Yu = {yj ∈ R6×1

}
Q
j=1.

B. POINT CLOUD UPSAMPLING
Point upsampling refers to the technique used to generate
a dense point cloud from a sparse, low-resolution point
cloud while maintaining the original geometric shape of the
point cloud. This paper introduces a patch-based upsampling
method that leverages multi-resolution data features to
effectively capture fine and coarse details within a sparse
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FIGURE 3. Proposed Multi-scale point cloud feature extraction network with cross attention.

input patch. By doing so, we successfullymitigate the adverse
effects of noise on spatial features.

1) MULTI-SCALE POINT-CLOUD FEATURE EXTRACTOR
(MPFE)
Point upsampling methods have recently employed a
Dynamic graph network-like structure to extract local
neighborhood information for each point effectively. This
approach enables capturing similar structural information
among points within a patch. The feature extractors in
this approach update the feature correspondences based
on local context information during each iteration. This
limitation prevents the network from effectively capturing
both local and global structures simultaneously. To address
this limitation, we propose a cross-attention-based multi-
scale point cloud feature extractor (MPFE). This extractor
allows us to learn the structure of the input patch at multiple
resolutions by utilizing a feature pyramid. Further, cross-
attention (CA) is used to learn the association between
features at different resolutions by refining features to
preserve the geometric structure of the point patch after
upsampling.
Spatial Attention-Based Multi-Scale Features: To extract

multi-scale feature input, each sparse point patch (Pr ) is
downsampled into two sub-patches by x2 (Pr2) and x4 (Pr4)
using Farthest Point Sampling (FPS) [32]. To extract the
locality of each patch, they are processed with DGCNN
independently. The features for each patch are of size (B,
2048,M)whereM defines the number of points in a patch and
B is the batch size. Once features for all patches are extracted
we apply cross-attention going from lower resolution to high
resolution. Embeddings for features representing sub-patches
are created initially. Then, these embeddings are used to

apply cross-attention to the features that represent the original
input patch. We then apply a function Fa, aggregating the
original features and final embedding, to learn the important
and salient aspects of cloud structure. The cross-attention is
defined by (1),

CA(Q,K ,V ) = softmax(
QKT
√
dk

)V (1)

K represents the Key vector, Q represents the Query, and
V represents the Value. Key (K) and Value (V) are generated
at low-resolution features. While Query is generated from
high-resolution features. The attention weights are calculated
by taking the dot product between Q and KT from different
resolutions, normalizing, and applying softmax, which is
used to weight the Value(V) vector. It is to be noted that Fa is
a non-linear function defined using MLP.

2) POINTS EXPANSION
To upsample input points, we adopt a local shape approxima-
tion technique similar to [15]. For this, we first parameterize
point xi using its neighborhood feature extracted from MPFE
to the 2D domain by applying the function Fm to learn
an affine transformation (at ). Given the upsampling ratio,
we predict the offset for new points in the parametric domain.
The learned affine transformation (at ) is applied to the point
offset to map them onto a 2D plane that is tangent to the
sparse point. We add these transformed points to the initial
sparse point to map them back onto the point space from the
parametric 2D space. This learned affine transformation (at )
also gives the sparse normal since the outer product of the
first two columns gives the tangent to the plane. To further
approximate the local shape of these newly transformed
points, we define a mapping that learns the second-order
approximation of the local shape. For this, we first replicate
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FIGURE 4. Color Feature Extraction: The top pipeline is level 1 of the spatial features extraction module (MPFE) using graph convolutions and cross
attention. For color, a similar architecture like level-1 of MPFE is used; Color-DGCNN where the KNN-Indices from the level-1 of the MPFE are used
to compute Spatial Neighbourhood Guided Color Features (SNCF).

FIGURE 5. Color Refinement Pipeline: Patch from input sparse point
cloud and patch from dense upsampled point cloud are passed to
KNN-based Color Assignment module, which predicts initial colors. Initial
colors along with upsampled and spatial neighborhood-guided color
features are concatenated and passed to an MLP refining initial colors.

the input sparse point features, mapping them to their
corresponding upsampled points from the parametric domain.
We then input these upsampled points and their respective
spatial attention-based multi-scale features to a parametric
function to learn the second-order shape approximation and
predict the offsets added back into the upsampled points to
obtain the final dense points. Similarly, dense normals offsets
are also predicted, given the sparse normals and multi-scale
point features using a multi-layer neural network. The loss
functions to train the point cloud upsampling network for both
points and normals are given by Eq. (2) and Eq. (3).

LCD =
1
RM

(
∑
xi∈Xu

∥xi − x̂i∥2 +

∑
yj∈Yu

∥yj − ŷj∥2) (2)

where x̂i is the nearest point from ground truth to the
upsampled point xi. Similarly, for any ground truth point yj,
the ŷj represents the nearest predicted point in Xu.

Ln =
1
M

M∑
i=0

min(∥n − n̂∥2, ∥n̂ + n∥2) (3)

where n̂ are the corresponding normals from the ground truth
point cloud.

C. COLOR UPSAMPLING
Color Upsampling is a process to predict high-resolution
colors for upsampled point clouds using input sparse colored
point clouds. Mapping between input sparse point clouds
and upsampled point clouds can be challenging due to the
unordered structure of the point cloud data. Furthermore,
the upsampled point cloud may contain noise or errors.
This makes the underlying task more difficult. We designed
a three-phase pipeline for this purpose. Initial colors are
assigned to dense, upsampled point clouds in the first
phase. To accomplish this, we employ the nearest neighbor
algorithm. Based on Euclidean distance, the nearest neighbor
of each 3D point in a dense point cloud is calculated in a
sparse point cloud. Each point in the dense point cloud is
given the color information of its nearest neighbor. In the
second phase, to maintain the geometric structure of the point
cloud, we introduce Color-DGCNN shown in Fig. 4. Color-
DGCNN extracts the color features by incorporating spatial
neighborhood information from MPFE level-1. In the third
stage, these color features are utilized to refine the initially
assigned colors by predicting and adding change δ to them.

1) SPATIAL NEIGHBORHOOD GUIDED COLOR FEATURES
(SNCF)
Each input sparse patch comprises unstructured data points,
consisting of location and color information. To extract
meaningful information from the input patch, it is nec-
essary to establish the structure of the patch. This study
introduces Color-DGCNN, a modified version of the
dynamic graph convolutional neural network (DGCNN).
The Color-DGCNN model consists of two parallel streams.
One stream is responsible for spatial feature extraction
from MPFE Level-I, while the other stream focuses on
color feature extraction (see Fig. 4). The spatial feature
extractor used in this study is a classical Dynamic Graph
Convolutional Neural Network (DGCNN) [17]. It is applied
at the MPFE-Level I for processing input patches. Integrating
the color extraction pipeline with spatial features ensures
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the preservation of the point patch structure during the
extraction of color information. Similar to the spatial feature
extractor, the color features extractor undergoes three stages
of EdgeConvolution on the color information obtained
from the previous stage. The computation of a graph in
EdgeConvolution is not possible using color information,
as it will lead to a loss of structure and edge information.
In our method, the spatial feature extractor graph is thus used
during each EdgeConvolution stage, effectively preserving
point patch structural and boundary information.

2) COLOR REFINEMENT
The initial colors assigned using nearest neighbors are
refined using SNCF. For this, we need to refine SNCF
features for each point in an upsampled point patch.
In Literature [14], [15], [16] for Point Upsampling, the
features were duplicated by upsample ratio and refined for
upsampled points. However, duplicating color features can
add anomalies to upsampled colors as color information on a
point can vary irrespective of point structure. Hence, we use
the KNN algorithm to replicate the color features to dense
points shown in Fig 5. Each point in the dense patch is
assigned a feature based on its spatial nearest neighbor in
the sparse patch. The color features are then refined using
a non-linear function Fr predicting deltas δ in initial colors,
refining colors without blurring the color edges. Where Fr is
a non-linear function represented by an MLP.

3) COLOR UPSAMPLING LOSS
In this section, we introduce color loss components for color
upsampling. We have combined three different loss functions
to estimate correct color predictions, avoiding excessive
smoothness and blurriness.

Lrgb =
1
n

n∑
i=0

∥Cφ(i)
GT − C i

GEN∥2 (4)

Equation (4) minimizes the mean loss over all the points
in a given batch, thus introducing the smoothness effect in
the predicted colors. To overcome this, we define the local
neighborhood-based variance loss (5). Specifically, for all
points in the upsampled point cloud and the ground truth point
cloud, we compute RGB colors variance V i

GEN and V i
GT with

their 8-nearest neighbors, respectively. Then, we minimize
the difference between the GT points variance V i

GT and the
upsampled points variance V i

GEN using (5).

Lvar =
1
n

n∑
i=0

∥V φ(i)
GT − V i

GEN∥2 (5)

To further minimize the blurriness introduced by averaging
used in KNN-based color upsampling, we transform the
RGB colors to HSV space and compute MSE loss (6) for
upsampled and GT points.

Lhsv =
1
n

n∑
i=0

∥HSV φ(i)
GT − HSV i

GEN∥2 (6)

The total loss for color refinement is the summation of Lrgb,
Lvar , and Lhsv and is given by (7),

LColor = α ∗ Lrgb + β ∗ Lvar + γ ∗ Lhsv (7)

where, α, β and γ are the scaling factors for each loss com-
ponent. The φ(i) is the correspondence function computed by
calculating the spatial locations based on nearest neighbors
between the up-sampled and ground-truth patches.

IV. EXPERIMENTS
We thoroughly evaluate the CloudUP scheme over multiple
datasets for upsampling the 3D point cloud and color. Below,
we provide the details of datasets, model architecture, training
details, & evaluation strategy.

A. EXPERIMENTAL SETUP
1) DATASETS
To train and evaluate the proposed CloudUP, we used two
publically available 3D points datasets, LS-PCQA Dataset
(used by [33]) and SketchFab Dataset (used by [16], [34]).
The LS-PCQA Dataset [35] is a synthetic dataset with
104 colored surface meshes constructed for different objects.
We use 78 point clouds for training & 15 for testing in
this work. Note that the point clouds are sampled over
available mesh surfaces uniformly. We also evaluated our
point upsampling on the SketchFab Dataset [15], a non-
colored synthetic LIDAR-based 3D point cloud dataset
predominantly used to evaluate point cloud upsampling.
It contains 103 meshes, with 90 for training and 13 for testing
having variable geometric topologies.

2) MODEL ARCHITECTURE AND TRAINING DETAILS
The architecture of CloudUP is illustrated in Figure 2. The
input point cloud is partitioned into patches of size 256.
The patches are fed to MPFE and Color-DGCNN, which
compute spatial and color features for each patch separately.
The point expansion technique increases the resolution of
the input patches by incorporating spatial features. The color
refinement module utilizes up-sampled points and color
features to colorize patches during the process of upsampling.
We employed a 6-layered MLP (Multi-Layer Perceptron)
with a skip connection in the refinement network shown in
Fig. 5 with LeakyReLU used as an activation function.
Our proposed approach is trained in two stages. In the first

stage, we train the MPFE and points expansion modules for
800 epochs with a batch size of 28, following the approach
used in [15]. Once trained, we freeze these modules for
back-propagating the gradients. In the next stage, we train the
Color-DGCNN & Color Refinement network for 100 epochs
with a batch size of 32. We use the farthest point sampling
algorithm to generate overlapping patches of 256 points
from the input point cloud. During training, we use the
Adam optimizer with a learning rate of 0.001 and the same
loss scaling factors as defined in [15], except for color
loss, where α, β, and γ are all set to 10. All experiments
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TABLE 1. Quantitative comparison of the proposed CloudUP with SOTA methods on SketchFab and LS-PCQA datasets.

FIGURE 6. Qualitative results for CloudUP points upsampling on SketchFab dataset. CloudUP upsamples the points precisely leading to accurate
point clouds with preserved structure.

TABLE 2. Quantitative comparison of the proposed CloudUp with
KNN-based methods on LS-PCQA dataset, in terms of predicted colors.
For evaluation correspondences are obtained from Points CD, and then
used to compute MSE, PSNR, and MDV.

use a Quadro-RTX with 48GB of memory in the PyTorch
framework.

3) EVALUATION METRICS
We conducted comprehensive qualitative and quantitative
evaluations on two datasets. To quantitatively evaluate our
approach, we employ commonly used metrics, including
Chamfer distance (CD), Hausdorff distance (HD), Earth
Mover Distance (EMD), and mean square error (MSE).
The metrics used are inspired by the following papers [10],
[22], [36]. We employ a two-step approach to evaluate the
qualitative and quantitative performance of color upsampling.
Firstly, we establish spatial correspondences between two
point clouds using (CD) Chamfer Distance. Subsequently,
we compare the color values at these corresponding points
using mean squared error (MSE) and peak signal-to-noise
ratio (PSNR). We also evaluated our results using the mean

difference variance (MDV), described further in the next
section.
MDV: The Mean Difference Variance (MDV) metric is

used to assess the performance of color upsampling by
evaluating how effectively color variations are handled. For
this, we compute the mean absolute difference between the
variances of the respective patches of the upsampled and GT
point clouds. To calculate the MDV, the upsampled and GT
point clouds are divided into smaller patches, each containing
256 points. To ensure similarity between compared patches,
the centroids of corresponding patches in the upsampled
and ground truth (GT) point clouds are maintained at the
same position. The color variance of a patch is computed
by calculating the variance for each color channel (RGB)
and then taking the mean. The MDV value, as represented
in (8), is calculated as the mean of the absolute difference
between the variance of upsampled point cloud patches and
the variance of the ground truth (GT) point cloud patches.
A lower Mean Delta Value (MDV) indicates a higher degree
of accuracy in predicting colors that closely match the ground
truth colors.

MDV =
1
n

n∑
i=0

∣∣Vrgb(Pgti ) − Vrgb(Pupi )
∣∣ (8)

Vrgb(Pgti ) and Vrgb(Pupi ) are the variances of the ith patch
in the GT point cloud and the upsampled point clouds,
respectively.
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FIGURE 7. Qualitative results for CloudUP on LS-PCQA dataset. In general, CloudUP provides up-sampled point clouds
with vibrant colors & details.

TABLE 3. Average Color Entropy for LS-PCQA and VCD datasets (10−2).

B. EXPERIMENTAL RESULTS
This section details the quantitative and qualitative experi-
mental results on synthetic and real 3D scan datasets.

1) QUANTITATIVE EVALUATION
Table 1 and Tabel 2 provide the quantitative results of our
proposed points upsampling and color refinement schemes.

Specifically, Table 1 compares the error metrics (CD, HD,
and EMD) evaluated over the test scans of the respective
datasets. For SOTA methods, the codes from the official
repositories were used to train on the respective datasets as
per the suggested training details provided by the authors.
The table shows that the proposed approach consistently
outperforms all the SOTA methods in HD and EMD for

FIGURE 8. A few sample 3D point clouds from our Vibrant Color Dataset
(VCD).

all datasets while keeping comparable performance for CD
metrics. Table 2 provides the quantitative result for our
color upsampling and refinement strategy for the LS-PCQA
dataset. It can be observed that CloudUP can consistently
refine the color as compared initial KNN estimate. As shown
in Table 2, the quantitative results of the proposed CloudUP
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FIGURE 9. Qualitative results at Patch Level of CloudUP for point cloud
color refinement. KNN-based color estimates were used to compare the
color values. It can be seen that KNN interpolation smooths out the
colors at the edges. Zoom for the best visibility.

show better performance for Color refinement and point
upsampling. Better points upsampling combined with refined
colors leads to accurate color point-cloud upsampling results,
as shown in Figure. 7.
Vibrant Color Dataset: The LS-PCQA dataset lacks point

clouds with rich color information, which limits its suitability
for training models in color refinement. We created a new
dataset called the Vibrant Color Dataset (VCD) to address
this limitation. The VCD consists of 10 basic shapes, such as
rectangles, triangles, planes, and prisms, each with different
colors. Figure 8 provides a sample of our VCD Dataset.
As evidence for our hypothesis, we compared the mean
entropy of color histograms, a measure of texture content and
sharpness, for the VCD dataset and the LS-PCQA dataset.
Table 3 presents the entropy of the LS-PCQA dataset and our
colorful dataset, which demonstrates the rich color content of
our dataset. As shown in table2, training CloudUP with the
combined LS-PCQA and VCD datasets improves the color-
refinement network’s performance.

2) QUALITATIVE EVALUATION
Finally, we provide the qualitative results of the color
refinement in Figure 7 and in Figure 9. Compared to
KNN-based color upsampling, CloudUP refines the colors
precisely, leading to accurate and sharp boundaries as shown
in Figure 7. Figure provides qualitative results for five
scans (4Arms-Monster, Green-Monster, Dinosaur, Horse, and
Mario-car). GT shows each case’s high-resolution ground
truth 3D point cloud at 20K point resolution. GT is downsized
to 5K points and provided as an input for 4X upsampling
to both KNN-based color upsampling and CloudUP. The
resulting upsampled point clouds are visualized in figure 7
using Open3D.

Figure 9 compares a zoomed-in view of upsampled
patches. Overall, CloudUP’s enhanced SNCF-guided color
refinement produces 3D point clouds with enhanced visual
quality. In particular, the KNN-based color estimate com-
pletely distorts the Green Monster’s eye, whereas CloudUP’s

TABLE 4. Ablation experiments for color refinement network, KNN-C:
KNN-based Color, Lrgb: RGB-MSE loss, Lvar : Variance MSE loss, Lhsv :
HSV-MSE loss.

TABLE 5. Effect of multi-scale feature extraction & aggregations on
LS-PCQA dataset. Values are on a scale of 10−2.

color refinement pipeline offers precise upsampling with
preserved features. Thus, in comparison to SOTA methods,
the proposed method significantly refines the color by
preserving the geometry and color information.

C. ABLATION EXPERIMENTS
A comprehensive ablation study was conducted to analyze
the distinct contributions made by each component within the
point upsampling and color prediction/refinementmodel. The
outcomes of various loss functions and additional compo-
nents assessed for the color refinement network are presented
in Table 4. In the context of point cloud upsampling,
the utilization of cross-attention-based feature extraction
and multi-scale point-cloud feature extraction (MPFE) has
demonstrated more favorable outcomes in comparison to
single-level feature extraction and a basic nearest neighbor-
based multi-scale feature assignment, as evidenced by the
data presented in table 5.

V. CONCLUSION
A novel approach has been proposed for addressing the two
components involved in 3D color point cloud upsampling,
namely the generation of new points (point upsampling) and
the assignment of colors to these points (color upsampling).
For 3D point upsampling, we designed a Multi-Scale Point-
Cloud Feature Extractor (MPFE) that uses cross attention
considering spatial information to capture the 3D shape
information of a point’s neighborhood. For color upsampling,
we have designed a mechanism to compute the point cloud’s
Spatial Neighbourhood-based Color Features (SNCF). These
features are then utilized to refine a KNN-based color
estimation. We provide a Vibrant Color Dataset (VCD) to
aid in the color refinement pipeline. Analyses conducted
on two standard data sets, both qualitative and quantitative,
demonstrate that our method yields better results with
superior visual quality.
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