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ABSTRACT The ever-increasing widespread use of the Internet of Things and its applications has generated
massive amounts of data. [oT sensor-generated datasets typically have a time-series structure and relational
metadata to describe them. Time series data are typically data that have timestamps and can be obtained
from sensors and IoT devices. Data prediction is required to maximize the potential of IoT-generated data,
and anomaly detection and correction are needed to preserve data quality and integrity. Traditional machine
learning models are incapable of analyzing the gigantic amounts of IoT-generated data. On the other hand,
deep learning can properly analyze large data volumes, leading to increased use in the IoT domain. This
research has examined the use of deep learning models for prediction, anomaly detection, and correction of
data generated by IoT devices. The study found that deep learning is widely used in different fields today
to analyze IoT-generated data. The research also outlines some challenges being faced while using deep
learning models for IoT data analysis. More research is suggested in this study to expose more challenges
and tackle the current challenges to achieve better IoT data analysis using deep learning.

INDEX TERMS The Internet of Things (IoT), deep learning, the IoT data analysis, time series.

I. INTRODUCTION definition of a univariate time series.
A time series is a collected sequence of repeated observations
of a given set of variables over a period. Some examples
of series include stock prices, electrocardiograms (ECG),
household electricity consumption, and much more.
Definition I (Time Series Data): Letk € N, T C R+,

{x@®x@t)eR,t e T} forT C R+ 2)

Table 1 shows a snippet of monthly household electricity
consumption observations from 1985 to 2017. The data
collected (presented in Fig 1) is one example of univariate
then {x; ()|xx (1) e R, t € T} (1) time series. This series consists of only one data (sales)
collected for each timestamp. The data was used to predict
electricity consumption in households using time series
analysis.

From (1): assuming k is a natural number and 7 is a group
of timestamps denoted by positive real numbers, then there
exists a set (i.e., time series) of values (real numbers denoted
by xi (#)) collected at every timestamp.

Definition 2 (Univariate Time Series): acollection of data
consisting of single sequential observations that vary over

TABLE 1. Monthly household electricity consumption.

. . . Date Monthly Electricity Consumption

equal time intervals. One example is a monthly household Y iy d
.. . L . 1/1/1985 72.5052
electricity consumption collection in Table 1. If k = 1 in (1), 211/1985 70672

then the time series is univariate. Therefore (2) shows the '

3/1/1985 62.4502
The associate editor coordinating the review of this manuscript and 4/1/1985 574714
5/1/1985 553151
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FIGURE 1. Monthly household electricity consumption from 1985 to 2017.

Definition 3 (Multivariate Time Series): By considering
(1), we get a multivariate time series by considering values
of k greater than 1. Therefore, (3) shows the definition of a
multivariate time series.

e Oxr W) eR,teT}fork >=2and T C R+ (3)

Definition 4 (Multivariate Time Series): a time series
consisting of m columns (A1, A»...A;,) with n records, where
each record refers to the status of the environment of the
current timestamp. Table 2 shows a typical multivariate
time series. For this series, multiple data are collected for
every timestamp. Table 3 shows a real-life multivariate
series generated by Uber drivers in a certain city daily. This
multivariate series is also shown in Fig 2.

TABLE 2. Typical multivariate time series.

Timestamp  Temperature A, Ay e .ee Am
12:05:00 72 0.4 1.1 21.05

TABLE 3. Data from Uber drivers in a city.

Dispatching base number Date Active vehicles  Trips

B02512 1/1/2015 190 1132
B02765 1/1/2015 225 1765
B02764 1/1/2015 3427 29421
B02682 1/1/2015 945 7679

Time series data is sequential data collected at regular
intervals during a specific period [1]. IoT sensor-generated
datasets typically have a time-series structure and relational
metadata to describe them. Time series data such as server
metrics, economic indicators, and network data involve data
generation at separate times in given periods. Furthermore,
predictive models for sales, demand, trends, cycles, and
analyzing rapidly fluctuating prices in financial markets use
time-series databases [2].
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FIGURE 2. Daily number of active vehicles and trips of Uber drivers in a
certain city.

Different kinds of time series data, including GPS tra-
jectories and sensor readings, are prone to errors. Existing
methods usually concentrate on anomaly detection but not on
anomaly repair [3]. For this reason, applications are usually
unreliable over the incomplete time series even after using
anomaly detection to identify and discard the dirty data.
Instead of simply discarding anomalies, it is highly essential
to repair them. Time series data analysis has been embraced
by different domains in recent times.

The popularity and the need for the implementation of
IoT applications are continually growing globally. From
healthcare to sports, to education, the list of the various
areas of application of IoT is endless. With this comes a
generation of an extensive volume of data. As a result, the
amount of time-series data generated in different domains has
also increased [4]. The need for data quality and information
assurance in IoT has only increased, simultaneously with
the growth of the use of the technology. For data integrity
and usability to be assured, a proper analysis of the data
must be performed. Data prediction, anomaly detection,
and correction are different forms of analysis that can be
performed on IoT data, for different purposes. Deep learning
(DL) models have become increasingly popular techniques
recently used for the analysis of Internet of Things (IoT)
data because they are suitable for processing very complex
IoT-generated data [5].

This work focuses on reviewing various works by
researchers to perform prediction, anomaly detection, and
correction on loT-generated time series data. The next
sections of this study are organized as follows. Section II
discusses IoT data, areas of application, and motivation for
the analysis of IoT data. Section III introduces deep learning
models. Section IV describes the data prediction using deep
and other machine learning models presented. Section V
reviews the prior efforts on anomaly detection and correction
in IoT. Section VI concludes with a summary and outlooks
for future works.
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II. loT DATA

IoT data is obtained from sensors and digital and physically
connected devices. Typically, IoT devices generate data,
which can include ECG, temperature levels, production
times, air quality, and water quality, among other things.
Because of this, IoT data generation is usually enormous due
to the presence of millions of connected devices, and constant
generation from small mobile devices. An important part of
collected IoT data is the timestamp. When collecting IoT
data, the timestamps are usually recorded to ensure reliability
and data integrity. IoT data is a kind of time series and has
become the main source of time series universally due to the
astronomic growth of the usage of IoT applications in recent
times.

Data generated from IoT devices usually come in either
of these three forms: status, automation, and location
data [6]. Status data is raw, unprocessed information that
communicates the state of IoT devices. Automation data is
produced by automated systems and devices e.g., automatic
lights and smart thermostats. Location data conveys the
physical location of the system or device. It is frequently
employed in manufacturing, warehousing, and logistics.
Mohammadi, et al. [7] classified IoT data as big data and
streaming data. Streaming data is generated quickly and in
small amounts by devices and requires immediate analysis
and processing. Big data, on the other hand, refers to massive
datasets collected by software and hardware that cannot be
stored or analyzed immediately.

A. APPLICATIONS OF IoT DATA
IoT data has numerous applications and benefits, ranging
from advantages enjoyed by individuals, industries, and even
by governments. For example, in collaboration with IBM, the
city of Chicago deployed 300,000 IoT devices that will be
used to aid smart grid operations, minimizing energy waste
and saving consumers $170 million [8]. Santander, Spain,
which has about 20,000 smart devices installed, has seen
another government-level benefit. These IoT devices measure
air quality, temperature, humidity, traffic concentration,
public transport system conditions and schedules, vehicle
velocity, and position, among other intelligent tasks [8]. Just
like other fields, the healthcare industry has experienced
tremendous advancements through the introduction of IoT.
Smart healthcare is facilitated using sensors that obtain
data and communicate it via the IoT [9]. IoT in healthcare
has improved decision-making and other medical services
e.g., identification and monitoring of patients in hospitals,
improved patient care procedures, and many more.
Examples of use cases of time series data in IoT include
utilities with smart meters that generate billions of data
points annually, smart building companies that identify
security intrusions in real-time or inefficient energy use,
and vision sensors in autonomous vehicles that gather vital
information to assist driving. Patient health surveillance, such
as in an electrocardiogram, also known as an ECG, which

VOLUME 11, 2023

tracks heart activity to determine whether it is functioning
appropriately, is another common application of time series
data. EarlySense, a remote monitoring device that tracks the
vital signs of patients and was created by a specialized nursing
facility called Allure in July 2017, is an illustration of patient
health surveillance [10].

B. DATA SECURITY AND INTEGRITY

Data security and integrity are critical for ensuring secure
and reliable IoT lines of communication. Due to flaws
like weak authorization, insufficient software protections,
and poor encrypted communication protocols, the majority
of IoT devices are typically vulnerable to attacks. These
flaws expose the devices to a variety of threats and attacks,
raising security and privacy concerns [8]. For this reason,
IoT networks should detect anomalies and correct them
(swiftly, to avoid any impending harm or attack). IoT
devices and sensors generate extreme volumes of data.
Also, there are protocol restrictions on message transmission
and reception across the various IoT infrastructures and
sensor device levels, which makes analyzing [oT data more
difficult [11]. DL approaches and other machine learning
(ML) methods are needed to effectively analyze the massive
amounts of data generated by IoT devices to extract useful
information [12]. These tasks are outside the range of the
capabilities of traditional techniques used for data analytics.
DL approaches present an ideal solution to a range of
IoT classification and prediction tasks because they are
capable of learning hierarchical representations from the
input data. These approaches are potent tools for revealing
insight and knowledge concealed in IoT data. They have
also improved decision-making in different fields, such as
finance, education, healthcare, and security [13]. The IoT can
make use of these techniques to better understand underlying
patterns in large volumes of data to create the best prediction
and recommendation systems.

C. IoT TIME SERIES DATASETS

Datasets are collections of data points curated for training,
validating, and testing neural network models. Given the
complexities and the vast number of variables in DL models,
datasets are typically expansive, often comprising millions
of data points and features to ensure comprehensive training
to improve accuracy. Depending on the application scenario,
datasets can be structured (systematically organized, often
in tables or databases) with labeled data points denoting
observed occurrences. IoT time series analysis involves
working with data collected from IoT devices over time.
Any specific dataset chosen for a DL model should align
with the research or analysis goals. Table 4 shows a few
publicly available datasets that can be used for IoT time series
analysis.

Ill. DEEP LEARNING MIODELS
DL is a popular ML approach that has experienced tremen-
dous progress in all traditional ML areas [23], [24], [25]. Itis
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TABLE 4. Datasets for loT time series analysis.

Dataset Number of Size Source
records (Bytes)

Depends on Depend [14]
the number s on the

of weather resoluti

dataset of over stations on and

600000 weather  used and the  period

stations for the period selected

period 1979 to selected for for

present; used analysis. analysis

for climate

change

prediction.

Healthcare, 116 million
Education, and approximate  (Uncom
Research ly pressed)
GrowliFlo Agriculture and 5.357 14.501 [16]
wer Research million GB

UCI Collection of Over 1500 Over [17]
Machine datasets related 130 GB
Learning to air quality

Repository monitoring

from IoT

devices. They

include

measurements

such as

pollutant

concentrations

and

meteorological

data.

Contains Over 200, Over 12 [18]
vibration sensor 000 GB

data for

machine

condition

monitoring and

anomaly

detection.

Widely used for

predictive

maintenance

applications.

This project 2.375
provides million
datasets related

to

environmental

monitoring

from various

European cities.

This includes

data on air

quality, noise

levels, and other
environmental

factors.

Pecan Provides access Over 735, 0.419 [20]
Street to smart grid 961 GB

Project data, which
includes
electricity
consumption
data from
residential
households,
along with
environmental
and weather
data

USGS archived
earthquake data.

Description

ERAS5 Contains hourly
observations for
a global gridded

MIMIC-1II 246 GB [15]

CWRU

CityPulse 13GB  [19]

Seismic Over 2.5 Over [21]

million 500 GB

MetroPT
dataset

A collection of 10.99 Over [22]
observed million 1.1 GB
pressure of air,

Temperature,

and ampere for

predictive

maintenance.

(one of) the best tool(s) used today for the learning process
and analytics of IoT data, as well as playing an important role
in making IoT smarter [5], [12], [26]. It is a sophisticated ML
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technique that enables predictive learning in the IoT domain.
It is a process that extracts data in the same way that neural
networks do in a hierarchical learning form. It transforms
data into abstract representations, which aids in the learning
of features [26], [27]. Different DL techniques are widely
utilized in image recognition and time-series inference for
IoT applications. These neural networks, initially inspired by
the human brain, try to imitate how the brain of a person
works, however, they are incapable of matching its impressive
ability to “learn” from huge volumes of data [28].

DL techniques, just like any other machine learning
algorithm, can also be trained. They can be classified
as supervised, unsupervised, and semi-supervised learning.
A typical deep learning model has multiple layers (usually
three or more), each of which builds on the one before
it to improve the predictive model or classification. This
sequence of computations in DL networks is called forward
propagation. The input and output layers of the deep learning
network are called visible layers. The DL model accepts
and processes data in the input layer, with the output layer
performing the final operation — either prediction or clas-
sification. Another method called back propagation utilizes
algorithms like gradient descent to determine prediction
errors before changing the function’s weights and biases
by going back through all the layers iteratively to train the
model. A classic deep learning model makes predictions
and necessary corrections for any errors by using both
forward and back propagation simultaneously. The algorithm
gradually enhances its accuracy as time goes on [28].
Generally, DL models can be very complex, and different
neural networks are used for specific problems or datasets.
In recent times recurrent neural networks and LSTMs have
become the most popular DL models that are used for IoT
data analysis. The transformer model, proposed in 2017 has
gradually become a very important model also.

A. RECURRENT NEURAL NETWORKS (RNN)

These are neural networks in which the outputs of every
stage are used as inputs for the next. In traditional neural
networks, each step progresses without any input from the
previous one, meaning memory is not preserved. In other
words, RNNs are networks comprised of loops to enable
them to reuse information. Traditional feedforward neural
networks process a fixed amount of input data at the same
time and produce a predetermined number of outputs. RNNs,
on the other hand, do not process all the input immediately.
Instead, they repeatedly separate them into a sequence. RNNs
perform a sequence of computations for each step before
providing an output. The output (known as the hidden state) is
subsequently combined with the next input in the sequence to
generate another output. This method is repeated until when
the model is programmed to stop, or the input sequence is
complete. The ability to utilize important data from previous
steps is essential for RNNs to solve sequential problems
successfully.

VOLUME 11, 2023
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RNNSs are compared by Saxena [29] to a person watching
a video and remembering the previous scene or a person
reading a book who remembers what happened in the
previous chapter. Similarly, they recall earlier information
and apply it to the current input. They consist of loops
that allow information to be retained. One of the main
advantages of RNNs is their ability to connect between earlier
information and the current task, for instance, by utilizing
previous video frames to understand the current frame. RNN's
would be very helpful if they could accomplish this. Can they,
though? Perhaps, though not always. Due to the vanishing
gradient problem that arises while working with relatively
long data sequences, RNNs are usually unable to remember
long-term dependencies. This is not a problem with LSTMs,
they avoid problems with long-term dependency (more on
LSTM in Section III-B).

Fig 3 shows that RNNs contain neural networks (say A)
that take an input (say Xx), process it, and provide an output
(say hy). A is a simple one-layered module for processing the
input. In the next step of the network, A uses the previous
value of h; for processing.

O,

e

D"‘j
(x)

FIGURE 3. Loops in RNNs.

An RNN is a chain of multiple duplicates of the same
network, each handing a message to the next one. Fig 4 shows
an RNN in its unrolled form. In classic RNNs, the repeating
module is usually made up of a simple structure, e.g.,
a single tanh layer. The tanh function serves as an activation
function, which ensures the value of the latest information is
between —1 and 1.

O

FIGURE 4. Unrolled form of RNNs.

The long-term dependency problem in RNNs becomes
evident when the value of t in Fig 4 becomes extremely large.
This means that as the value of t increases, the ability of
RNNs to remember diminishes. Fig 5 shows the repeating
module of a classic RNN with only one neural network
layer.

VOLUME 11, 2023

b

1

wo®
R
& &

FIGURE 5. The repeating module in classic RNNs.

B. LONG-SHORT-TERM MEMORY (LSTM)

LSTM networks are RNNs usually used to address a long-
standing problem in latent variable models: long-term infor-
mation preservation and short-term input skipping. Along
with other DL algorithms, for example, RNNs, the LSTM is
used for analysis and to detect anomalies in time series (i.e.,
data associated with timestamps). It compares an existing
series with the input series to detect anomalies. As seen
in [30], LSTM networks can also be used for prediction
(forecasting) in time series data generated from IoT. They
can learn order dependence in time series prediction. This
is a necessary behavior in many domains that involve
challenging predictions and complex problems, including
machine translation, speech recognition, and many others.
LSTM is equipped to deal with long-term dependencies [29].
As shown by Google Scholar, LSTM was cited over 16,000
times in only one year, in 2021 [31]. This demonstrates
LSTM applications in a variety of areas, which include
healthcare, time series prediction, robotics, chatbots, etc.
It is also the most cited neural network of the twentieth
century [32].

After getting a clear picture of what RNNs are (in the
previous section), we look at LSTM (and what they have that
makes them different). The LSTM is a chain-like network
as well, however unlike RNNS, it uses more complex neural
networks (“A’"). The read-write-and-forget concept governs
how LSTMs operate. Given an input of information, the
network only reads and writes the data that will be useful
for predicting the output. The A in LSTMs has four layers as
opposed to the single-layered A in RNNs. Each of these four
layers has a unique interaction with the others; therefore, the
network transfers the selected information only.

The four layers are one single neural network layer which
is usually a simple module e.g., the tanh layer (the same as
the one in RNN), and 3 multiplicative gates (forget, input
and output gates) [29]. The forget gate processes information
from the previous timestamp and then decide to remember
relevant information and forget irrelevant ones. The input gate
is used to process the input from the current timestamp and
then add to or update the current information. The output gate
is then used to pass updated data from the current timestamp
to the next. Fig 6 shows the repeating module in LSTMs
containing 4 (i.e. 3 os and 1 tanh) layers of neural networks.
In recent times, different researchers use LSTM networks in
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different forms for detecting and correcting anomalies in time
series data (more in Section V); this trend will continue as the
LSTMs continue gaining more popularity.

ht_; @
« TEA -
& ® 6

FIGURE 6. The repeating module in LSTMs.

C. TRANSFORMER MODELS

RNNs, LSTMs, and other variations of the RNN (such as
gated RNNys) are revolutionary approaches used for sequence
modeling. However, these solutions are usually slow and
ineffective for problems that require sequence-to-sequence
solutions. The Transformer model introduced in Vaswani,
et al. [33] is a neural network that offers both speed
and effectiveness through parallel computation and efficient
long-range dependency modeling. It revolutionized the field
of natural language processing by leveraging self-attention
mechanisms to capture dependencies between elements in a
sequence.

A transformer is a DL model that utilizes the self-
attention mechanism and distinctly weights the importance
of every element of the input data. The transformer model
observes relationships in sequential data, e.g., the words in
this sentence, to learn context and then decipher meaning.
It was developed initially for machine translation, but because
of how well it performed, it was quickly applied to other
fields like music, image creation, audio production, and text
summarization [34]. Currently, the transformer is used with
considerable success for time series data analysis [35].

The Transformer is made up of an encoder and a decoder,
shown in Fig 7. The encoder processes the input sequence,
and the decoder generates the output sequence. Every encoder
and decoder layer in the model contains self-attention and
feed-forward neural network sublayers (see Fig 8). The
self-attention sublayer captures dependencies within the
sequence, and the feed-forward sublayer applies non-linear
transformations to the representations.

Self-Attention mechanism is the main component of the
Transformer model. The attention function maps 3 vectors (a
query and a collection of key-value pairs) to an output that
is itself a vector. With this function, the model can weigh the
importance of different variables in the input sequence while
producing an output. Based on their similarities to the query
and key vectors, self-attention calculates a weighted sum of
values at different places in the sequence. This mechanism
enables the model to attend to different parts of the sequence
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FIGURE 7. Transformer architecture.

simultaneously, capturing global dependencies. Equation (4)
shows the matrix of outputs (where Q is Query, and K and V

are the key and value vectors).
oK
“
g

Multihead Attention

Linear

Attention(Q, K, V) = softmax (

Scaled Dot-Product Attention

il I 1"
[ Linear ]]J [Linear l]] [ Linear
| |

A K Q

Scaled Dot-Product Attention lu

FIGURE 8. Scaled dot-product attention (left). Multi-head attention
(right).

Multi-Head Attention (MHA), shown in Fig 8 is a key
component of the Transformer model. MHA allows the model
to evaluate distinct aspects/dimensions of the input sequence
at separate times/heads, thereby enabling it to better encode
and decode the input information.

MHA works by dividing the input sequence into multiple
sub-sequences (or ‘heads’), and computing attention scores
for each head independently and concurrently. Every head

VOLUME 11, 2023



P. S. Yakoi et al.: Analysis of Time Series Data Generated From the loT Using DL Models

IEEE Access

computes a set of attention scores that capture the importance
of different parts of the input sequence for that head. These
attention scores are then concatenated across heads, resulting
in a single set of attention scores that capture the importance
of parts of the input sequence for all heads.

Finally, these attention scores are used to compute a
weighted sum of the input sequence and then passed through a
feedforward neural network to generate the output sequence.
The use of multiple heads allows the Transformer to
encode richer contextual information into its representations,
leading to improved performance on language understanding
tasks such as machine translation, language generation, and
question answering.

Embeddings are a form of representation learning, in which
each unique word or token in the vocabulary is mapped
to a unique vector in a low-dimensional space. They are
learned during the training process and allow the model to
encode the meaning and context of each word or token in a
fixed-length vector. The embeddings are trained to capture
the relationships between words, such as synonyms (similar
meaning) and antonyms (opposite meaning), as well as the
structure of the language.

Softmax is a type of activation function that is commonly
used in neural networks for classification tasks. It is added to
the output of the embedding layer to convert the embeddings
into probabilities that represent the likelihood of each token
being selected as the next word in the output sequence.
Softmax allows the model to produce a distribution over
the vocabulary tokens that sums to 1 (one), representing the
probability of each token being selected.

In the Transformer model, the output of the embedding
layer is typically passed into a feedforward neural network;
a softmax layer follows afterward to generate the distribution
over the tokens. The distribution is then used to select the
next token in the output sequence by sampling from this
distribution with a random number generator. This process
is repeated until the output sequence reaches a certain length
or a special end-of-sequence token is generated.

By combining embeddings and softmax, a Transformer
can produce high-quality output sequences that capture the
meaning and syntax of the input sequence while generating
relevant and grammatically correct output.

Being a self-attention-based model, the transformer does
not contain any convolution or recurrence, like the other
popular neural networks; meaning it relies on its ability
to handle parts of the input sequence by considering their
relevance to the current output sequence. However, this
poses a challenge when trying to capture the order and the
corresponding positions of the tokens in the sequence, as self-
attention alone cannot capture this information.

To address this issue, positional encoding is added to
the input sequence as an additional signal that captures the
order and position of each token in the sequence. Positional
encoding is a critical component of the Transformer model
that allows it to encode the order and position of words
or tokens in a sequence. This encoding is achieved by first
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mapping each token in the sequence to a unique integer
ID, and then using these IDs to compute sine and cosine
functions that produce fixed-length embeddings for each
token in the sequence. These embeddings, called positional
embeddings, are added to the word embeddings of each
token in the sequence to capture their position in the
sequence. The resulting combined embeddings are then fed
into the Transformer encoder, which uses self-attention and
feedforward neural networks to encode the input sequence
and generate output tokens.

By adding positional encoding to the input sequence,
the Transformer can capture not only the meaning of each
token but also its position within the sequence, enabling it
to generate high-quality output sequences that respect the
original order and distance relationships between tokens in
the input. Positional encoding enables the transformer to take
a complete sequence (say a sentence in English) at once
and analyze its tokens simultaneously. For this reason, the
transformer is faster than convolutional and recurrent neural
networks.

During training, the Transformer model is optimized using
supervised learning. The model minimizes a loss function,
such as the cross-entropy loss, to predict the correct output
sequence of a given input sequence. The model parameters
and attention weights are updated through backpropagation
and gradient descent.

D. PERFORMANCE METRICS FOR DL MODELS

To find out which DL model is most suitable for specific loT
scenarios, it is essential to evaluate the performance metrics
of those models. To compute any performance metrics, it is
important to know about the confusion matrix. The confusion
matrix is a combination of scenarios that is used to describe a
binary classification problem, such as how to judge whether
someone has cancer or other diseases. Nevertheless, every
kind of model will always make wrong judgments. So, the
data that is originally correct will be defined as true and false
samples; the data that has been classified will be defined
as positive and negative samples. Therefore, there are four
kinds of samples in the confusion matrix - 7P (True Positive),
TN (True Negative), FP (False Positive,) and FN (False
Negative). It is usually straightforward to know that only
the TP and TN are accurate samples. So, to learn about the
probability that the sample will be classified correctly, the
accuracy is defined in (5).

(TP 4+ TN)
accuracy = 5)
(TP + TN + FP + FN)

The accuracy will show the proportion of all samples that
predicted correctly to all test samples. It should be noted that
for the model, both TP and FN are originally the true samples,
meaning the 7P accounts for the true data.

(TP)
recall = ——— (6)
(TP 4+ FN)
The recall, which is the proportion of all positive cases that

were correctly predicted by the model is computed using (6).
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Now that the TP and FP are recognized as the positive
samples, the precision computed in (7) is used to learn the
percentage of the TP makes up the positive samples.
. (TP)
precision = ————— 7)
(TP + FP)

After computing the precision and the recall, the FI score
shown in (8) which is the harmonic mean will be defined
as well. The F1 score combines the recall and accuracy to
determine the accuracy of a model. A higher F1 score shows
that the model is having a better performance.

B (2TP)
" (2TP 4 FP 4+ FN)

Despite defining the accuracy, possibilities exist in some
situations, that it may not distinguish the originally correct
samples and the predicted correct samples; this inhibits the
model’s ability to get the right data. So, to solve this problem,
TPR (True Positive Rate) and FPR (False Positive Rate) are
computed in (9) and (10) respectively.

(TP)
" (TP +FN)

For TPR, it represents the proportion of all true instances in
the positive class predicted by the classifier. Numerically, the
TPR is the same as the recall. FPR represents the proportion
of all false instances in the positive class predicted by the
classifier.

®)

TPR 9)

_ (FP)
~ (FP+FN)

Suppose that the probability of a series of samples being
divided into positive classes has been obtained, and then
sorted by size; the next action is to take the “Score’ value as
the threshold in turn from high to low. When the probability
that the test sample belongs to a positive sample is greater
than or equal to this threshold, it is considered a positive
sample, otherwise, it is a negative sample. Each time a
different threshold is picked, a set of FPR and TPR can be
obtained, that is, a point on the ROC curve. So, the ROC curve
can be plotted with multiple values. The so-called ROC refers
to receiver operating characteristics. Each point on the ROC
curve reflects susceptibility to the same signaling stimulus.
The area under the curve, AUC, can tell whether the model
works well numerically. When the AUC is higher the model
performs better.

Usually, more performance metrics can be utilized to
measure the performance of DL models. The most important
point to consider when choosing any metric is that it aligns
with the goals of the DL model, the characteristics of the
dataset, as well as the impact of outliers on the analysis.
Additionally, multiple metrics can be used to get a more
comprehensive view of the performance of the model.

FPR (10)

IV. CLASSICAL DL MODELS FOR DATA PREDICTION
Data prediction is extremely important for IoT applications,
but it is impossible to make accurate predictions due to the
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enormous and high-dimension data generated, and inevitable
missing values. The predictive analysis capability of DL
and other machine learning algorithms can be leveraged to
address a variety of issues, including prediction problems in
IoT [5], [36], [37].

To address the prediction challenge, an integrated online
prediction model that can solve future value prediction and
missing value imputation in low-dimensional space simul-
taneously has been proposed [38]. This approach integrates
classic prediction models into the objective function of
matrix factorization before employing a rolling prediction
mechanism to implement a very efficient data prediction for
the IoT.

One classic DL model used for data prediction is the
TS-TCC presented in Eldele et al. [39], which is used
to learn representation of unlabeled time series data. TS-
TCC uses weak and strong augmentations to split raw time
series data into 2 distinct but correlated views. Contrastive
approaches attempt to maximize the similarity between
distinct views of the same sample while reducing its
similarity to other samples. As a result, it is critical to create
appropriate data augmentations for contrastive learning. After
the transformation, the model creates a complex cross-
view prediction job and employs a temporal contrasting
module to learn reliable temporal representations. To further
develop discriminative representations, the TS-TCC employs
a contextual contrasting module based on the contexts from
the temporal contrasting module. The TS-TCC algorithm
aims to minimize the similarity between contexts of different
samples while maximizing the similarity between contexts of
the same sample. Fig 9 shows the architecture of the TS-TCC.

Contextual Contrasting

L
1
Maximize

Similarity
Non-linear Non-linear
Projection Head Projection Head
/7

Temporal Contrasting

\,

7

)

=
T

Transformer Transformer

[ Strong Augmentation Weak Augmentation J

(L prorbatiol—

FIGURE 9. The architecture of the TS-TCC model.

As already stated, IoT devices generate massive data,
making the accuracy of prediction of real-time spatial
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information very cumbersome. Inagaki et al. [40] proposed
an IoT system that minimizes the transmitted data utilized
as input for prediction in real-time, sustaining the prediction
accuracy by using a machine learning-based system. The
system - which is made up of mobile nodes and an edge
server receives collected data, aggregates and preprocesses
the data, and then uses it to predict the next spatial
information in real-time by using feature selection. A similar
approach is presented by [41] for analyzing data obtained
by numerous IoT devices for predicting health status in
real-time. Metaheuristic algorithms have been employed
by different researchers for feature extraction, which is an
important process in the prediction of data [42].

Eraliev and Lee [37] also present the use of LSTMs
to perform climate prediction by analyzing time series
data obtained directly from an indoor greenhouse used for
hydroponics. The input features are run through several
LSTM layers by the LSTM model. The predicted levels of
humidity, temperature, and CO, are produced by the output
layer. According to Fig 10a, the LSTM structure is built
by multivariate time series and routing them via the LSTM
layer, where the outputs and neurons are of the same number.
The LSTM layer has 64 cells in it and Fig 10b shows the
configuration of one single cell in the layer.

(a)

Input: Climate of
green house

QOutput: Climate of
green house

Temperature ('C)
Humidity (%)
CO;Concentration

Temperature ('C)
Humidity (%)
CO, Concentration

LSTM Layer

Output Layer

Cea Cy

(a0

tanh

X

FIGURE 10. (a) Structure of LSTM used in [28]. (b) The structure of a
single cell of the LSTM.

The LSTM network is made up of cells that predict the
next output based on prior state input and current input. The
cells oversee evaluating the significance of the input, keeping
it inside the memory, and either refusing to acknowledge it
or forwarding it onto the next loop, enabling the RNN to
address the vanishing gradient usually associated with RNNs.
In addition, Eraliev and Lee [37] also present two other
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DL-based prediction methods using a deep neural network
and a 1-D CNN model. Just like the LSTM model initially
discussed in the article, these two are used to predict climatic
conditions at various times in greenhouses.

Cao et al. [43] present a DL model for multi-task learning
to be used in time series prediction. This model considers
many parameters and combines different features. After
extracting and fusing these features, the model forecasts
time series using LSTM layers. From the model architecture,
shown in Fig 11, the model takes in three inputs - V
(Maximum Connections value), M (current moment), and
R (Maximum Connections change rate). Afterwards, feature
extraction is performed.

Outputs
Feature Value Feature Ch'_gnge Rate
i Extraction eature
EXtEAction Extraction
Inputs ' M R

FIGURE 11. The architecture of the deep multi-task learning model.

Both feature extraction segments have two sections: fea-
ture transform and LSTM layers. The value feature extraction
algorithm converts the inputs M and V into the predicted
value of the feature F,. Change rate feature extraction
converts the change rate R of Maximum Connections to a
feature matrix of the predicted change rate - F;. Following
that, Fy, and F; from the extraction sections were fused in
the next stage to produce the output sequence yy = yyi,
yv2...yyN. Meanwhile, as a related activity, the change rate
characteristic is employed to optimize anticipated maximum
connections. The model yields y; = yr1, Vi2,---» YN DY
calculating the loss in the change rate, which is utilized in
conjunction with value loss in the complete training model.

Furthermore, it employs multi-task learning to jointly
maximize its capabilities. It also takes the predicted change
rate of maximum connections (related task) into account
as an inductive bias when tuning the predicted maximum
connections (primary task). The results of the experiments
suggest that the change rate helps to increase prediction
accuracy.
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In Liu et al. [44], using data mining techniques, a machine
learning model was presented, to forecast substation project
costs and enhance power grid companies’ capacity for cost
prediction. This model, when properly implemented, has
the potential to provide greater insight for decisions related
to cost management. Tkachenko et al. [45] developed a
new solution based on neural network tools to increase
the precision of completing prediction tasks for recovering
missing [oT data. The proposed method consists of a neural-
like successive geometric transformation model structure
and two successive general regression neural networks.
This method aids in resolving issues regarding missing
values from real-time data obtained by IoT devices from
monitoring air in the environment. In [1], a time series
analysis and prediction on IoT data obtained from three
locations was performed to predict future air quality by
using the machine learning algorithm - linear regression.
For predictive analytics of dynamic and complex IoT data
streams, Akbar et al. [46] developed an adaptive algorithm
for prediction named adaptive moving window regression.
In addition to IoT, the system can accurately predict
complex events in several other fields with a 96 percent
success rate. Chahal and Gulia [26] ascertain firmly in
their study that deep learning is the best tool for the
predictive analysis of IoT data. Classical DL models for
prediction in time series data generated by IoT are presented
in Table 5.

V. CLASSICAL DL MODELS FOR ANOMALY DETECTION
AND CORRECTION

Anomalies are (unusual) observations that differ from (or do
not follow the regular pattern of) other observations. These
anomalies can significantly degrade the quality of data [55].
Recently, various techniques have been invented for detecting
anomalies in IoT and other fields. This is an extremely
crucial step to curb the growing menace of data integrity
and security issues. Due to the likelihood of noise and the
lack of labels in the sensor readings, anomaly detection in
IoT sensor data has grown in importance. For this reason,
many scientists and researchers have used machine learning-
based techniques for intrusion and anomaly detection [56].
However, there is a high degree of correlation between
the sensor data points, making it extremely difficult for
traditional machine-learning techniques to detect anomalies
[57]. Furthermore, the inability of typical statistical and
machine learning algorithms to detect anomalies is due
to the size and speed of the data collected by the IoT
Sensors.

Ji et al. [58] present LSTMAD - an anomaly detection
framework based on LSTM which detects anomalies in uni-
variate time series data. This framework learns the structure
of normal (non-anomalous) training data and then proceeds to
detect anomalies by applying a statistical technique using the
predicted error for the data that was observed. Fig 12(a) shows
the architecture of the LSTMAD framework which consists
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TABLE 5. Classical deep learning models used for prediction in loT time
series data.

Name DL/ML used Source Application

CNN-RNN CNN, RNN [47] Crop yield

Framework for prediction

Crop Yield

Prediction

TS-TCC Transformer [39] Fault Diagnosis,
epilepsy
Seizure
Prediction, etc.

RNNS for GRU [48] Predictive tasks

Multivariate in health

Time Series applications

with Missing

Values

Transformer Transformer [34] Time series

Self-Attention forecasting

for Time Series

Forecasting

Predicting LST™M [49] Predicting

Infectious Infectious

Disease Using Disease

DL & Big Data

TSA-TNTM Transformer [38] Identification of
threats in cyber
threat
intelligence.

ABCDM CNN, RNN [50] Sentiment
polarity
detection

LSTM and LSTM, [51] Forecasting in

BiLSTM in Bidirectional time series

Forecasting LSTM analysis

Time Series

Hybrid CNN- CNN, LSTM [52] Short-Term

LSTM Individual
Household
Load
Forecasting

Residual Convolutional [53] Tweet Count

Convolutional LSTM Prediction

LSTM for

Tweet Count

Prediction

RCLSTM LSTM [54] Traffic

Model prediction and

user-mobility
forecasting

of four modules. Fig 12(b) shows the LSTM model of the
framework, which consists of five layers.

The noise reduction module is used to process the input
time series data to clean any noise signal that may affect
the accuracy of the results of the computation. The noise
reduction layer uses algorithms like the S-G filter (which is
used to smooth digital data to increase the precision while
preserving the data’s original properties. In the normalization
module, the series is normalized to follow a 0-1 normal
distribution. The LSTM module is composed of five layers,
the first of which is the input layer, which contains L1 nodes,
suggesting that a subseries with L1 elements was utilized as
input to a fully linked hidden layer. To analyze the data that
comes from the input layer, three hidden layers (consisting
of LSTM units shown in Fig 12b), are used. In the output
layer, there is only one node - Y. The LSMT module predicts
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the next values using inference from the historical data.
After training the LSTM module, a search for anomalies is
performed in the anomaly detection module.

Time Series LSTMAD
Noise Norma-
Reduction lization
(2)

Hidden Layers Output

Time Series  Input

]

FIGURE 12. Flowchart of the LSTMAD framework.

LSTMAD does not require previous information; it can
learn the context of the sequence data from an ordinary
signal and then identify abnormal components by using
the prediction error for the observed data. It is also not
affected by the length of the sliding window, making it a
scalable technique for use in different applications. It is
also useful for predicting anomalies in real time, particularly
when the fundamental physical process has not been entirely
understood and defined.

LSTM-Gauss-NBayes proposed by Xie et al. [35] is
another classic DL model used to detect anomalies in IoT
time series. Initially, the LSTM-Gauss-NBayes (shown in
Fig 13) uses downsampling to simplify recognizing patterns
in the original time series by reducing the dimensions. The
model then normalizes the data by performing a linear
transformation using the min-max normalization usually
used to analyze time series data. This speed up the rate
of convergence of the model. The LSTM-Gauss-NBayes
prediction model is constructed using the normal time series
training data. The estimated error from the prediction model
is then used to build a Gaussian naive Bayes model to
determine whether the initial data set is anomalous.

%"” i
Misat
MS:ruc,%'ﬂ&

| | patacieaning | |
- W Data i -
~————! | Downs, | jdation Set | —g@et Vb
N 1 i

e S
| para™
| Dala | |
Initial Data i | Normalization | | Testing Set —
1 | Testing

Stacked LSTM
Model

Trained Model

Calculate| Error
Maximum

Gaussian Likelihood Error
Di Training Set
Native Bayes Errur;;s!ing
Model Testing

FIGURE 13. Construction procedure of LSTM-Gauss-NBayes.

Error Dataset

VOLUME 11, 2023

Ullah and Mahmoud [36] introduced a unique intrusion
detection solution for detecting anomalies in IoT. Initially,
a multiclass classification model is built using a CNN
model. The suggested model is then implemented using 1D,
2D, and 3D CNNs. A CNN multiclass pre-trained model
is used to achieve binary and multiclass classification via
transfer learning. Considering accuracy, precision, F1 score,
and recall, the model performed exceptionally in testing.
Zhang et al. [3] intelligently combined the temporal nature
of anomaly identification with the popular minimal change
principle in data repairing to provide a technique of iteratively
correcting abnormalities in data obtained from time series.
Table 6 presents DL models that have been used in recent
times for anomaly detection and repair in [oT time series data.

VI. CHALLENGES OF USING DEEP LEARNING FOR

loT DATA ANALYSIS

Using DL for IoT data analysis has the ability to extract useful
information and make predictions in a variety of applications.
However, challenges remain that indicate there is still an
urgent need for improvement despite the advances made by
DL methodologies for evaluating IoT time series data in
recent times. Fig 14 shows an overview of the challenges
discussed in this section.

Highly Dimensional & Complex Data

& g
« Data 1 bili

o ity
’ Tnteroperability

* Mode! Complexity
* Model Inter "

Security & P ue

5
Energy & Resource Constraints

+ Energy Efficiency
* Resource Constraints

* Model Deployme
« Regulatory Compliance

FIGURE 14. Challenges facing loT data analysis using DL.

A. HIGHLY DIMENSIONAL AND COMPLEX DATA
One of the most fundamental challenges in using DL to
analyze IoT data is the data itself. Time series data generated
from IoT is highly dynamic, with high dimensionality and
complexity; and this is a serious challenge that should be
addressed immediately. In addition, the absence of sufficient
data sets for adequate model training is a serious concern
that must be addressed urgently. Furthermore, data generated
by IoT devices is not always in an appropriate shape to be
fed into DL models; thus, preprocessing is critical before
training the models. Preprocessing is more complicated in
IoT applications since the system deals with data from several
sources that may have varied forms and distributions while
reporting missing data. The practical use of data collection
systems is a critical research issue.

DL models usually require clean training datasets that
are not polluted by anomalies for learning the ‘‘normal
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TABLE 6. Classical deep learning models used for anomaly detection and

repair in loT time series data.

Name Source DL Model(s) Use-cases
Used
LSTM-Gauss- [59] LSTM, Bayes General time
NBayes model, and series anomaly
Gaussian detection
distribution
LSTMAD [58] LSTM Real-time
framework anomaly
detection
Anomaly-based [60] CNN Intrusion
intrusion detection in IoT
networks
detection model
for IoT networks
OmniAnomaly [61] Stochastic multivariate
RNN time series
anomaly
detection
Anomaly [62] RNN Anomaly
detection in detection in
aircraft data aircraft data
using RNN
VAE-LSTM [63] LSTM Identifying
hybrid model anomalies in
time series
LSTM-Based [64] LSTM Anomaly
Time-Series Detection in Rail
Anomaly Transit
Detection Operation
Environments
IoT multivariate ~ [65] Adversarial Multivariate
time series transformer time series
anomaly anomaly
detection detection
Time-series [66] Transformer Time-series
anomaly anomaly
detection with detection
stacked
Transformer
representations
and 1D
convolutional
network
Anomaly [67] Transformer Anomaly
Transformer detection
A model- [68] LSTMAE Anomaly
agnostic sample detection on
filtering method time series with
contaminated
training data
DCT-GAN [69] Transformer Time series
anomaly
detection
BTAD [70] Bi-Transformer ~ Anomaly
detection of
multivariate
time series
TGAN-AD [71] Transformer Anomaly
detection of
multivariate
time series

profiles” of time series data. This is extremely difficult,
if not impossible because clean datasets are rarely available
in practice [68]. Different applications built on dirty time
series data are completely unreliable. Filtering out dirty data
is frequently done via anomaly detection over time series [3].
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In other words, observed anomalous data points are simply
ignored as useless noise. With a high number of consecutive
data points removed, the applications are usually run on a
relatively partial time series. As a result, correcting dirty
values (or abnormalities) in time series data could enhance
applications. Furthermore, the amount of noise in datasets
can vary significantly, and noisy occurrences are frequently
dispersed randomly. For this reason, models are susceptible to
noise in the input data, and their performance is significantly
affected. A repair that is relatively close to the truth benefits
the applications immensely - attaining this is a significant
task.

In addition to having high noise characteristics, the
handling of heterogeneous data supplied by IoT devices is a
very significant challenge. IoT devices generate vast amounts
of data of varying types and scales, for example, signal
frequency and network traffic, which, while originating from
the same source, will have distinct forms. Data of the
same type might also have different scales, for example
packets and bytes all belong to network features but they
use different scales. If data mining is performed directly
on these original time series data, it will not only use a
large amount of storage and computing time, but it will
also have an impact on the accuracy and reliability of the
algorithm. Analyzing the massive amounts of data generated
by IoT devices and networks can be time-consuming and
difficult to manage appropriately [72]. Also, as the length
of the time series increases, learning normal patterns of time
series and identifying anomalies becomes more complicated.
Additionally, given the need to optimize massive weight
parameters in neural networks, DL techniques usually work
while assuming that data is adequate and balanced [27].
However, this does not always work for problems in specific
scenarios. In many circumstances, the volume of datasets is
limited by complex and expensive data-collecting techniques.
Furthermore, such processes frequently exhibit extremely
unequal class distributions, with instances from one class
significantly outnumbering instances from other classes. For
example, in clinical cases, there is invariably less data from
therapy groups than from the normal groups [73]. Recent
years have seen a significant amount of research on the huge
size and intricate patterns of time series, enabling scholars
to create specialized deep-learning models for identifying
abnormal patterns [74]. Even more, a few assessment
measures have also been utilized to clearly demonstrate how
restricted and imbalanced data can impair deep learning
performance.

Owing to its high dimensionality and complexity, time
series tend to be uncertain at any one time or change
frequently in many cases. Because the time series cannot
be predicted in advance in these instances, prediction-
based anomaly identification is rendered ineffective. This
inhibits the capacity of prediction models to make predictions
for the long term [74]. This also inhibits the ability of
a DL method to detect anomalies on demand, which is
a very essential requirement for applications that require

VOLUME 11, 2023



P. S. Yakoi et al.: Analysis of Time Series Data Generated From the loT Using DL Models

IEEE Access

real-time processing. If a system takes more time to process
observations than the time to make estimations, then in the
long run, the computational resources provided to the system
will be exhausted, causing a system failure [75]. Due to the
high speed of data generation by IoT devices, like in cases
of medical emergencies, it is difficult to process and analyze
obtained data in real-time to perform actions on demand.
For this reason, real-time data processing capabilities should
be added to DL models to ensure an effective and scalable
solution. By addressing this problem, DL algorithms will be
able to recognize anomalies in real-time.

The absence of labeled anomalies is another major chal-
lenge that has consistently impacted IoT time series analysis
[75]. Failure modes are insufficient for use as labeled training
data because they are extremely rare in most industrial
settings. The shortage of failure modes makes gathering
sufficient labeled training data resource- and time-intensive.
Regardless, when labeled data are acquired, irregularity
among normal and abnormal data impedes the training of
the model. Without labeled anomalies, unsupervised or semi-
supervised approaches are required. This causes a huge
number of normal instances to be mistakenly recognized
as anomalies. Similarly, missing values are common in
multivariate time series data in practical applications such
as health care, geoscience, and biology. Data prediction is
critical for IoT applications, but it is challenging to create
reliable predictions due to the massive amounts of data
collected and the unavoidable missing values. Missing values
and patterns have been found to be frequently connected with
target labels in time series prediction and similar tasks; this
is called informative missingness. Although some work has
been done to address this issue, there has been relatively little
work on utilizing missing patterns for effective imputation
and enhancing prediction performance, as well as missing IoT
data recovery. Therefore, one of the key challenges is finding
a mechanism to minimize false positives and enhance recall
rates of detection. This scenario is viewed as a considerable
cost related to failure in anomaly detection.

B. PRIVACY AND SECURITY ISSUES

Recent obstacles that diminish the applicability of DL to
evaluate IoT data are privacy and security concerns; IoT
data are usually obtained from multiple sources, the quality,
integrity, and assurance of which cannot be guaranteed.
Maintaining data privacy and secrecy is a big challenge in
many loT applications, as [oT massive data is transmitted
for inspection via the Internet, making it available to
unauthorized parties. This means that there is a possibility
that the DL is learning from training data that has already
been tampered with. For this reason, sometimes some useful
data might be withheld by appropriate authorities, for security
reasons. For example, clinical information is not usually
made available for the public due to privacy concerns and
ethical considerations, resulting in an even greater imbalance
in available data. In this case, DL models must be updated
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using specific approaches for detecting irregular or erroneous
input.

C. INTEROPERABILITY

DL models can be very complex, making them difficult to
interpret and explain. In scenarios where interpretability is
crucial (e.g., healthcare or finance), this can be a significant
challenge. The need to improve interpretability has increased
inrecent years. A level of interpretability is necessary in situa-
tions when anomaly detection is being used as an instrument
for diagnosis. Nevertheless, the majority of anomaly detec-
tion research ignores the problem of interpreting anomalies
and instead focuses solely on detecting precision. To show
the importance of this particular challenge, one workshop
on Explainable Artificial Intelligence (XAI) from 2017 was
specifically arranged by IJCAIL In addition, a study on
comprehending black-box predictions was given the title of
best paper at ICML 2017 [76].

Furthermore, anomaly identification in multivariate time
series data is particularly difficult because it depends on
the simultaneous analysis of temporal dependencies and
variable relationships [74] [77]. Anomaly detectors need
contextual information, including temporal, environmental,
and additional sensor streams to operate successfully in
multivariate settings [75]. As data volume and dimensionality
have increased, new issues have evolved, requiring cre-
ative approaches and workable solutions. Examples include
extracting deep features and spotting deep hidden patterns.
Aside from being infrequently discussed in the literature,
recurring anomalies make detection more difficult. A periodic
subsequence abnormality is one that occurs on a regular basis
[74]. The periodic subsequence anomaly detection technique
can be used to spot recurring irregular transactions in fields
like fraud detection.

D. ENERGY AND RESOURCE CONSTRAINTS

The resource limitations of IoT devices continue to be
a significant barrier to the deployment of DL models —
a process that requires sophisticated hardware. This is a
significant difficulty because IoT devices and embedded
systems typically have resource constraints. This means
that using DL. models may cause network failures and data
disclosure while collecting and transmitting data to servers
to be analyzed. When applying DL to real IoT systems,
memory, and time efficiency would be two major challenges.
Although DL models may be trained offline, there are still
implementation issues. A persistent challenge is figuring
out how to minimize the computing and storage resources
required to run the DL model in resource-constrained
applications. This may be because many DL models were not
necessarily created for the IoT environment; investigations
in this area will only continue until researchers get the
optimal solution(s). In addition, [78] shows that designing
highly accurate and resource-efficient deep learning models
continues to be a challenge.
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E. DEPLOYMENT ISSUES

Resource limitations have also exposed the relevance of DL
models’ adaptability, which is also a significant challenge.
As devices and applications in the IoT ecosystem grow on
a daily basis, so must DL’s adaptability. In the real world,
an IoT network is always open to attack from intruders
and malicious systems. Following that, new devices are
usually added to the IoT system. As additional devices
join the network, the distribution of network traffic or
signal frequency is likely to shift. Because a static-trained
model cannot easily adjust to changing conditions, it may
produce more false positives and false negatives. The request
from the end user is another ever-changing factor. These
modifications present new hurdles for DL applications
in the IoT context. DL algorithms must deal with a
rapidly changing environment from both a macro and micro
perspective. Another factor to consider is that numerous
IoT devices may be deployed in a variety of settings. The
characteristics of the environment in which IoT is deployed
may differ. Retraining a DL model for every setting takes
a long time and also necessitates more labeled training
data. In addition to the adaptability of models, IoT data
analysis with DL may need to comply with industry-specific
regulations (e.g., healthcare, finance) depending on the
application. Ensuring that DL models meet these compliance
requirements can be challenging. Deploying DL models
on IoT devices or in the cloud requires careful planning
and ongoing maintenance. Ensuring model updates, version
control, and compatibility with evolving IoT environments is
essential.

VII. CONCLUSION AND FUTURE WORKS

This study has provided a review showing different appli-
cations of DL for data prediction, anomaly detection, and
correction in time series data generated from IoT. There are
numerous use cases of the use of DL for IoT data analysis,
in different fields (like agriculture, chemistry, healthcare,
and so on). An in-depth look at the works reviewed shows
that deep learning has worked in different areas with a
high degree of success, but not without challenges. This
review has highlighted some common challenges (such as
model deployment issues, energy and resource constraints,
privacy and security issues, and performance drawbacks
in processing voluminous data with high dimensionality
and anomaly interpretation) encountered when applying DL
methodologies on IoT-generated time series data. As a result,
a follow-up study to address these challenges is required.
In addition, other facets of data processing and analysis
should be studied. Nonetheless, this study contributes signif-
icantly to the existing body of knowledge regarding IoT data
analysis, providing valuable insights for researchers.
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