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ABSTRACT This paper addresses the development of a stereo vision-based obstacle avoidance system
using MOOS-IvP for small and medium-sized Unmanned Surface Vehicles (USVs). Existing methods
predominantly rely on optical sensors such as LiDAR and cameras to discern maritime obstacles within the
short- to mid-range distances. Nonetheless, conventional cameras encounter challenges in water conditions
that curtail their effectiveness in localizing obstacles and planning paths. Furthermore, LiDAR has limitations
regarding angular resolution and identifying objectness due to data sparsity. To overcome these limitations,
our proposed system leverages a stereo camera equipped with enhanced angular resolution to augment
situational awareness. The system employs recursive estimation techniques to ascertain the position and
dimensions of proximate obstacles, transmitting this information to the onboard control unit, where MOOS-
IvP behaviour-based software produces navigation decisions. Through the real-time fusion of data obtained
from the stereo vision system and navigational data, the system is able to achieve Enhance Situational
Awareness (ESA) and facilitate well-informed navigation decisions. Developing a state-of-the-art maritime
object detection technique, the system adeptly identifies obstacles and swiftly responds via a vision
integration protocol. During field tests, our system proves the efficacy of the proposed ESA approach.
This paper also presents a comprehensive analysis and discussion of the results derived from deploying
the proposed system on the Suraya Surveyor USV platform across numerous scenarios featuring diverse
obstacles. The results from these various scenarios demonstrate the system’s accurate obstacle detection
capabilities under challenging conditions and highlight its significant potential for safe USV operations.

INDEX TERMS Stereo vision, object detection, situational awareness, obstacle avoidance, MOOS-IvP,
unmanned surface vehicles.

I. INTRODUCTION
Unmanned Surface Vehicles (USVs) have gained a large
amount of attention in recent years due to the advancement of
computing and sensor technologies. This traction is because
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USVs can undertake tasks that are safety-critical missions
such as surveillance and reconnaissance [1], environmental
monitoring [2], and hydrographic surveys [3]. Collision
avoidance is a vital capability, particularly for USVs, which
cannot benefit from the real-time guidance of a human
operator. Safe maritime navigation and collision avoidance
remain the main two challenges since they require the
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seamless coordination of multiple complex subsystems [4].
Safe operations of USVs encompass various aspects such
as obstacle detection, path planning, guidance, and control.
In order for autonomous navigation systems to operate
effectively, it is crucial for vessels to possess the capability to
perceive and comprehend their surroundings across various
environments.

The automatic detection of surrounding objects and
accurate motion estimation are crucial elements that require
reliable and robust performance across diverse environmental
conditions [5]. Therefore, an additional sensing approach is
necessitated for Enhance Situational Awareness (ESA) in no
Global Navigation Satellite System (GNSS) zone without
Automatic Identification System (AIS) or reliable Global
Positioning System (GPS) communication. In addition,
marine radars are low resolution and slow in sampling,
affecting high-speed or small object detection. This situation
can be perceived in USVs by using one or more additional
sensors like cameras or infrared systems. The vessel must
also react quickly and intelligently to avoid this set of
known targets, following the required needs of path planning,
guidance, and control [6]. Unfortunately, many USVs remain
unable to perform one or more of these crucial tasks,
limiting their adoption beyond the oceanographic research
community. Inmaritime traffic of uncooperative or conducive
environments, information on surrounding vessels can be
obtained from optical sensors such as cameras that have been
successfully used for many robotics applications. They can
detect close-range obstacles at a relatively high sampling
rate. However, conventional cameras are marred by limited
visibility in water conditions, lighting variations, and limited
depth perception. Furthermore, localizing objects concerning
SA and path planning is non-trivial.

In this paper, we propose a robust object detection
model for ESA and safe USV navigation using stereo
cameras. Stereo cameras have a relatively high angular
resolution. Thus, they can enhance the detectability of short-
or mid-range targets [7]. The obtained three-dimensional
(3D) data from the stereo vision consist of arranged
corresponding points, which helps to collect surrounding
obstacle information within a wide environmental view.
Integrating such sensors into USV navigation and control
can lead to an ideal solution to improve target detection
performance compared to the conventional radar-only-based
approach that needs to be investigated [8]. Furthermore,
this paper also discusses the field test results achieved
using a collision avoidance method based on a stereo vision
system with the Mission Oriented Operating Suite-Interval
Programming (MOOS-IvP) [9]. The field test approach
used during the verification exercise deviates from the
typical approach used in research experiments, where test
scenarios are usually limited to fixed pre-planned behaviours
of obstacles with specific path planning. This work is
implemented on the newly developed USV platform
‘‘Suraya-Surveyor’’ [10]. The Suraya-Surveyor USV system
incorporates a suite of detection sensors consisting of LiDAR,

an electro-optical (EO) camera, and a stereo camera system
which is the scope of this study. The results show that our
system can detect obstacles accurately, even in challenging
conditions such as low light and turbidity at slow variable
speeds. In summary, there are four significant contributions
of this paper in advancing the frontier of USV research. These
include:

1) Arobust object detection model for safe USV nav-
igation, using a federated dataset that enhances the
detectability of short- to mid-range obstacles.

2) A softwaremodule employing stereo cameras to extract
3D data and information on nearby obstacles enhances
situational awareness.

3) A complete protocol for integrating the software mod-
ule to utilize object detection and collision avoidance
for USV behaviours using MOOS-IvP.

4) A field test evaluation to benchmark the system
performance for MOOS application in challenging
scenarios.

The remainder of the paper is organized as follows.
Section II provides an overview of related works. Section III
outlines the methods for developing the USV platform,
an object detection module, software for SA, and the Vision
Integration Protocol (VIP) is discussed in Section IV. The
MOOS-IvP implementation is shown in section V, followed
by the presentation of results and field experiments in
Sections VI. The discussion in section VII highlights the
impacts of the proposed approach, shortcomings and suggests
areas for future work. Finally, the paper concludes with a
conclusion.

II. RELATED WORK
Extensive studies have advanced SA strategies in recent
years. This section explores integrating stereo vision systems
into USV’s autonomous navigation and collision avoidance
systems. Optical sensors, like cameras and LiDAR, detect and
track obstacles at close range, while stereo vision systems
provide precise target state estimates. The applications,
advantages, and challenges of these sensing technologies
in USVs are discussed, highlighting advancements in
autonomous navigation and collision avoidance

A. OPTICAL SENSORS FOR SITUATIONAL AWARENESS
USVs require autonomous navigation and collision avoid-
ance in close-range marine conditions for safe and efficient
operations. A significant amount of research has been under-
taken on autonomous navigation and collision avoidance
techniques for USV platforms. The popular approach to
deal with SA in the absence of GPS-based systems and
to overcome the limitations of marine radar systems is to
use optical sensors like LiDAR and cameras [7]. In marine
environments, cameras are commonly deployed as sensors
for detecting and tracking close-range obstacles. In the
context of bearing-only tracking, a monocular camera offers
bearing information, while the estimation of relative range
information can be indirectly inferred from the changes in
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bearing. Feature-based image processing techniques were
applied to detect targets on camera images, and their motions
were estimated by tracking filters [11]. However, relying
on a single camera to obtain the precise three-dimensional
location of a target is non-trivial.

3D LiDARs utilize vertically arranged laser beams to
gather information on surrounding obstacles by rotating the
lasers for a complete 360◦ view. While LiDAR provides
precise relative bearing and range data for close-range
obstacles, it has limitations in angular resolution and object
classification. To overcome these limitations, combining
cameras and LiDAR sensors has been explored for detecting
close-range obstacles in marine environments [4], [12].

Stereo vision systems are crucial for precise target
state estimation of close-range objects in marine environ-
ments [13]. They are used in detecting dynamic and static
obstacles in close range for marine vehicles [14]. However,
their performance relies on textured surfaces for robust stereo
matches. Muhovic et al. [7] used an onboard stereo camera
and IMU to approximate the water surface accurately in
calm seas. Nevertheless, their stereo reconstruction falls short
in detecting partially submerged obstacles, and increasing
the stereo baseline for distant obstacles negatively impacts
USV stability. Bovcon et al. [15] extended a semantic
segmentation method based on fitting structured models to
RGB images [16]. Their approach utilized a stereo camera
system and an IMU sensor to enhance water-edge estimation
and reduce false-positive detections caused by environmental
factors. However, this method struggles with the diversity of
marine scenes, leading to poor segmentation in the presence
of visual objects like wakes, sea foam, glitter, and reflections.

One of the most recently developed stereo vision systems
is the ZED camera which has two high-resolution cameras.
According to the manufacturer’s information, it is designed
and built to perceive the depth of objects in indoor and
outdoor environments [17]. Recent studies have suggested
using ZED cameras as it returns reliable depth values [18].
ZED was employed in many studies for a sensing subsystem
of short-term obstacle detection and avoidance functionality
of the USV, which is, in turn, part of the more complex
automatic onboard navigation system [12], [19]. For the
perception of the vehicle, ZED and 3D LiDAR were
used [12], and the data from these two sensors were
processed, analyzed, and used for collision decision-making.
However, these strategies and methods are computationally
expensive, and the methodologies have not been tested in
experimental non-controlled environments.

Therefore, a better use case for ZED to utilize its full
potential for improvised SA is needed. Table 1 presents a
comparison of studies utilizing optical sensors to provide
valuable insights. The sensor capabilities must be augmented
with a robust AI model for object detection in a maritime
environment. This enhancement will significantly improve
the detectability of short- or mid-range targets for small and
medium-sized USVs. Additionally, a well-curated dataset for
marine object detection is imperative for the development of

a robust model for short-term collision avoidance. The effec-
tiveness of the collision avoidance system is heavily reliant on
a robust object detection model, which is paramount for safe
USV navigation. While a classical feature-based detection
algorithm was initially employed for vision-based obstacle
detection using camera images [11], [20], it demonstrated
reasonable performance in well-configured and steady illu-
mination conditions. However, the parameter tuning of the
feature-based detection algorithm proves to be rather chal-
lenging and sensitive to real-world varying environmental
conditions.

B. DEEP LEARNING-BASED MARITIME OBJECT
IDENTIFICATION
A deep-learning-based strategy has been used to increase the
robustness and reliability of marine obstacle identification,
utilizing successful applications such as the Single Shot
MultiBox Detector (SSD) [21]. SSD is a convolutional
network that detects objects by producing bounding boxes
and class scores. It consists of a base network and extra
feature layers. The base network, a 16-layer model, provides
classification results. The extra feature layers at the back
help detect object locations of different sizes. Finally, a loss
value is computed using classification and detection scores
from each feature layer. Besides its computational efficiency
and accuracy in detecting large objects, SSD has limitations
in detecting and localizing small objects, which can be
attributed to the default anchor box sizes and the limited
receptive field in early network layers [22].

One of the best-known single-stage object detectors is
YOLO (You Only Look Once) [23]. This architecture
addresses object detection as a regression problem to obtain
spatially separate bounding boxes and associated class
probabilities. In one evaluation, a single neural network
directly predicts bounding boxes and class probabilities
from full images. YOLO has demonstrated superior per-
formance to previous state-of-the-art methods, such as
SSD [24], attributed to its unified network architecture
that directly predicts bounding boxes and class probabili-
ties, effectively capturing contextual information. YOLO’s
grid-based approach and architectural improvements like
feature pyramid networks and attention mechanisms con-
tribute to its exceptional capability in detecting small
objects. These factors make YOLO a preferred choice for
applications requiring accurate detection of small objects,
including maritime objects. In addition, these algorithms
have enhanced the performance of vision-based detection in
USV platforms [25], [26].

The advantages of using a deep learning algorithm
lie in the quality and quantity of the data fed into the
model during the training process. Many datasets, such as
SeaShip [27] and Singapore Marine datasets (SMD) [28],
have been created for maritime object detection. SeaShip is
a large-scale ship dataset featuring high-resolution images
of six ship types, capturing diverse scenarios with variations
in ship types, scales, viewpoints, illumination, and occlusion
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TABLE 1. Comparison of camera-based approaches for collision avoidance in USVs.

degrees [27]. However, SeaShip exclusive use of side views
from offshore cameras makes it suboptimal for collision
avoidance. SMD encompasses various classes related to the
maritime environment, including vessels, maritime infras-
tructure, navigation aids, marine equipment, and coastal
landscapes [28]. However, SMD may not fully capture the
variability and complexity present in an actual maritime
environment. Therefore, a critical need for a large-scale
dataset encompassing diverse data poses (front, isometric
views) and scales (i.e., very near objects) of vessels and boats
to develop an effective vision system for collision avoidance,
enhancing SA for USVs.

C. MARITIME COLLISION AVOIDANCE AND PATH
PLANNING
Field experiments validate the performance of maritime sit-
uational awareness and obstacle avoidance systems. Studies
addressing obstacle avoidance have been conducted and ver-
ified with field experiments for the autonomous operation of
marine vehicles in maritime traffic situations [4], [29]. With
USV systems developed on commercial kayak platforms,
a study of automatic collision avoidance using a monocular
camera was conducted [20]. Moreover, a collision-avoidance
experiment was performed using a model predictive con-
trol [30], and a velocity obstacle-based collision avoidance
algorithm was tested on a maritime combat vessel [31].
Nevertheless, with an increase in the number of target
objects, the algorithm’s computational complexity increases,
which affects the decision-making time and leads to losing
the tracked objects. Hepworth et al. [32] have utilized a
stereovision-based navigation system for collision avoidance
to provide an appropriate solution for autonomous inland
vessels only. However, these are single-layer approaches,
where one algorithm solves the complete collision avoidance
problem, which might cause the re-planned path information
to be lost.

One approach to address path planning challenges is
to use action selection and multi-objective optimization
[33]. This architecture enables layered behaviours, activating
complex ones when specific conditions are met. It allows
for emergent behaviours and incorporates a multi-objective
solver with reduced computational overhead. MOOS-IvP,

released in 2006, brokers a compromise between competing
objectives, resembling a ship captain’s decision-making
process to reach waypoints while avoiding collisions and
hazards [34]. Table 2 presents the comparison of these
studies. It is evident from the literature that efficient SA
can improvise the safe operations of USVs. We aim to build
a robust maritime object detection model and a powerful
stereo-vision sensor for improved situational awareness. The
proposed situational awareness algorithm is integrated with a
robust control framework for multi-object optimizations for
collision avoidance, and the complete framework is tested
thoroughly through field experiments.

TABLE 2. Collision avoidance approaches in USVs.

III. PROPOSED METHODOLOGY
In this section, we present the methodology employed to
achieve the four major contributions of this work. Firstly,
we describe the system overview and development of the
USV platform, including the hardware and software. Then,
we discuss the method of developing a robust vision-based
object detection model for safe USV navigation. Particularly,
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this model uses a federated dataset to improve the detectabil-
ity of obstacles at close and intermediate ranges. In addition,
the model is built to efficiently recognize and keep track of
items of interest, which ensures reliable capabilities to avoid
collisions. Next, using the proposed federated data model,
we construct a stereo based module to extract 3D data and
acquire precise information about adjacent obstructions. This
module improves SA by giving a complete picture of the
environment

Furthermore, we propose a complete protocol for integrat-
ing the software module into the USV system. This protocol
ensures MOOS-IvP uses, object detection for USV collision
avoidance systems. Likewise, integrating the module into the
USV control system enables real-time decision-making based
on accurate obstacle detection and avoidance behaviours.
Finally, to evaluate our system’s performance, we conducted
field testing of the complete MOOS application. These
tests evaluate the system’s capabilities in various operating
circumstances, revealing its real-world applicability and
performance. Through the methodology described in this
section, we intend to develop a robust and reliable framework
for object detection and collision avoidance to improve the
safety and effectiveness of USVs navigation.

A. SYSTEM OVERVIEW
Figure 1 illustrates the architecture of the USV system,
highlighting the essential components of the Onboard System
(OBS) and the remotely linked Ground Control Station
(GCS). The Enhance Situational Awareness (ESA), which

FIGURE 1. Block diagram of System Architecture and Components.

comprises the perception module, the Vision Integration
Protocol (VIP), and the computing model, provides the
seamlessly integrated controller with enhanced object details
and pertinent information. Obstacles are effectively identified
by leveraging stereo camera ZED2i [35], a notable member
of the ZED cameras family. Subsequently, ZED2i captures
frames, enabling a deep-learning model to detect potential
objects. Each detected object is assigned a unique identifi-
cation, and VIP is updated with new measurements for each
tracked object for data transmission.

The computing module receives vital information from
navigational sensors, including the compass, Inertial Nav-
igation System (INS) and Real-Time Kinematic Global
Positioning System (RTK-GPS) data. It is also used as a host
for serial device server, enabling data transmission tomultiple
onboard processing units. This data is accessible at GCS to
facilitate remote control decisions for manual intervention for
failed safe operations.

The autonomous decision-making module processes deci-
sions based on filtered and estimated positions of tracked
objects, which are further assessed for subsequent processing.
Navigation commands are then generated through various
MOOS applications, providing crucial information about
the current position and trajectory of the USV platform.
This approach facilitates behavior-based autonomy, enabling
the hierarchical development of complex missions. Also,
within MOOS-IvP, a mathematical programming technique
is employed to seek globally optimal solutions within each
domain, resolving conflicts between different behaviors and
ensuring the continuous update of desired navigation data.

1) USV PLATFORM
To ensure the development of a stable platform capable of
accommodating future research applications, we built Suraya
Surveyor USV shown in Figure 2, which is a monohull
boat. Suraya Surveyor, measuring 4.7 meters in length
and 1.4 meters in width, has been specifically designed
for coastal bathymetry and hydrology purposes. Equipped
with a waterjet propulsion system, diverse navigation and
perception sensors, communication systems, and processing
units, the integrated USV system offers comprehensive
functionality. Detailed specifications of Suraya Surveyor
can be found in Table 3. Notably, this platform has an
enhanced payload capacity compared to its predecessor.
Additionally, it utilizes multi-beam technology in its survey
system, allowing for more precise mapping capabilities while
operating at speeds ranging from 2 to 8 knots, with endurance
of 8 and 2 hours respectively.

Table 3 provides the specifications of Suraya Surveyor
system. The system has multiple payload capabilities,
allowing it to perform various roles. The transducer used
in the system has nine degrees of beamwidth and enables
effective sensing and data acquisition. For positioning, the
Suraya Surveyor utilizes the Atlaslink H-10 positioning
system, which offers a high level of accuracy with an RMS
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FIGURE 2. Suraya- Surveyor Unmanned Surface Vehicle.

TABLE 3. Suraya Surveyor specifications.

accuracy of less than 8cm. Telemetry is ensured through
fail-safe connectivity options, including Long Range WiFi,
Kongsberg MBR, and Sailor Ku Band Satellite Broadband.
The system utilizes Iridium Short Burst Data (SBD) for
worldwide asset tracking). The acquisition software used is
Beamworx. The propulsion system of the Suraya Surveyor
consists of dual thrusters and is designed to operate without a
rudder. The system can be remotely controlled and includes
an autonomous mission waypoint function. Additionally,
Suraya Surveyor offers scalable payload options, allowing for
customization and flexibility in payload selection.

2) HARDWARE SYSTEM
Figure 3 depicts the hardware architecture of the obstacle
avoidance system on the USV platform, which comprises
navigation and perception sensors, a propulsion system, and
a computing module.

The Navigation sensors are equipped with an RTK-GPS,
a compass (KVH C100) [36], and an INS (SBG Systems
Ellipse-E) [37] to provide accurate and reliable vehicle
motion information. The SBG Systems Ellipse-E is a small
device with a high-performance inertial navigation system.
It consists of a MEMS-based inertial measurement unit
(IMU). Moreover, it utilizes an enhanced extended Kalman
filter (EKF) to combine inertial and aiding information
to produce precise real-time orientation and navigation
data. This device can provide data at a maximum rate
of 1000 Hz. In addition to the Eclipse-E, the system
incorporates a microprocessor-controlled fluxgate compass,
KVH C100, which consists of a detachable toroidal fluxgate
sensor element and a compact electronics board. C100’s
innovative automatic compensation algorithm allows it to
handle tilt angles up to 450, with a resolution of 0.1
and an advertised accuracy of 0.5. This cost-effective
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FIGURE 3. Hardware Architecture of Suraya Surveyor Obstacle Avoidance System.

system contributes significantly to achieving high accuracy
levels.

Furthermore, the system utilizes the onboard ZED2i to
perceive and recognize external obstacles and conditions. The
camera data is accessed through Ethernet communication,
and its data is transmitted directly to the computing module
for automatic obstacle detection. The IP camera stream is
transmitted to the ground station, where a detection and
tracking method is implemented on the operator’s laptop for
detection data collection. The Arduino Nano is interfaced
with the Raspberry Pi to precisely control the twomotors with
the desired heading and speed.

The computing module, housing a Raspberry Pi and an
industrial PC, collects and processes navigation data from
these sensors. Simultaneously, GPS data is also directed to the
industrial PC for bathymetry and hydrology data collection.
The computing module is interconnected via an Ethernet
hub, enabling it to exchange data through User Datagram
Protocol (UDP) ports. NVIDIA Jetson Xavier AGX handles
the processing of detection and tracking data, leveraging
its exceptional performance in demanding graphical and
arithmetic functions, including the deep learning models
employed in this work. The AGX is connected to the ZED2i
via USB 3.0 and to other navigation sensors through Ethernet.
It executes all algorithms developed in this work using
JetPack 4.4, which features L4T 32.4.3.

Maritime broadband radio system (MBR) was imple-
mented to establish communication between the ground
station and Suraya-Surveyor systems. Specifically, we utilize
MBR 179 (as shown in Figure 4) [38], which is a Maritime
Broadband Radio developed for use in maritime applications
where reliable communication and data transfer are critical

FIGURE 4. On-site MBR 179 Broadband Radio System.

for efficient and safe operations. This system allows for
digital high-speed data transfer, ensuring that data can be
transmitted and received quickly and reliably.

3) SOFTWARE SYSTEM
The software system architecture for the autonomous obstacle
avoidance system is shown in Figure 5. The onboard sensors
provide their measurements in the sensor referenced frame.
Therefore, navigation data is utilized to transform the sensor
measurements to MOOS-IvP and determine the obstacle’s
location and USV state.
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FIGURE 5. Software architecture of Suraya Surveyor obstacles avoidance system.

The detection and tracking module incorporates a custom
detector model utilizing PyTorch [39] and YOLOv5 [40]
for processing RGB images. In addition, the detector runs
within an edge device, enabling real-time results to broadcast
via UDP within a local network. This simplifies device
communication and allows for easy function and data sharing.
Once the custom detector has detected the objects, the
detected objects of interest are identified, and detection
information is generated using ZED APIs for distance and
3D dimension of an object. Then, the relative distance and
bearing are being transmitted to the computing module to
generate the ESA data while keeping updating the USV state.

The ESA data is fed into the controller, which then
only requires the application of MOOS behavior on the
ESA data to achieve the desired heading and speed. The
MOOS behavior relies on the MOOS application set, which
can execute commands quickly through a communication
channel that forms the edge of the MOOS-IvP subsystem.
Typically, a MOOS process manages this channel. To provide
feedback, the interface process periodically requests the
current position, speed, and heading from the communication
channel. At the conclusion of each iteration, the chosen
MOOS behaviour orders the desired heading and speed,
resulting in the present state of the vehicle (position, speed,
and heading).

B. FEDERATED MARITIME DATASET
While existing open-access datasets are valuable for identify-
ing multiple static targets, there are notably lack of specificity
required for precise maritime detection. Therefore, we have
created a new Maritime Federated Large Dataset (MFLD)
by combining COCO [41], SeaShip, and SMD to address
the limitation mentioned for available datasets in Section II.

In addition, several processing steps were implemented to
ensure a cohesive dataset.

To ensure cohesiveness and usefulness, the methodology
for creating MFLD involved several crucial steps. Firstly,
the consolidation of vessel and ship classes into a single
class using the in-house developed Class Mapper. This step
streamlined the dataset and facilitated more manageable
object detection tasks. Additionally, the data labels were
converted to the annotation schema format using the labels
converter, further enhancing compatibility and ease of use.
When dealing with dataset that require video processing
such as SMD, a systematic approach was implemented. Con-
cretely, every fifth frame was extracted from each video in
the SMD, ensuring a representative sample while minimizing
redundancy. Four selected video frames were included in the
test set, while the remaining videos contributed only their
fifth frame. This consistent approach was applied across the
three categories in the dataset: infrared, onshore, and on-
board footage.

The converter component was responsible for converting
the data labels to the annotation schema format suitable
for object detection tasks. It processed the file format
containing the annotations and extracted relevant information
such as class names, bounding box coordinates, and image
dimensions. This information was then used to generate a
unified framework format in the desired annotation format,
which could be efficiently utilized for training object
detection models.

Extracting the boat class from the COCO enhanced the
dataset’s diversity and content. This inclusion introduced a
more comprehensive range of boat samples, contributing to
a more comprehensive representation of maritime objects.
By incorporating this additional data, the dataset became
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TABLE 4. Proposed federated large datasets comparative.

more versatile and capable of addressing various real-
world scenarios. In parallel, the mapper component was
crucial in consolidating the various vessel and ship classes
into a single class. It iterated through the extracted class
names and grouped similar classes together under the
unified label. This mapping process ensured consistency
and coherence within the dataset, simplifying subsequent
analysis and model training. Combining the converter and
mapper components transformed the initial dataset into a
cohesive and standardized format. The dataset became more
streamlined and consistent by converting the labels to the
appropriate annotation schema and consolidating the vessel
and ship classes. These processing steps were fundamental
in creating a unified and well-structured dataset that could
effectively support object detection tasks in the maritime
domain.

Figure 6 shows that proposed MFLD is curated by collect-
ing 3025 images from COCO for boat class. A collection of
7,000 images from SeaShip and 6350 images from SMD total
of 16375 boat images. The training images are selected to
include various environmental and weather conditions, which
enables robust obstacle detection of the network.

The process of creating MFLD is illustrated in Figure 6,
providing a visual representation of the dataset creation.
Also, in Table 4, we provide a summary of the proposed
MFLD datasets, including their purpose, data variability,
number of images, and labels. This comparative analysis
highlights the complementary aspects of the combined
federated dataset, showcasing its ability to provide broader
coverage of maritime object detection challenges.

C. VISION-BASED OBSTACLE DETECTION MODEL
This work employs a fast, reliable, deep-learning-based
detection algorithm for robust and reliable target obstacle
detection. YOLOv5 is used considering both its com-
putational efficiency and detection accuracy after some
preliminary performance comparison of the SSD object
detection method in our applications. YOLOv5 is a real-time
object detector that builds on the work done on the YOLO
family of object detectors. It consists of a base network

and an extra feature layer. The backbone module extracts
feature from the input image based on Focus, Bottleneck CSP
(Cross Stage Partial Networks), and SPP (Spatial Pyramid
Pooling) and transmits them to the neck module. The neck
module generates a feature pyramid based on the PANet
(Path Aggregation Network). It enhances the ability to detect
objects with different scales by fusing low-level spatial
features and high-level semantic features bidirectionally.
The head module generates detection boxes, indicating the
category, coordinates, and confidence by applying anchor
boxes to multiscale feature maps from the neck module.
Through multiple studies, YOLOv5 has demonstrated its
effectiveness in maritime object detection, consistently
achieving high accuracy [26], [42]. An appropriate dataset
and input image size are essential for training a neural
network. Therefore, we employ a set of different YOLOV5
model training. First, the network is trained with 640 ×
640 input images and usesMFLD and active learning. For our
application, YOLOv5 models that we explored in the work
were: YOLOv5n, YOLOv5s, YOLOv5m, andYOLOv5l. The
network initialization parameters are shown in Table 5.

TABLE 5. Initialization parameters of YOLOv5 model.

YOLOv5n represents the most minor variant of YOLOv5.
It prioritizes inference speed and is suitable for real-time
or near-real-time detection tasks where speed is crucial.
YOLOv5s is slightly larger than YOLOv5n and strikes a
balance between model complexity and inference speed.
It offers improved detection accuracy while maintaining
reasonably fast performance. YOLOv5m is a medium-sized
model that further enhances detection accuracy compared to
YOLOv5s. It is suitable for scenarios where higher precision
is desired, even if it comes at the cost of a slightly slower
inference speed. YOLOv5l is the largest variant among the
YOLOv5 models. It offers the highest level of detection
accuracy but requires more computational resources for
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FIGURE 6. Proposed Methodology for Creating Maritime Federated Large Dataset.

TABLE 6. YOLOv5 models average Frames-per-Second (FPS).

inference. It is recommended for tasks that prioritize accuracy
over speed.

It is essential to consider the frame rate cap when
evaluating the performance of YOLOv5 networks with
ZED2i. The frame rate cap represents the maximum number
of frames processed per second by the model. In our
experiments, we applied a frame rate cap during the testing
phase to assess the real-time inference capabilities of the
YOLOv5 networks.

The system operates at 30 frames per second with
a resolution of 1080HD, setting the standard for object
detection and tracking parameters. Therefore, it is imperative
that the YOLOv5 model can handle processing within the
range of this FPS value of FPS. Table 6 provides an overview
of the average frames-per-second (FPS) achieved by different
YOLOv5 models, highlighting the impact of model size
on the system’s frame rate capabilities, which is reported
by [40].
The algorithmic procedure of the system is extensively

presented in ESA Algorithm (Algorithm 1), as following:
As depicted in Algorithm 1, the ESA algorithm initializes

the ZED2i camera object, sets configuration parameters, and
initializes tracking parameters. It captures the point cloud
data and RGB image from the left camera. The algorithm
then enters a loop, creating a detection thread and ingesting
custom bounding box objects using the ZED2i camera

Algorithm 1: Enhance Situational Awareness Algorithm
1: Input: 3D and RGB data
2: Output: object dimensions and id
3: initialize the zed camera object
4: set configuration parameters
5: initialize tracking parameters
6: capture point cloud
7: capture RGB (left)
8: while img_available and Not exit_signal do
9: create detection_thread()

10: //custom bbox format converter
11: objects← zed.ingest_custom_bbox_objects(detections)
12: m← zed.retrieve_measure()
13: D← Estimate_depth()
14: i← zed.retrieve_image()
15: p← zed.get_position()
16: for all objects do
17: ESA_msg← prepare_ESA_string(m, i, p)
18: end for
19: return ESA_msg to parent
20: end while

object. It retrieves measurements, estimates depth, retrieves
images, and obtains positions. For each object, it prepares an
ESA message by combining the measurements, image, and
position. Finally, it returns the prepared ESA message to the
parent or calling function.

The overall methodology is depicted in Figure 7 which
depicts the image capture module simultaneously capturing
RGB and depth map images. First, the depth map is obtained
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FIGURE 7. Methodology for ESA using Object Detection and Tracking using ZED2i.

using stereo vision principles, where the rectified calibration
matrix ensures alignment between the left and right images.
This alignment enables the calculation of depth information
based on the disparity between corresponding pixels in the
stereo image pair.

Next, the object detection and tracking module, imple-
mented using the ZED API, identifies potential objects in the
captured frame. A custommaritimemodel detector developed
using MFLD is also used for improving maritime object
detection. After processing the depth map, a filter is updated
for each tracked object using the new depth measurements,
which estimate the object’s state based on the observed depth
information. Subsequently, based on the filtered position
of the tracked objects, the distance is obtained. Finally,
bounding boxes are commonly used to denote their location
in 2D and 3D space to visualize objects in the frame.

D. ZED DEPTH ESTIMATION
ZED2i captures RGB images and depth data, enabling object
detection and distance calculation. RGB images are analysed
using YOLOv5 custom model for maritime objects and ZED
API with a pretrained model for other objects identification,
while depth data determine object distance based on averaged
depth values. Furthermore, object localization is enhanced
with 3D estimate of object. ZED2i has a max range of
20 meters [35]. ZED2i computes depth information using
triangulation (re-projection) from the geometric model of
non-distorted rectified cameras. Assuming that the two
cameras are co-planar with parallel optical axes and the same
focal length fl = fr , the depth Z of each point L is calculated
by equation 1, here B is the baseline distance and xil − xir

is the disparity value [43]. Notice that depth varies inversely
proportional to the disparity.

Z =
fB

xil − xir
(1)

ZED2i cameras acquire 3D values considering the left
camera as the origin frame. Given the coordinates of a pixel
(u′, v′) in this image coordinate frame, these exact coordinates
are used to search their corresponding depth value Z in the
depth map. Furthermore, depth maps store the distance value
Z for each pixel (x, y) present in the image. The distance is
expressed in meters and is calculated using the equation (2)
that measures the distance between the back of the left eye of
the camera and the object in the scene.

d(P1,P2) =
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (2)

where P1 is the distance in pixels between the centroid
of the object and the end of the overlap area for the camera on
the left. P2 is the distance in pixels between the centroid of
the object and the beginning of the overlap area for the right
camera.

IV. VISION INTEGRATION PROTOCOL
To ensure seamless integration of the ESA and designed
hardware with a controller, a module for communication
and surveillance over the network has been developed,
utilizing the client-server architecture. As illustrated in
Figure 8, the Vision Integration Protocol (VIP) module
forms a critical component of the approach described in this
section using client, server architecture for better integration.
The perception sensor feeds the data to Inference Engine
for object detection and tracking running on Jetson Xavier
AGX and interacts with GPS receivers, INS, and digital
compass, while simultaneously sending and receiving data
in the computing module. Additionally, the detection module
provides the pixel position of the centre of the detected
objects’ bounding boxes, enabling the calculation of the
positions, and determining locations of objects.
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FIGURE 8. VIP for Collision Avoidance Approach.

The code converts bounding box coordinates from the
format (x1, y1, x2, y2) to the format (x, y, w, h), as the following
function:

x, y,w, h = xyxy2xywh(x1, y1, x2, y2) (3)

where x represents the x-coordinate of the top-left corner, y
represents the y-coordinate, w represents the width, and h
represents the height of the bounding box.

Then, to convert normalized xywh coordinates to bounding
box corners (A, B, C, D), we use the function xywh2abcd(x, y,
w, h, im[0].shape). This function takes x, y, w, h values of the
bounding box alongwith the shape of the image (im[0].shape)
and returns the coordinates A, B, C, D representing the four
corners of the bounding box, as shwon in (4):

A,B,C,D = xywh2abcd(x, y,w, h, im[0].shape) (4)

The analysis module processes the detected object data
from ZED2i. The analysis module also incorporates navi-
gation data from the navigation sensors, allowing for the
combination and refinement of object and navigational data.
The extracted 3D information and tracking details for each
object is called ESA message. The resulting data is then
formatted into navigational data for the controller.

VIP comprises of server-client module responsible for
transmitting data over the network for better integration with
any controller in use. The algorithm for Vision integration
Protocol (VIP) system is illustrated in Algorithm 2 as follows:

The system defines object and tracking parameters at
30 frames per second and 1080HD resolution, captures
images, and detects potential objects in the scene. It then
identifies the location of these objects using a set of
parameters for controller processing, which includes colour
images, and depth maps. The UDP server-client module

Algorithm 2 : Algorithm VIP Server
1: Input: ESA_msg <detections, objects>
2: Output: Encoded ESA_msg (EM) //NMEA sentence
3: socket(type)
4: bind(ip,port) //Bind to address & IP
5: for object in objects do
6: for detection in detections do
7: //Get object dimensions & object position
8: if distance is not NaN and not Infinite then
9: print_log(ESA_message)
10: MS← prepare_client_msg(ESA_message)
11: EM← Encode(MS)
12: Sendto(EM, address)
13: end if
14: end for
15: end for

uses the following National Marine Electronics Association
(NMEA) format for each object detected in the scene.

$ODOBJ, <TOD>,<CIO>,<id>,<x>,<y>,<W>,<H>,
<L>,<D>*<cc>CRLF

Table 7 provides a detailed overview of the NMEA format
for object data. This format condenses object information into
a single line of ASCII text, employing commas as separators.
Each line is constrained to 80 characters. The initial field
is denoted by the code $ODOBJ, withx and y indicating the
object’s top-left origin in meters

The format entails a crucial parameter in the form of object
count detected in the scene, which serves as vital input for the
data collection system of the base station. This information
aids in making operational decisions and providing feedback
to the controller. The checksum (cc) is calculated with an
XOR operation of all characters between ’$’ and ’*’. VIP
passes an NMEA sentence, returns the NMEA data, and
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TABLE 7. NMEA format description.

is appended to the sentence when generated and locally
calculated. Then, NMEA sentences are read and processed
to be used by a controller. Algorithm 3 shows the NMEA
sentence checksum calculation, this entire encoding forms a
Encoded ESA message generated by VIP server.

Algorithm 3 :NMEA Sentence Checksums Calculation
1: Input: NMEA sentence as a string
2: Output: checksum: Calculated checksum
3: def nmea_checksum(st):
4: i← 0
5: checksum← 0
6: while i < length of st do
7: checksum← checksum⊕ ord(st[i])
8: i← i+ 1
9: end while

10: return checksum

Algorithm 3 calculates the checksum for an NMEA
sentence by defining a function called nmea_checksum that
takes the detection data as the input string. This function
initializes two variables, i and checksum, to zero and uses a
while loop to iterate over each character in the string. Within
the loop, the ordinal value function is used to get the ASCII
code of the current character, and then the XOR operator is
used to update the checksum variable. After the loop finishes,
the final value of the checksum is returned. This calculated
checksum can then be appended to the NMEA sentence and
transmitted between devices to ensure the data’s integrity.

The Encoded Message (EM) is prepared using the Object
Tracking module’s ESA message, as shown in Algorithm
VIP Client (Algorithm 4). It then creates a socket of a
specified type. The algorithm binds the socket to a given
IP address and port. In an infinite loop, the algorithm
proceeds to send the byte stream of the EM to the server’s

IP address using the specified port. It then waits to receive a
message (msg) from the server. Upon receiving the message,
the algorithm decodes it, resulting in a Decoded Message
(DM). The DM is then sent to the controller or another
designated recipient using the Send_controller function.
This loop continues indefinitely, allowing for continuous
communication between the VIP Client and the server

Algorithm 4 Algorithm VIP Client
1: Input: EM (Encoded ESA Message), Server Port

Address
2: Output: Navigation commands
3: Initialize buffer
4: socket(type)
5: bind(IP, port)
6: while True do
7: Sendto(bytetosent, Server_IP)
8: Msg← Recvfrom()
9: DM← Decode(Msg)

10: Send_controller(DM)
11: end while

V. ACTION-SELECTION AND MULTI-OBJECTIVE
OPTIMIZATION
Due to its compliance with the autonomy requirements
outlined in Section II, this work utilizes MOOS-IvP, as the
chosen autonomy framework for inter-process communica-
tions. MOOS-IvP works in a star topology without peer-to-
peer communication and is governed by the MOOSDB using
a publish-subscribe architecture, as shown in Figure 9. This
architecture enables independent, easily replaceable MOOS
apps.

FIGURE 9. A MOOS community.

MOOS applications typically run on a single machine with
a separate process ID. Each process communicates through
a single MOOS database (MOOSDB) in a publish-subscribe
manner. In addition, each process may execute its inner loop
at a frequency independent from one another and set by
the user. For example, MOOS-IvP is a MOOS application
designed to provide autonomy on robotic platforms and is

128944 VOLUME 11, 2023



Y. A. Alhattab et al.: Integration of Stereo Vision and MOOS-IvP

FIGURE 10. IvP Helm Autonomy Loop Architecture [44].

particularly well-suited to marine vehicles. In Figure 10, IvP
behaviours are depicted as they determine how the vehicle
responds to its environment in pursuit of a defined goal [44].

IvP functions are a mathematical programming model
comprising the piecewise linear representation structure and
the solution algorithm that capitalizes on this structure. For
a problem defined over a decision space with n decision
variables (x1, . . . , xn), and having K objective functions
f1(x1, . . . , xn), . . . , fk (x1, . . . , xn), with K priority weights
(w1, . . . ,wk ), the general solution form is given by [44]:

x∗ = argmax
x

K∑
i=1

(wi · fi(x)) (5)

Before vehicle deployment, a mission structure will be
written in the form of helm behaviours and their configura-
tion. The general mission structure is comprised of a set of
mission modes D and a set of behaviours B:

M = {D,B} (6)

The mode structure is comprised of M unique mission
modes and the set of behaviors with B unique behaviors. Each
mode is defined by a unique name and set of logic conditions,
whereas each behavior is defined by a unique name and set
of configuration parameters for obstacle avoidance [44].

A. OBSTACLE AVOIDANCE MANAGER
The basic layer of obstacle avoidance in MOOS-IvP involves
pObstacleMgr [45] application and the AvoidObstacleV21.
As shown in Figure 11, detected objects are represented as
convex polygons with IDs and managed by pObstacleMgr.
This behaviour creates a buffer zone around each obstacle,
assigning a negative cost to headings that intersect with it,
guiding the vehicle towards a safer path. The helm uses
heading and speed information to navigate safely around
obstacles [44].
The buffer obstacle may dynamically and temporarily

shrink if the USV position intrudes, shrinking until the USV
is no longer inside. Then, as the USV opens range, the buffer

FIGURE 11. Defined Convex Polygon Around the Actual Polygon
Obstacle [44].

TABLE 8. Behaviour parameters configuration.

obstacle will be re-grown back to its original size, producing a
heading-speed decision. The behaviour parameters are being
configured with the following sets showed in Table 8:
Where buffer_dist is a nonnegative distance,

in meters, from which to make a buffer polygon around
the actual obstacle. pwt_inner_dist is a range to the
obstacle, in meters, within the behaviour will have maximum
priority weight, and pwt_outer_dist is the range to
the obstacle, in meters, beyond which the behavior will
have a zero-priority weight. Finally, allowable_ttc is
the number of seconds beyond which a manoeuvre that
steers the robot on a collision course to an obstacle is
acceptable [44].

B. MOOS APPLICATIONS DEVELOPMENT
In our collaborative MOOS application development,
we’ve integrated new applications to support a newly
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FIGURE 12. MOOS Publish-Subscribe Communication Module Architecture Detailing Applications and Connectivity
Mechanisms.

TABLE 9. Published and subscribed topics of MOOS apps.

developed USV. These applications enable autonomous
operation in dynamic environments.We began by configuring
existing MOOS apps and then developed new ones.

1) BUILT-IN MOOS APPLICATIONS
Table 9 shows the published and subscribed topics for each
MOOS application.

1) pHelmIvP [44]: is a behaviour-based autonomous
decision-makingMOOS application. It consists of a set
of behaviours reasoning over a common decision space,
such as the vehicle heading and speed. Behaviours are
reconciled using multi-objective optimization with the
IvPmodel. pHelmIvP receives the Note_Report_Local,
which comes from pNodeReporter, and calculates the
desired destination for the USV (Unmanned Surface
Vehicle). Subsequently, it publishes the desired heading
and speed primarily.

2) pNodeReporter [46]: Creates a custom message to
be consumed by the pMarineViewer app and displays
the vehicle. It contains the latitude and longitude

information (LAT/LNG), heading, and speed with the
XY of the vehicle.

3) pMarineViewer [47]: This provides a quick and easy-
to-custom interface to visualize vehicles and other
variables

4) uMemWatch [48]: application used for measuring the
current memory used by a set of MOOS apps.

5) uProcessWatch [48]: It monitors the presence of a
set of MOOS applications and Central Processing Unit
(CPU) load of a set of MOOS applications. Table 9
shows the published and subscribed topics for each
MOOS application.

2) USV PLATFORM MOOS APPLICATIONS:
Table 10 presents the published and subscribed topics for each
MOOS Application of the USV platforms.

1) iPayloadsParser: it handles the raw payload data sent
by the devices and sensors in order to set initial
values and extract the measured variables. It is mainly
responsible for publishing the navigation data such as
LAT/LNG.
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TABLE 10. Custom MOOS apps topics.

2) pCoordianteConverter: it uses for the most part of
converting from LAT/LNG to XY, and handles missing
data from pNodeReporter; also, it loops the subsequent
iterations for filling in missing LAT/LNG information.

3) pObstacleAvoidance: this app implements obstacle
detection and tracking method. It will receive a specific
command from the onboard AI edge device via User
Datagram Protocol (UDP) ports, which allows the
system to differentiate the received sensing data of
different sensors. It also published the tracked features,
which contain the information on detected and tracked
obstacles to XY of the vehicle. This updates the data
for manoeuvring the vehicle to avoid obstacles as
known locations, expressed as one or more convex
polygons. The safe-distance tolerance and policy for
priority based on the range is provided in the mission
configuration.

4) pStatus: includes app-specific status message config-
uration, runtime warnings, and notable events. It is
connected to the microcontroller Raspberry Pi Pico
which monitors and alerts on battery voltages and CPU
temperature.

5) pManeuver: it publishes navigation information to
MOOSDB. It deploys Loiter behaviour with the current
heading and speed. It merely expresses a preference for
a particular thruster’s speed and heading, and the vessel
type and values of servo pulse are published in this app
as well.

The MOOS applications integrated into the USV platform
facilitate communication and exchange of information. These
built-in applications interact with their counterpart MOOS
applications, ensuring real-time data sharing, as depicted
in Figure 12.

VI. RESULTS AND FIELD EXPERIMENT
This section presents the findings obtained from the testing
and validating different steps of the proposed methodology.
First, the section will discuss the outcomes of training dif-
ferent YOLOv5 models using diverse datasets. Subsequently,
the results of field experiments conducted under multiple
scenarios will be presented.

FIGURE 13. (a) YOLOv5s F1 score curve, (b) YOLOv5s PR curve.

A. PRELIMINARY FINDINGS
Developing a robust vision-based object detection model for
USV navigation is vital for ESA. Utilizing a federated dataset
(MFLD) improves obstacle detectability, ensuring reliable
collision avoidance. This comprehensive dataset overcomes
limitations of individual datasets, providing diverse data
for an effective vision system. The metric used for model
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FIGURE 14. MLFD trainined Performance on Combined Evaluation
Dataset.

evaluation will be PR curve and confidence score using F1
as shown in Figure 13 for the YOLOv5s model. Model
achieved an accuracy score above 96% with 300 epochs of
training while maintaining real-time performance, effectively
minimizing power and efficiently met the required number of
FPS without compromising system responsiveness, ensuring
smooth operation without any lag or delays.

The custom detector capabilities of the CNN variants,
namely YOLOv5n, YOLOv5s, YOLOv5m, and YOLOv5l
networks, were evaluated by training and testing them on
MFLD. mAP results obtained from the four models’ analysis
for maritime objects within the ESA vision system for
Suraya-Surveyor are presented in Figure 14. The evaluation
results showed that YOLOv5l achieved highest precision
(99.12%) and recall (97.55%) scores among the tested
models, resulting in an overall F1 score of 98.32%. The
model exhibited excellent performance in maritime object
detection, as indicated by the mean Average Precision (mAP)
scores at different IoU thresholds. However, FPS upper cap
performance is also crucial to real-time navigation. Thus,
trade-off between FPS cap and accuracy will determine the
best model for use. mAP@0.5 of YOLOv5m and YOLOv5l
are very close with 98.48% and 98.86% respectively.

Table 11 shows the average precision for each trained
model. The metrics include precision, recall, F1 score, and

mean average precision (mAP) at different thresholds. The
models show increasing levels of accuracy, with YOLOv5l
achieving the highest precision, recall, and overall accuracy,
followed by YOLOv5m and YOLOv5s. YOLOv5n performs
slightly lower but still demonstrates respectable results.

TABLE 11. Average Precision, Recall, Precision, and F1 for trained models.

The obtained results from the other single datasets for
object detection using the YOLOv5s model at 30 FPS are
summarized in Table 12. The table provides insights into the
performance of the model when trained and tested on differ-
ent datasets, with evaluations based on Precision (P), Recall
(R), mean Average Precision at IoU 0.5 (mAP@0.5), and
mean Average Precision at IoU 0.5 to 0.95 (mAP@0.5:0.95).

TABLE 12. Comparative analysis of YOLOv5s results utilizing model.

SeaShip tested in SMD, the precision was 0.19, indi-
cating a relatively high rate of false positives. The Recall
value of 0.2 suggests that the model missed many actual
objects. The mAP@0.5 score of 0.1 implies that the model
struggled to detect and localize objects accurately at an
Intersection over Union (IoU) threshold of 0.5. Moreover,
the mAP@0.5:0.95 value of 0.01 highlights the model’s
challenges in accurately capturing object boundaries across
a wider range of IoU thresholds. Next, When the model was
trained on SMD and tested on SeaShip, there were notice-
able performance improvements. The precision increased
to 0.205, suggesting a higher accuracy in object identifica-
tion. The Recall value improved to 0.281, indicating a more
remarkable ability to capture objects. The mAP@0.5 also
increased to 0.113, signifying enhanced object detection and
localization performance. Similarly, the mAP@0.5:0.95 rose
to 0.0354, indicating improved precision across a wider range
of IoU thresholds.

Training the model on MFLDwith both SeaShip and SMD
led to further improvements in performance. The precision
increased to 0.667 and 0.735 for the SeaShip and SMD
testing sets, respectively, indicating more accurate object
identification. The Recall values improved to 0.47 and 0.502,
respectively, suggesting a higher ability to capture objects.
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FIGURE 15. Presents detection on three distinct groups of images featuring the object of interest: (a) on SeaShip, (b) on SMD, and (c) on MFLD.

The mAP@0.5 values significantly increased to 0.493 and
0.609 for the SeaShip and SMD testing sets, respectively,
indicating improved object detection and localization per-
formance. Moreover, the mAP@0.5:0.95 values increased to
0.236 and 0.343, respectively, highlighting higher precision
across a broader range of IoU thresholds. Figure 15 illustrates
the detection results on different scenes from on-site.

The performance evaluation of the different models is
also qualitatively compared. As seen in Figure 15, in the
first scene, three objects are present. The MFLD model
successfully detected all of them, while both SMD and
SeaShip models missed two additional objects. However,
SMD and Seaship models could not detect the object of
interest, the closest vessel. Moving on to the second scene,
a dozen objects are visible. The SeaShip model failed to
detect any of them, while the SMD model displayed overlay
bounding boxes and failed to identify the main object of
interest accurately. Lastly, in the third scene, the MFLD
model successfully detected all objects once again. However,
both SeaShip and SMD models encountered issues, with
SeaShip missing all objects and SMD overlaying bounding
boxes without detecting the object of interest. In other words,
with a clear sky view and proper illumination visible object of

TABLE 13. Omission rates in object detection.

interest are not detected by SeaShip and SMD models in all
three scenes. Whereas MFLD produces accurate detection of
object of interest in all the scene proving its superiority over
its predecessors.

The omission analysis was conducted to assess the
performance of the YOLOv5s model in detecting objects
across different training and validation dataset combinations.
The omission rate represents the proportion of objects that the
model did not detect. In the SeaShip-SMD scenario, the
model was trained on SeaShip and validated on SMD,
resulting in a high omission rate of 0.8. Training the model
on SMD and validating it on SeaShip yielded a relatively
lower omission rate of 0.72. This results showed in Table 13,
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FIGURE 16. YOLOv5s model detections with ZED2i.

indicate a reduced proportion of missed objects compared to
the SeaShip-Singapore scenario.

Moreover, additional performance enhancements were
observed when the model was trained onMFLDwith Seaship
as the training set and validated on both SeaShip and
SMD. The omission rate decreased to 0.53 in the SeaShip
validation set, indicating a lower proportion of missed
objects. Similarly, in the SMD validation set, the omission
rate was 0.5, signifying a higher proportion of objects
successfully detected by the model. The onsite, real-time
low light challenging scenario of selected model on MFLD
output is as shown in the Figure 16. Figure 16(a) shows
when sunshine reflections create haziness around object with
distance of over18.3M and cloudy scene Figure 16(b) with
small object at far distance of over 27 meters. All these
detections were made using YOLOv5s which is selected
based on use case based on FPS cap versus performance trade
off.

The MFLD model using YOLOv5s is integrated into the
ESA module and provides the ESA message through the
Vision Integration protocol (VIP). This ESA message is
utilized to enhance algorithms and modules in accordance
with the work done in MOOS-IvP. The USV was deployed
to navigate an obstacle position, and in place of using

FIGURE 17. Varieties of Obstacles Used in the Experiments. (a) Kayak.
(b) Floatable boat.

LiDAR for object detection, depth camera was employed,
which achieved a fair success. Notably, the USV detected
all pre-identified objects while minimizing the occurrence
of false positives by the depth camera with bounding boxes
around the detected objects using improvised detection
and ESA module. This detection approach was critical in
enhancing the safety of the navigation system for short-term
obstacle avoidance. The test environment used in this
study simulated detected objects by generating uniformly
random object points within selected small xy regions of the
operational area with external sensor data in pMarineViewer.

B. FIELD EXPERIMENT
Extensive field experiments were conducted under multiple
scenarios to evaluate the practical feasibility of the developed
autonomous navigation system utilizing the Suraya Surveyor
using proposed ESA. The experiments involved different
objects, as demonstrated in Figure 17, to show the capabilities
of the proposed approach in typical maritime environments.

We developed an intuitive interface for operators to modify
autonomy algorithms and command autonomous navigation
from a ground station. Object detection and tracking were
implemented in Python, whileMOOS-IvP was coded in C++.
This study reports results from three field experiments
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FIGURE 18. Illustrates the experimental scenarios for multiple objects tracking and collision avoidance. The path planning and
directions of the objects are depicted. The alert range is visualized as a shaded area, and a hexagon-shaped buffer zone is
introduced.

FIGURE 19. Trajectories of Suraya USV during the field experiment of the first scenario. On the upper side is the USV trajectory and the generated Buffer
Obstacle on pMarineViewer. The figures on the lower side show corresponding snapshots captured by ZED2i from the Virtual Network Computing (VNC)
computer on the ground station for object detection with the bounding boxes.

during Suraya Surveyor developments. Figure 18 shows test
scenarios in the Kepong Metropolitan Lake Garden with two
distinct obstacles. Operators manually controlled the objects
while the custom detector provided reliable information to
ensure USV safety.

In the first scenario showed in Figure 19, the placement
of obstacles near the path of the USV allowed ZED2i to
detect them without posing a risk of collision. In the second
scenario, the USV had to retrace its course to reach a new
starting point, while en route, the USV encountered an object

moving in the opposite direction. The third scenario involved
the USV traveling ahead and encountering a stationary
obstacle along its path.

The first scenario depicts the USV and object following
trajectories that intersect, but the object remains outside the
designated safe zone while the USV continues towards its
waypoint. This should result in no deviation of the USV from
its planned path. In this scenario, obstacles were placed next
to the path of the USV in such a way as to allow for their
detection by ZED2i without posing a collision risk.
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FIGURE 20. Zoomed area of obstacle encounter and buffer generation.
(a) generated Buffer Obstacle on pMarineViewer. (b) The detected object
snapshots captured by ZED2i on VNC.

The USV initiated on its trail, traveling at a speed of
2 knots, along the solid line path which represents the planned
sequence of waypoints. This path runs parallel to the dotted
line in the image, which indicates the USV’s trajectory by the
onboard navigation sensors utilizing updated GPS, compass,
and INS data. In Figure 19 (a), the USV’s autonomous mode
successfully locks onto its starting point (red square) using
navigational data. Figure 19 (b) demonstrates the USV’s
navigation to a waypoint without encountering any obstacles.
Figure 19 (c) illustrates the first encounter with an obstacle
within the line of sight and alert range. At this point, MOOS-
IvP receives ESAmessages and generates the buffer obstacle.
In Figure 19 (d), after the USV crosses the obstacle encounter
zone ensuring that the USV remains on its intended path
without any deviation. Figure 20 illustrates the zoomed area
of obstacle encounter and buffer generation, showcasing the
generated Buffer Obstacle on pMarineViewer, along with the
captured snapshots of the detected objects by ZED2i onVNC.

The second scenario focused on testing the USV capabili-
ties in a more complex situation. Figure 21(a) illustrates when
the USV firstly operated in autonomous mode, following
a predetermined path. However, it encountered a situation
where it needed to establish a new starting point for its

trajectory. This new starting point was located along the pre-
defined path, requiring the USV to retrace its course to reach
it. While en route to the new starting point in Figure 21(b),
the USV encountered an object sailing in the opposite
direction, necessitating deviation action. The controller
received pertinent ESA messages and promptly generated
a buffer obstacle to facilitate collision avoidance, shown
in Figure 21(c). In Figure 21(d) the system successfully
circumvented the obstacle and resumed its intended path as
per the pre-planned trajectory.

In contrast to the previous scenarios, the third scenario
shaped at a speed of 2 knots ( 1.03m/s) on a short and planned
path of 15meters within the alert range. As a result, theUSV’s
path was blocked from the port side, and the system employed
a collision avoidance behavior that remained almost constant
throughout the scenario, ESA initiated immediately upon
entering the planned path throughout the trail. However, when
the USV was within the safe range behind a pier, the desired
behaviour was to be directed on the starboard side to avoid
objects. Regrettably, the system moved towards the portside,
as shown in Figure 22, which was undesirable. Ideally, the
USV should have continued to travel toward the starboard
side. This demonstrates the robustness of the ESA method,
establishing it as a fundamental component for ensuring safe
navigation. However, it is essential to couple it with well-
trained MOOS-IvP behaviours to ensure safe operations.

The analysis of Table 14, featuring a 73-frame VNC video,
reveals significant disparities between the expected and
observed object behaviors, which raise concerns about the
accuracy of MOOS-IvP behaviors. We display the initial and
final five outputs to address the comprehensive result length.
This demonstrate that the communication system responsible
for transmitting data via UDP to the controller performed
flawlessly without losing any detections or affecting the
performance of the custom detector. Nevertheless, the detec-
tor continued to provide object data to the communication
system, which transmitted it to the controller without any
issues.

TABLE 14. Third scenario observations of expected and observed
behaviours.
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FIGURE 21. pMarineViewer screenshot of the second scenario and ZED2i detection.

FIGURE 22. USV’s path and obstacle avoidance behaviour of the third
scenario in pMarineViewer.

Table 15 provides detailed information about the NMEA
sentence from proposed ESA module transmitted via UDP
from the custom detector to the controller, including the
number of objects detected in the frame, Object ID, and
Checksum value, all presented in HEX. Specifically, the table
shows the NMEA sentence information for the third scenario

TABLE 15. Third scenario data transmission samples.

when the boat entered the planned path and detected objects
in the first frame itself

An obstacle alert is posted as the object comes within the
alert range. This posting will spawn a new obstacle avoidance
behaviour via the updated parameter discussed in obstacle
avoidance manager subsection. In this field test a typical
posting looks like the following example, which was taken
during the third scenario:

OBSTACLE_ALERT ‘‘name=3#poly=pts={46.07,
16.67:48.24,14.5:48.24,11.44:46.07,9.27:43.01,
9.27:40.84,11.44:40.84,14.5:43.01,16.67}, label=3’’

The first time this alert variable is published, it can be
regarded as an alert because the obstacle’s existence is new
information for whoever subscribes to these alerts (typically
the helm). Moreover, an example is shown below for the
form of TRACKED_FEATURE of MOOS variable, which
is subscribed for the obstacle manager during the third
scenario:

TRACKED_FEATURE ‘‘x=23.2,y=19.8,
label=1,color=1,size=2’’
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FIGURE 23. Distance between USV and Objects in Third Field Test
Scenario.

The viewpoint is a particular message that the
pMarineViewer application knows how to parse and render.
For this case, a typical posting during the third scenario: looks
like this:

VIEW_POINT ‘‘x=45.94,y=28.4,active=true,
label=166438610108,msg=3,
type=obstacle,label_color=invisible,
vertex_color=yellow,
vertex_size=5’’

Figure 23 displays the distance between the USV, and the
object encountered in the third scenario of the field test. The
Y-axis represents the distance in meters, while the X-axis
represents time in seconds. As depicted in this scenario, the
distance from the USV to the objects decreased gradually
as the USV travelled on the planned path of 15 meters,
with the ESA detecting an obstacle upon entering the path
of the set waypoint within the alert range. The graph shows
that the distance from the USV to the objects decreased
to its minimum value of 4 meters near zone buffer before
deviating and moving away to 5 meters, indicating the
successful implementation of the system performance for
collision avoidance. However, collision avoidance behaviour
initiated is not desirable and MOOS-IvP Controller need
further attention.

VII. DISCUSSION
The Suraya USV is designed for autonomous navigation with
appropriate hardware, software algorithms, and optimum
integration. We show how the effective use of stereo
vision enhances situational awareness and makes USV fully
autonomous. Our system facilitates smooth data transfer and
seamless integration of the computing model and navigation
sensors, eliminating the need for additional mechanical
design. To the best of our knowledge, this approach has
not been undertaken in a manner as described herein.
The system enables well-informed navigation decisions by
real-time fusion of data from the stereo vision system and

navigational data. This novel integration approach sets it
apart from existing systems. Using dual thrusters, a vision
integration protocol and an AI computer with a computing
model simplify the system, improving existing solutions.
Furthermore, our integration of MOOS-IvP on the USV
shows this framework could still be a standout choice for
maritime operations, making MOOS-IvP implementation
easier on marine platforms. This paves the way for future
studies to explore more straightforward integration methods
and cost-effective sensor options.

The software module employs stereo cameras, specifically
ZED2i, to enhance situational awareness through obstacle
detection. It also utilizes YOLOv5, and MOOS-lvP frame-
works to achieve accurate object detection and collision
avoidance. The architectural design enables precise obstacle
detection, efficient communication, and intuitive control, sig-
nificantly enhancing situational awareness in USVs. Vision
Integration Protocol (VIP) facilitates the selection of the
optimal MOOS behaviour for streamlined communication.

The vision integration protocol ensures reliable commu-
nication and surveillance using UDP, thereby assisting in
object tracking, collision avoidance, and providing crucial
pixel positions and 3D information. This protocol operates
effectively on the Jetson Xavier AGX platform, enabling
seamless interaction with navigation sensors. By transmitting
object detection and tracking data in NMEA format via UDP,
efficient control of the USV is facilitated. The proposed VIP
enhances operational prospects and ensures reliable USV
operations.

The results obtained from the collision avoidance experi-
ments showed that the outcomes were influenced by the size
and type of obstacles. It was recommended that the estimated
area of an obstacle should be one-third of the detection range
when the USV is moving at a speed of 2 knots. Different
measurements were obtained for different obstacles, and
MOOS-lvP dynamically adjusted the buffer obstacle’s size
as the USV approached it. The yellow dots depicted in the
scenario figures provided crucial sensor information, updated
approximately every 0.05 seconds. MOOS-lvP prioritized
collision avoidance behaviour and relied on accurate obstacle
buffer data to ensure safe navigation. Overall, Suraya
USV successfully navigated through complex scenarios,
demonstrating the effectiveness of its collision system.

In the three presented scenarios, the ESA promptly
notified the navigation system within an appropriate range.
The USV successfully avoided collisions in the first two
scenarios with ample time, but encountered challenges in
the third scenario where obstacles were closer to the vessel
than the designated safe path. To improve performance,
advanced decision-making strategies considering obstacle
classification and dynamic capabilities are necessary. In sum-
mary, our work resulted in a robust object detection model
for secure USV navigation, adept at detecting short- to
mid-range obstacles. The implementation of a software
module using a stereo camera was able to achieve Enhance
Situational Awareness (ESA). Also, the integration protocol
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ensures seamless utilization of object detection and collision
avoidance through MOOS-IvP. A comprehensive field test
validated the system’s performance, affirming its reliability
in practical maritime applications.

Further experimentation, research, and development are
warranted to gather substantial statistical data on the safety
of autonomous vessels. This entails testing a wider range of
scenarios in uncontrolled environments. Additionally, imple-
menting dynamic fault-tolerant strategies would enhance the
behaviour and prevent detrimental decisions by the USV.
Investigation of the system’s performance under varying
weather conditions and the incorporation of an infrared
sensor for nighttime operations can further enhance situa-
tional awareness. The fusion of active sensors would provide
valuable data to augment long-distance vision capabilities.

VIII. CONCLUSION
This study presented the successful development of an
autonomous navigation-enabled USV system and presents
the corresponding field test results. The system encompasses
the hardware platform of the vehicle, operational software
algorithms, and the integration of hardware and software
components tailored specifically for USV applications.
Throughout the development process, our focus was on
leveraging stereo vision technology to enhance situational
awareness and implementing a collision avoidance system to
ensure safe USV operations. The field experiments conducted
in real environments effectively demonstrated the perfor-
mance and practical feasibility of the developed USV and
autonomous navigation system. Moreover, we have provided
compelling evidence from challenging scenarios that validate
our approach’s capability to furnish the controller with
reliable information regarding surrounding obstacles, thanks
to our customized detector module built with YOLOv5 and
ZED2i. Furthermore, the results obtained from the vision
system integration protocol substantiate the impeccable
transmission of data without any loss or adverse impact on the
performance of the custom detector. It is important to note,
however, that the collision avoidance results are insufficient
to provide comprehensive safety assurance, as evidenced in
the third scenario in our field test experiment. Consequently,
these observations motivate the need for further work on
robust detection, safe navigation, and the imperative for
continued research to enhance the safety aspects of USV
navigation.
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