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ABSTRACT Exoskeleton robots that provide physical assistance to workers at industrial sites have recently
been advanced by utilizing various bio-signal measurement sensors and artificial intelligence. However, their
commercialization speed is slow compared to the pace of technological development. One of the reasons for
this is the motion mismatch that occurs between the control of the exoskeleton and the worker’s response.
To solve this issue, the worker’s intended motion could be predicted, and proactive control of the exoskeleton
robot could be implemented. An experiment was conductedwith 35 subjects, with the data of 30 subjects used
for unsupervised learning and the data of the remaining 5 subjects used for supervised learning. To predict
the intended motion of the subjects, the data from IMU sensors were used to segment the motion elements
through a k-means clustering algorithm, employing a motion segmentation technique. The lower extremity
motion was understood as a sequence composed of motion elements. The potential for predicting motion
intention and sequence was demonstrated by comparing the results from unsupervised learning with those
of an MLP model that predicted motion sequences from new, unused data. Additionally, it was confirmed
that proactive control of the exoskeleton robot using the motion segmentation technique was possible when
the duration of the element motion constituting the lower extremity motion sequence exceeded 200ms.
Therefore, this study conducted preliminary research to develop a system for predicting a worker’s intended
motion and motion sequence for proactive control of an exoskeleton robot.

INDEX TERMS Machine learning, exoskeleton, proactive control, human–robot interaction, motion
segmentation.

I. INTRODUCTION
Exoskeleton devices enhance the physical abilities of
non-disabled wearers [1]. Moreover, they combine machine
power and human intelligence to augment machine intel-
ligence and provide power to the operator by working in
parallel with the human body, either passively or actively [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Liu .

They are also referred as wearable robots with close physical
and cognitive interaction with the operator [3]. Additionally,
industrial exoskeletons aim to reduce fatigue and injuries
while increasing work performance in manufacturing and
production environments. These exoskeletons are particu-
larly suitable for assisting workers in performing repetitive
tasks in challenging postures, such as bending, squatting,
or reaching for overhead objects [4]. Despite the rapid devel-
opment of exoskeletons that provide physical assistance to
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workers, their commercialization speed is slow. Despite the
anticipated industry benefits of exoskeletons, factors such as
high purchase costs, inconvenience arising from improper
fitting of the exoskeleton device to the worker’s body [4],
and discomfort caused by inadequate control, which results
in a mismatch between the assistant force and the worker’s
intentions, hinder their widespread adoption. Furthermore,
inconveniences arise when the control of the exoskeleton lags
behind the worker’s intended motion.

The primary obstacle to the fast commercialization of the
exoskeletonmay be that users feel uncomfortable wearing the
device due to the delay between the start of control and their
intended movements. This problem occurs due to the time
difference between the human acting immediately following
the intention of motion and the robot following later due to
control delay, which increases the risk of injury [5]. Addi-
tionally, there is always a time delay due to motion detection
time, data operation processing time, and control response
time to control the exoskeleton, and this time delay makes the
human-in-the-loop control unstable [6]. Therefore, to solve
the motion mismatch problem, predicting the intention of
motion and reducing the control delay time through proactive
control could be a solution.

As the exoskeleton robot is controlled based on the mea-
surement of human movement and force, controlling the
exoskeleton by predicting movement based on bio-signals
can reduce control delay [6]. Therefore, to predict the motion
intention of a human, it is necessary to collect bio-signals
using sensors. Sensors for bio-signal measurement include
the electroencephalogram (EEG) [7], electrooculography
(EOG) [8], electromyogram (EMG) [9], inertial measurement
unit (IMU), and insole sensors. Among them, the EMG,
IMU, and insole sensors are mainly used to perform proactive
control of the exoskeleton. Therefore, it is possible to solve
the motion mismatch problem by predicting the operator’s
intendedmotion and using sensor data to implement proactive
control of the exoskeleton robot.

To implement proactive control of the exoskeleton robot
using sensor data, first, it is necessary to identify motion
sequence elements through a motion segmentation technique.
Dividing one entire movement into several small move-
ments allows researchers to understand them as a series of
sequences. In particular, applying motion segmentation tech-
niques and using data expressed in sequences to teach robots
human movement techniques can effectively find motion
primitives [10]. By understanding motion as a sequence using
the divided elements, human motion can be predicted based
on the order in which the elements change. Second, it is
necessary to predict movement intention using sequences
composed of segmented components of lower extremity
movements. This is to compensate for the control delay time
of the exoskeleton robot and ensure synchronicity between
human motion and exoskeleton control. In order to predict
movement intention, it is necessary to utilize characteristics
of muscle activities detected using an EMG sensor. In partic-
ular, movement intention involved in performing lower limb

FIGURE 1. Overall research framework.

movements can be identified using the relationship between
agonist and antagonist muscles. In addition, it is believed
that through IMU and EMG multimodal sensors, the mecha-
nism of actual human movement can be simulated using the
angle/angular velocity/angular acceleration of lower extrem-
ity joints and contraction data of lower extremity muscles.
Through this, it will be possible to develop a proactive con-
trol algorithm for a multimodal sensor-based exoskeleton
robot. Third, it is necessary to check and verify whether the
exoskeleton robot is properly controlled when the proactive
control algorithm is applied to the exoskeleton robot. It is
also stated by Akbari et al. in [11] that deep learning algo-
rithms do not statistically guarantee reliable performance for
various scenarios. It was also noted that safety issues are
highlighted in that there are limitations in processing data that
fall outside the learning distribution. Accordingly, it will be
necessary to verify safety aspects by applying the algorithm to
an exoskeleton robot. In particular, because the exoskeleton
is a wearable type, if the algorithm incorrectly predicts the
operator’s movement intention and a malfunction occurs,
it can immediately lead to injury. For this reason, before
experiments with humans, the algorithm’s performance must
be verified through methods such as humanoid robots and
simulations and then applied to the exoskeleton robot to
ensure safety. Lastly, we aim to minimize the number of
attached sensors by simplifying the use of sensors by just
using vision-based sensors. This is because once exoskeleton
robots are commercialized and used in industrial settings,
it is difficult to attach many sensors to the body individually.
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Accordingly, we went through a process of verifying whether
the IMU sensor would show the same performance as the
existing model even if it was replaced with a vision sen-
sor instead of the EMG sensor that must be attached. As a
result, we wanted to develop a system for predicting operator
movement intention and sequence for proactive control of
exoskeleton robots.

This study presents a preliminary exploration for the devel-
opment of the final step mentioned above. Hence, in this
study, a motion segmentation technique was applied to solve
the motion mismatch problem by dividing the lower extrem-
ity motion into elements and understanding the segmented
lower extremity motion elements as a sequence. Through
this, we intend to verify the research concept for predict-
ing sequences of lower extremity movements and adopt it
as a research method. Based on the three representative
movements of the lower extremity, Stoop/Squat/Asian Squat,
biometric data were collected using a single IMU sensor,
and the lower extremity movements were divided through
unsupervised learning. Moreover, supervised learning was
performed to test the feasibility of developing a motion inten-
tion predictionmodel. The predictability of motion sequences
was confirmed by comparing the results with those of unsu-
pervised learning.

II. RELATED WORK
To solve the motion mismatch problem, we propose imple-
menting proactive control through motion intention predic-
tion. To this end, if the entire motion can be understood
as a sequence of elements of the lower extremity motion,
motion intention prediction can be effectively performed.
Most studies have identified or classified human movements
by performing motion segmentation using video data sets.
To improve the performance of systems that can detect,
recognize, and synthesize human motion for virtual real-
ity, smart surveillance systems for advanced user interfaces,
motion analysis for segmentation was performed by applying
deep learning/machine learning algorithms to open video
datasets such as the CMU, HDM05, Cornell, Keck, Weiz-
mann, MAD, and KTH datasets [12], [13], [14], [15], [16].
Furthermore, data measured by the motion capture system
for continuous motions such as walking and ballet motions
were divided into 15 motion primitives for ballet motions
and 10 motion primitives for walking motions using motion
segmentation techniques [17]. The studies reviewed above
proposed efficient motion segmentation solutions based on
artificial intelligence algorithms; however, their solutions
used data captured from video images. The exoskeleton must
be designed to collect and control data in real-time, and it
is not very easy to conduct proactive control by using video
datasets. Hence, it was determined that the bio-signal data
of the wearer should be used directly. In particular, in the
learning approach to imitate human motion, it is common
to record and process data using various sensors (e.g., IMU,
EMG, insole, motion capture, etc.) [18]. In addition, bio-
signal data can accurately measure human body kinematics,

identify aspects that cannot be found in image data, and
enhance the understanding of motion [19]. Therefore, it is
necessary to confirm studies on motion segmentation using
bio-signal data.

Beil et al. [20] achieved an average classification accuracy
of 92.8% through an HMM motion classification system
using data acquired from three IMU sensors and seven
3D-force sensors. Zhang et al. [21] proposed a Bag of Fea-
tures framework using IMU sensor data extracted from nine
different activities and segmented motions into motion prim-
itives using a k-means clustering algorithm. Santikan et al.
[22] collected data with an IMU sensor and performedmotion
segmentation using the k-means clustering algorithm to clas-
sify the walking patterns of healthy and disabled people
according to their gait cycles. The above studies understood
human movement by dividing and classifying the entire
movement. In particular, Naghdy and Fazel [10] applied IMU
sensor data to a Fuzzy Clustering algorithm to develop a
general approach to teach human movements to humanoid
robots. Furthermore, hand movements were segmented into
six motion primitives and expressed them as sequences. This
study used the motion segmentation technique to break down
an entire movement as a sequence. The technique used in
this study is based on the research method used by Naghdy
and Fazel [10]. However, our study gathered a considerable
amount of experimental data, and we have also increased the
number of features used. There is also a need to check the
possibility of developing a motion intention prediction model
for proactive control of an exoskeleton robot using sensor
data.

We reviewed studies that usedmore than one type of sensor
to acquire bio-signal data and classified and predicted human
motion through the data they acquired. Trotora et al. [23]
predicted motion through the GMM model using IMU and
EMG data, and Ding et al. [6] predicted gait for exoskele-
ton control through motion intention prediction using the
IMU and insole sensors. Previous studies [6], [23] have
produced effective results using multimodal sensors. How-
ever, Stolyarov et al. [24] performed gait prediction using
an IMU sensor and an sEMG sensor but the accuracy of
the IMU sensor was higher, and that of the sEMG sensor
was affected by factors such as sweat, skin temperature, and
thickness of subcutaneous fat. Based on the variability of
the signal, we emphasized the need to use IMU sensor data
and, at the same time improve the performance using only
the IMU sensors to predict motion intention. Fang et al. [25]
stated that the movements of a human and the exoskeleton
need to be sufficiently synchronized and conducted research
based on IMU sensor data to optimize human-exoskeleton
interaction and perform gait prediction. Therefore, motion
classification and prediction can be effectively performed
using a single IMU sensor. Hence, in this study, first, the
research method was established using just the IMU sen-
sors, and the possibility of developing a proactive control
model using themotion segmentation technique remains to be
confirmed.

VOLUME 11, 2023 127109



J.-H. Woo et al.: Machine Learning Based Recognition of Elements in Lower-Limb Movement Sequence

The studies reviewed above [10], [20], [21], [22] used
various algorithms to segment motions; however, most used
k-means clustering-based algorithms. Data clustering is a
method of creating groups of objects or clusters so that similar
objects are grouped and different objects are separated into
distinct clusters. Many clustering algorithms, but the k-means
clustering algorithm is the most important and widely used
[26]. In particular, pattern classification is performed in
human motion studies using temporal motion data and the
k-means clustering algorithm [26]. This indicates that the
algorithm is mainly used for human motion research and
offers the added benefits of ease, speed, and scalability for
processing large datasets. Therefore, motion segmentation
was performed in this study using the k-means clustering
algorithm.

The lower extremity motion elements obtained using the
above algorithm are expressed and understood as a sequence
to prepare the basis for proactive control. This means it is
necessary to secure high accuracy when predicting new data
by training the supervised learning model based on the result
derived through unsupervised learning. Therefore, we use
the multi-layer perceptron (MLP) model, which is one of
the commonly used neural network architectures owing to
its low complexity and ability to produce satisfactory results
for nonlinear relationships [27]. Liu et al. [28] proposed
an MLP-based model capable of detecting gait phases in
real-time for application to exoskeleton robots, accurately
predicting gait phase labels. Although theMLP algorithm is a
commonly used algorithm, it is only used for real-time control
of the exoskeleton and has powerful performance. Therefore,
in this study, the possibility of proactive control is confirmed
using MLP, a supervised learning model.

III. RESEARCH METHODS
A typical task in industrial settings that requires a high
level of lower extremity muscle strength is heavy lifting
work. The postures involved in manual lifting work are
Stoop/Squat/Asian Squat, where workers perform these three
movements sequentially, and each movement applies differ-
ent loads to the joints of the lower extremity [19]. Classifying
these three motions is particularly challenging due to individ-
ual differences in human motion and posture [19]. Therefore,
in this study, we aimed to include a broader range of lower
extremity motions compared to previous studies by adding
the Asian Squat, which involves more lower extremity joints,
along with Stoop/Squat. The overall experiment framework
consisted of three steps: (1) data collection and preprocess-
ing, (2) clustering of lower extremity motion elements, and
(3) model verification using machine learning. We collected
data for the lower extremity using only IMU sensors. We seg-
mented the motion by applying the unsupervised k-means
clustering algorithm to identify the elements of lower extrem-
ity motion. The segmented motion was then represented and
understood as a sequence, and the labeled data was used
to train an MLP model. The results were compared with
the results of unsupervised learning, and the feasibility of

TABLE 1. Degrees of freedom (DoF) of each joint from IMU sensor.

proactive control was determined through motion prediction
using the MLP model.

A. DATA COLLECTION
A total of 35 healthy males in their 20s and 30s who regu-
larly exercise were recruited to participate in this study. The
subjects had an average height of 176.6 (±4.9)cm and an
average weight of 78.9 (±11.1)kg. The experiment involved
performing 60 or 50 Stoop/Squat/Asian Squat movements
per subject, with four subjects participating in the pilot test,
resulting in a total of 180 or 150 movements. To minimize
physical burden and fatigue, the experiment was divided into
12 sets, each consisting of 15 repetitions per movement.
After completing the first set, a 5-minute break was provided.
Before commencing the experiment, the subjects received
training on the experimental motions to minimize individual
differences. Throughout the experiment, an operator mon-
itored and guided the posture of the subjects. The entire
experiment was recorded using AVARTAR provided by the
CAPTIV-L7000 software for subsequent data analysis. Prior
to the start of the experiment, consent was obtained from all
subjects. The purpose of the experiment and the collection/
use of biometric data were explained to the participants. This
study was conducted with the approval of the Institutional
Review Board (IRB) of Kumoh National Institute of Tech-
nology (IRB approval number: 202110-FR-016-02, approval
date: September 6, 2022).

B. SENSOR NETWORK
IMU sensors are widely used for measuring human motion
[5]. In this study, the TEA’s CAPTIV T-Sens Motion IMU
Sensor was chosen considering wearability and usability.
It allows wireless communication, and the sampling rate was
set to 64 Hz. Since each joint of the body has a different range
of motion or degree of freedom [29], Table 1 provides details
about the measurable degrees of freedom for the IMU sensor
used in the experiment.

The hip, knee, and ankle are the joints in the lower extrem-
ities of the human body, each with different capabilities and
degrees of freedom. Consequently, the exoskeleton actuators
for the lower extremities can only be driven by the hip, knee,
and ankle joints [29], and the attachment locations for the
IMU sensors need to be determined based on the recommen-
dations in TEA’s user guide. For this experiment, a total of
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TABLE 2. Degrees of freedom (DoF) of each joint from IMU sensor.

TABLE 3. Eighteen selected features.

seven sensors were attached to the waist, the center of the
thigh (right/left), the center of the calf (right/left), and the top
of the foot (right/left). An illustration of the sensor attachment
on an actual subject can be seen in Figure 2 below.

Prior to the experiment, the baseline readings of the seven
IMU sensors were taken tominimize errors caused by the sen-
sors themselves. After attaching the sensors to the subjects,
synchronization between the software and the subjects was
performed twice, once in the standing posture and once in
the squat posture.

C. DATA PROCESSING
A total of 42 features could be extracted from the data
obtained from the IMU sensor, as shown in Table 2. These
features were calculated by determining the angle, speed
(angular velocity), and acceleration values for each degree of
freedom described in Table 1. The feature data was exported
from the software and saved as a.csv file. Python was utilized
for data analysis, Pandas for data handling, the scikit-learn
module for unsupervised learning, and TensorFlow for super-
vised learning.

To prevent bias in the clustering results caused by features
with larger numerical sizes [10], various normalization meth-
ods were applied to the raw data. Among all the methods,
min-max normalization, which empirically exhibited the best
performance, was selected. This method converts the data
to a value between 0 and 1. The pre-processed data, with

FIGURE 2. Placement of IMU sensors: (A) frontal view; (B) rear view;
(C) left side view; and (D) right side view.

added labels to distinguish motions, was used for analysis.
Additionally, the data from 30 subjects was integrated into a
single file.

D. DATA PROCESSING
Motions can be manually segmented by determining the
range of each feature using the data acquired from the IMU
sensor. However, in this case, the algorithm performedmotion
segmentation directly and identified the characteristics of the
segmented motions. Therefore, 18 features were empirically
selected by altering the feature combinations to identify the
features that can yield good results, as shown in Table 3.

Next, the data of 30 out of the 35 individuals were used
for preprocessing. Subsequently, unsupervised learning was
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TABLE 4. MLP model structure.

TABLE 5. MLP model structure.

conducted, and the cluster numbers were set to 8, 10, 12, 16,
and 18 in order to find the optimal number of clusters with
good clustering results. Finally, the results for each cluster
setting were derived.

E. MOTION PREDICTION
Real-time control necessitates prediction using raw data with-
out any data preprocessing. Consequently, the outcomes of
unsupervised learning are employed to train a model, and
new data is predicted using raw, unprocessed data to confirm
accuracy. Initially, the results of unsupervised learning were
utilized to train the MLP model, which consists of an input
layer, five hidden layers, and an output layer, as illustrated
in Table 4. The hyperparameter configuration for the model
was set as follows: Loss Function: Mean Squared Error;
Optimizer: Adam, as presented in Table 5. The effectiveness
of the proactive control model was verified by predicting
the clusters for the data of five individuals who were not
involved in the unsupervised learning phase and subsequently
comparing the results with those of unsupervised learning.

IV. RESULTS
A. DETERMINATION OF THE NUMBER OF CLUSTERS
By integrating motion data acquired through experiments,
clustering labels (target) were obtained as a result of unsuper-
vised learning. We defined the result as motion elements. The
optimal number of clusters was determined by empirically
comparing the results according to the number of clusters.
The criterion for determining the optimal number of clusters
was established by referring to the study of Hwang et al. [30]:
(1) Cluster interpretation should not be complicated, and it
was determined by visually examining the average and ratio
data for all variables. (2) To determine the optimal number

of clusters, the number of data points in each cluster was
considered. This is because variability can increase if the
amount of data in a cluster is less than 1000. (3) Each joint’s
range of motion (ROM) must be distinguishable among clus-
ters. (4) While satisfying the above three conditions, it was
determined that the number of motion elements constituting
the motion sequence should be as large as possible, and the
motion sequence classification rate should also be high.

As a result, it was confirmed that the classification per-
formance was the best when clustering was performed with
16 clusters. The process of selecting the optimal number of
clusters can be seen in Figure 3.

B. CLUSTERING OF MOTION USING UNSUPERVISED
LEARNING
A total of 16 motion elements were identified through unsu-
pervised learning. The motion sequence for each motion is
illustrated in Figure 3. While Squat and AsianSquat exhibit
a similar motion sequence, it can be observed that Stooping
has a distinct sequence, with the exception of one step at the
beginning and end. This difference is likely influenced by
the posture adopted when lifting an object, despite Stooping
primarily involving lower extremity motion.

Therefore, it was confirmed that 11 of the 16 clusters (6,
12, 0, 14, 7, 2, 8, 13, 3, 10, 11) corresponded to motion
elements obtained using the motion segmentation technique.
The remaining five clusters (4, 5, 1, 9, 15) were not con-
sidered as motion elements of the lower extremities because
they were classified based on the IMU sensor data attached
to the waist rather than the lower extremities. Additionally,
it was determined that Stoop was not solely a lower extremity
motion since elements 4, 5, 1, and 15 were included in the
motions constituting Stoop.

Regarding the Squat and AsianSquat motions, the motion
sequence was analyzed based on the motion elements’ angle
and speed (angular velocity) values. Figures 5 and 6 confirm
the symmetry of the values in clusters 12-11, 0-10, 14-3, and
7-13. Figure 4 shows the classification of another motion
element based on the change in angle value for each joint,
influenced by posture changes and the positive or negative
angular velocity of each joint. Specifically, clusters 12, 0,
14, and 7 correspond to going down while bending the knees
from a standing posture, while clusters 13, 3, 10, and 11 rep-
resent returning to a standing posture. This classification
makes it challenging to identify symmetrical motion elements
from the perspective of exoskeleton control. Consequently,
symmetrical motion elements are expressed within the same
cluster, while the return to a standing posture is classifiedwith
a different symbol, as shown in Table 6.

C. TIME OF MOTION ELEMENT IN THE MOTION
SEQUENCE
As a result of unsupervised learning, representative sequences
expressing the Squat and AsianSquat movements were
identified. In this study, motion was segmented to derive
sequences and facilitate proactive control implementation.
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TABLE 6. Before and after changing the symbols of motion elements.

FIGURE 3. Rocess for selecting the optimal number of clusters. First, for stoop sequence, we excluded Cluster 18 which had
less than 1000 motion cycles in the representative motion sequence (ex: representative motion sequence for Cluster 8 is [0],
[2], [5], [3], [0]). Next, for squat sequence, two clusters with a high motion sequence classification rate (above 60%) were
selected. Finally, for asiansquat, Cluster 16 which has the largest number of motion elements constituting the motion
sequence, was determined as the optimal cluster.

The prediction time for motion intention using minimal ini-
tial data is limited. However, if the current motion element
can be identified with minimal initial data for each element

and the next motion element can be predicted based on
sequence information, the limitation on prediction time can
be mitigated. Additionally, during the control process of the

VOLUME 11, 2023 127113



J.-H. Woo et al.: Machine Learning Based Recognition of Elements in Lower-Limb Movement Sequence

FIGURE 4. Joint angle change according to posture change.

FIGURE 5. Angle and angular velocity values for the squat.

FIGURE 6. Angle and angular vlocity values for the AsianSquat.

FIGURE 7. Table for the identified elements of the human lower extremity motion sequence from unsupervised learning and supervised
learning.

exoskeleton robot’s actuators, time delays occur due to signal
measurement, calculation, and actuator response [6]. There-
fore, it is necessary to assess whether each motion element
has sufficient execution time.

To begin, the average and standard deviation of the
execution time for each motion element were determined.
As shown in Table 7, the execution time of themotion element
corresponding to the representative sequence was confirmed,
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TABLE 7. Average execution time for each motion element.

TABLE 8. Performance evaluation results of the MLP model.

and it was found that all motion elements lasted more than
200ms.

D. PREDICTION OF THE MOTION ELEMENTS USING THE
MLP MODEL
The results obtained from the unsupervised learning model
were utilized by the MLP model, and the optimal parameter
information is presented in Table 8. These results were then
used to predict the data labels for five subjects who were
not included in the unsupervised learning process. A total
of 600 Squat and AsianSquat movements were analyzed (300
for each movement), and the application of the MLP model
indicated that there were 270 meaningful combinations of
motion elements for the Squat and 257 for the AsianSquat.
This implies that the representative motion sequence for
each movement aligned with the results obtained from unsu-
pervised learning, resulting in high classification accuracy.
Furthermore, a comparison between the outcomes of unsu-
pervised learning and supervised learning can be observed in
Figure 7.

V. DISCUSSION
In this study, the goal was to implement proactive con-
trol of an exoskeleton robot by deriving motion elements
for lower extremity motions. These motions were expressed
as sequences to predict natural robot control and motion

intentions without causing inconvenience to humans. A pre-
vious study [10] has demonstrated the effectiveness of seg-
mentingmotion into six types based on selected features from
real-time bio-signal data, enabling a better understanding of
the motion sequence as a whole. However, no additional stud-
ies using Naghdy and Fazel [10] researchmethod were found.
This is likely due to the recent advancements in bio-signal
measuring sensors and machine learning technology, which
allow for deriving results from sensor data using artificial
intelligence algorithms. Hence, controlling the exoskeleton
robot by identifying the motion sequence through the motion
segmentation technique aligns with the research method and
can be effective. The significance of this study lies in demon-
strating that proactive control of an exoskeleton robot can be
achieved by dividing movements into elements, processing
a larger amount of data compared to previous studies, and
expressing lower extremity motion as a sequence. The results
of this study can guide future research on implementing
proactive control of an exoskeleton robot.

Several previous studies have highlighted the importance
of nullifying control delay time for proactive robot control
[6], [20], [23]. Motion mismatch issues may persist when
implementing proactive control without compensating for
control delay time. Ding et al. [6] suggested that to con-
trol an exoskeleton, it is necessary to predict motion at
least 124ms ahead considering the control delay time when
utilizing past 200ms of data. To compare our results with
Ding et al., Table 7 confirms that the execution time for
all motion elements constituting the representative sequence
exceeds 200ms. This indicates the possibility of predicting
an operation after 124ms by using 200ms of initial data for
each element operation. Additionally, Beil et al. [20] con-
ducted a study on control delay time by varying the time of
using past data to control the exoskeleton robot. Considering
the data duration and model accuracy, using 300ms of past
data was deemed optimal, suggesting a control delay time
of 368.97ms. This implies that motion prediction should be
made after approximately three times the control delay time
suggested by Ding et al. [6]. However, Beil et al.’s study
employed a total of 39 features, whereas our study utilized
18 features, potentially saving data calculation time. Given
the significant advancements in sensor performance, the tem-
poral aspect can be supplemented using the results of this
study. Therefore, proactive control can be implemented by
predicting the motion intention of the exoskeleton robot.

In this study, IMU sensor was used to derive motion
elements for lower extremity motions. By applying feature
reduction, only 18 features out of 42 were employed to
segment the lower extremity motion into 11 motion ele-
ments. The angle and speed (angular velocity) values of
each motion element were analyzed, revealing certain ele-
ments that were paired and were symmetrical. Thus, the
possibility of proactive control was confirmed by defin-
ing new symbols for motion elements and expressing the
sequence of lower extremity motion. However, the results
indicate that the motion element distinguishing Squat and
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TABLE 9. Divided range of the knee angle of the motion elements.

FIGURE 8. Supervised learning results with respect to three cases of the divided range of knee angle of the motion elements.

AsianSquat is ‘‘E’’. It remains challenging to determine from
the prediction results whether a human will perform a Squat
or an AsianSquat, even with information about the motion
sequence. Furthermore, predicting and controlling different
humanmotion intentions innately is complex since the results
are based on data from predetermined experimental motions.
To address these limitations, future studies could incorporate
EMG or insole sensors, as previous research has suggested
[6], [20], [23], [33], to predict motion intention in addition to
the IMU sensor.

Another aspect that should be considered is setting the
range of motion (ROM) for each motion element’s knee to
understand motion intentions and facilitate prediction. There-
fore, as shown in Table 9, the ROM for each motion element
was divided into three cases. Case 1 involved setting the range
based on the 1st and 3rd quartiles, Case 2 utilized average
values, and Case 3 used average values but with a larger
range for ‘D’. Through unsupervised learning, only the ROM

data for each case was altered and trained using the MLP
model, yielding the results shown in Figure 8.When the ROM
was changed as in Case 2, the prediction closely matched
the existing MLP prediction result. This suggests that even
if the knee angle for each motion element is adjusted to avoid
overlap, a similar model performance can be achieved. These
findings indicate that the exoskeleton robot can be controlled
based on the worker’s knee angle.

VI. CONCLUSION
This study identified a problem in the industrial field, which
is the mismatch between the worker’s motion intention
and the control of the exoskeleton. To address this issue,
proactive control that considers control delay time must be
implemented. Understanding human motion intention is cru-
cial for proactive control, and thus, a study applying the
motion segmentation technique to IMU sensor data was con-
ducted to identify the motion elements of lower extremity
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motion. Using the IMU data, the lower extremity motion
was segmented into 11 meaningful motion elements using
the k-means clustering algorithm. These 11 motion elements
allowed the expression of Squat and AsianSquat movements
as a sequence. Additionally, the potential for developing a
motion intention and sequence prediction model was verified
through training an MLP model and predicting the motion
sequence of new data. Notably, the duration of each motion
element in the sequence exceeded 200ms, establishing the
feasibility of proactive control using the motion segmentation
technique for the exoskeleton.

To overcome the limitations of the proposed approach,
further explorations based on the findings of this study are
necessary in the next stage. Firstly, the motion intention
should be identified based on the initial data of each motion
element. This is because it is necessary to check how far
ahead the motion intention and sequence prediction model
can predict the motion intention using only a single IMU
sensor. Afterwards, the goal is to compensate for the control
delay time of more than 300ms by additionally using an EMG
sensor data and to secure the synchrony of movement inten-
tion and control. As a result, we aim to develop a proactive
control algorithm for a multimodal sensor-based exoskeleton
robot. On the other hand, we are currently researching healthy
men in their 20s targeting lifting movements among lower
extremity movements, but in the future, we will diversify
movements such as walking, lunging, and going up and down
stairs. We also plan to conduct additional experiments to
examine the subjects’ characteristics (age, height, weight,
gender, etc.). It is expected that proactive control can be
sufficiently implemented if the corresponding actions are
expressed as a sequence using the movement segmentation
technique.

In this way, after developing a proactive control algorithm
for an exoskeleton robot that can assist various lower limb
movements, the verification and evaluation process of the
algorithm must be performed through the actual exoskeleton
robot or simulation. One of the important issues in exoskele-
ton research is to accurately identify the operator’s movement
intention in real-time and implement effective control [31].
Accordingly, it is necessary to verify the algorithm’s perfor-
mance by compensating the control delay time and whether
control starts simultaneously with the human motion inten-
tion. Additionally, since safety is an important factor when
evaluating the performance of an exoskeleton, control insta-
bility caused by the algorithm must be minimized [32].
To address these issues, Akbari et al. [11] proposed a method
to evaluate the uncertainty of a deep learning algorithm
in real time and use this uncertainty measurement in the
robot’s control loop to update the system whenever an unsafe
situation for the user occurs. In [33], an adaptive intention-
based variable impedance controller was proposed to estimate
human motion intentions online based on physical interac-
tions, stochastic distributions, and random disturbances by
Huo, Y. et al. As such, since exoskeleton robots are worn
by humans, it will be essential to solve the problem of false

detections caused by algorithms. In the future, after develop-
ing a multi-modal sensor-based motion intention prediction
algorithm, we will secure safety by establishing a response
strategy in case of false detection of the algorithm, as in
previous studies.
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