
Received 19 October 2023, accepted 5 November 2023, date of publication 9 November 2023,
date of current version 17 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3331819

Improving Generative Adversarial
Networks for Patch-Based Unpaired
Image-to-Image Translation
MORITZ BÖHLAND , ROMAN BRUCH , SIMON BÄUERLE,
LUCA RETTENBERGER, AND MARKUS REISCHL
Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

Corresponding author: Moritz Böhland (moritz.boehland@kit.edu)

This work was supported by the KIT-Publication Fund of the Karlsruhe Institute of Technology.

ABSTRACT Deep learning models for image segmentation achieve high-quality results, but need large
amounts of training data. Training data is primarily annotated manually, which is time-consuming and often
not feasible for large-scale 2D and 3D images. Manual annotation can be reduced using synthetic training
data generated by generative adversarial networks that perform unpaired image-to-image translation. As of
now, large images need to be processed patch-wise during inference, resulting in local artifacts in border
regions after merging the individual patches. To reduce these artifacts, we propose a new method that
integrates overlapping patches into the training process. We incorporated our method into CycleGAN and
tested it on our new 2D tiling strategy benchmark dataset. The results show that the artifacts are reduced by
85% compared to state-of-the-art weighted tiling. While our method increases training time, inference time
decreases. Additionally, we demonstrate transferability to real-world 3D biological image data, receiving
a high-quality synthetic dataset. Increasing the quality of synthetic training datasets can reduce manual
annotation, increase the quality of model output, and can help develop and evaluate deep learning models.

INDEX TERMS GAN, unpaired image-to-image translation, 3D image synthesis, stitching, CycleGAN,
tiling, large-scale.

I. INTRODUCTION
Supervised deep learning models provide high-quality results
for image segmentation tasks. They are often used for
instance segmentation of biological, biomedical and material
science data [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].
Training supervised deep learning models requires large
amounts of training data, mostly annotated manually. Manual
annotation is a tedious and time-consuming task. Great effort
is being made to reduce manual annotation, resulting in
semi-supervised methods, sparse annotations, and assisted
labeling [11], [12], [13], [14].
In contrast to these methods, synthetic training data can be

used. In the past, synthetic training data was created mainly
by physical simulation [15], [16]. A framework to create
realistic synthetic bright-field microscopy images has been
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developed to omit manual labeling [16]. The framework was
part of the development of a new generation of a cervical can-
cer screening system. An easy-to-use, modern, and modular
web interface was developed to simulate various fluorescence
microscopy systems in [15]. It reduces the installation
and configuration barrier of existing tools. The downside
of physical simulation is the expert domain knowledge
needed to create high-quality results. Additionally, quality is
reduced by unknown physical processes and approximations.
On the other hand, simulation provides explainability and
interpretability if needed.

Synthetic training data can also be created with a small
amount of domain knowledge and neural networks (NNs) that
perform unpaired (unsupervised) image-to-image translation.
The neural networks learn to transform images x from
source domain X to images y in the target domain Y . The
transformation is often learned in both directions. When
synthetic label images are used for one domain and the

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 127895

https://orcid.org/0000-0002-9321-8169
https://orcid.org/0000-0003-2910-7605
https://orcid.org/0000-0002-7780-6374
https://orcid.org/0000-0002-7184-2809


M. Böhland et al.: Improving GANs for Patch-Based Unpaired Image-to-Image Translation

FIGURE 1. GANs trained with real-world images (a) and synthetic label
images (b) are able to predict high quality images (c) from (b). If the
prediction is performed patch-based, errors occur at the patch borders.
This is shown in (d) with four patches used for the prediction. The
real-world image is a crop from the BBBC039v1 dataset [33].

real-world images are used for the other domain, the NN
learns to transfer between both domains. After training,
paired synthetic training data can be synthesized from the
synthetic label images.

Unpaired image-to-image translation can be performed
with Energy-Based Models (EBMs). An EBM parametrized
by neural networks, trained by Markov Chain Monte Carlo
(MCMC) sampling-based maximum likelihood estimation
has been developed [17]. The problems of instability and
the lack of diversity have been solved with a coarse-to-fine
image generation, increasing image resolution by expanding
the energy function throughout training. Later, an EBM with
a multidimensional latent space and a pretrained autoencoder
was introduced to further increase the quality of image
translation [18].

In addition to EBMs, generative adversarial networks
(GANs) like CycleGAN, UNIT, DRIT++ or others can
perform unpaired image-to-image translation [19], [20], [21],
[22], [23], [24], [25], [26]. Many GANs for unpaired image-
to-image translation consist of one or more generators,
transforming data between the domains and one or more
discriminators evaluating the authenticity of the generated
images. Furthermore, the cycle-consistency constraint intro-
duced in CycleGAN enforces that an image translated from
one domain to another and then back should closely resemble
the original image, guiding the generators to learnmeaningful
mappings while reducing the need for paired training data.
Cycle-consistency can also be enforced implicitly by a
shared latent space used in UNIT. For a thorough description
of the different architectures or an introduction to GANs,
refer to [27].
While EBMs have mostly been applied to perform

unpaired image-to-image tasks like the translation between
cats and dogs or oranges and apples, GANs have already
been used to create synthetic 2D, and 3D training data from
unpaired synthetic label images and real-world images [8],
[28], [29], [30], [31], [32].

When researchers decide to use GANs to synthesize
training data, they must deal with the large amount of
VRAM required. When the available VRAM is too small
for a large-scale 2D or 3D image, and the resolution cannot

be reduced, training and inference must be performed patch-
wise. For inference, different tiling strategies can be applied.
A naive tiling strategy creates patches without overlap, and
each patch is processed individually by the GAN. While the
mapping for individual patches is correct, errors at patch
boundaries in the final image occur. Objects present in
multiple patches often inherit a sharp transition in texture,
lightning condition, and color pattern. These errors especially
appear when there is no direct one-to-one mapping between
images in the source domain and the target domain, but
a one-to-many mapping. The one-to-many mapping exists
due to low entropy in the input image domain and high
entropy in the output image domain [34]. An example for the
errors introduced when predicting microscopy images of cell
nuclei, is shown in Fig. 1. While the prediction without tiling
yields virtually no errors, the patch-based prediction with
tiling yields errors at the patch borders. Another well-known
example is the edges-to-shoes setting, where a GAN is trained
to create pictures of shoes solely from the edges of the
shoe [19]. Low entropy edges of a shoe can match multiple
drawings of a shoe, e.g., different colors, laces, or soles.
When processing the edge image patch-wise, there is no
guarantee that the GAN infers the same color, laces, and sole
from the low entropy input domain to the high entropy output
domain for all patches.

Advanced tiling strategies have been developed to reduce
these errors without adding more domain knowledge to the
synthetic label image domain. Bel et al. [35] use a CycleGAN
to adapt histopathological image staining between centers.
They introduced a tiling strategy to reduce the tiling
artifacts of simple tiling. They made several adaptations
to simple tiling: (i) Large overlapping tiles are processed.
This increases the similarity of adjacent patches’ mean
and standard deviation during inference. Therefore, when
using standard instance normalization output is also more
similar. (ii) Overlapping patches are cropped after being
processed by the GAN to reduce border effects introduced
by padding and the difference in the receptive field for
border pixels compared to pixels in the middle of the patch.
(iii) The cropped patches still overlap, and the overlapping
patches are stitched together with a weight map to ensure
a smooth transition from one patch to the next. While
the advanced tiling strategy has been proven to produce
high-quality outputs and no changes in GAN training are
needed, two drawbacks occur: (i) The large overlap used
increases single-dimensional execution time nearly by a
factor of four, while inference time scales exponentially with
the number of input dimensions. For 3D data, this results in
an increase of inference time by 64 compared to naive tiling.
(ii) a one-to-one mapping and a reasonable output for an
object present in two adjacent patches can still not be ensured.
This can still lead to errors in the final image.

On a single patch level, methods able to adjust the output
for one-to-many mappings exist [23], [25]. These multimodal
GANs map an image x to many different correct versions of
an output image ŷ. This is, e.g., done by injecting random
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FIGURE 2. a: Tiling strategy benchmark dataset with problem setting transferring images between domain X and Y . b: Visualization of the one-to-many
translation. The image from domain X in (a) can lead to all images from domain Y in (b). c: An example image for each domain of the final tiling
strategy benchmark dataset. The dataset consists of 512 unpaired images in each domain. 1000 circles with diameter 40 px are present in each image of
size 2048 px × 2048 px. d: Simple tiling into four patches, piecewise inference, and stitching. The individual patch predictions are correct, while errors at
the patch borders occur in the final image. The errors at the patch borders in the final image can be used to evaluate different tiling strategies.

noise into the generator or drawing a random style code from
a style encoding feature space. Although one can adjust the
single patch output for multimodal GANs, consistency across
patches can not be guaranteed when processing an imagewith
a tiling strategy. A straightforward strategy to use multimodal
GANs to process large-scale images patch-wise would be
to create multiple patches until the next patch matches the
previously created patches. For real-world images, this is not
feasible because oftentimes, there are no automated measures
to decide whether the next patch does match the previous
patches or not.

Neither existing multimodal GANs nor existing tiling
strategies are able to omit the errors introduced during
patch-based inference completely. This shows the need for
improvement. Because GANs are complex architectures and
do not work out-of-the-box for different problem settings,
the adoption of new architectures is slow. Therefore, instead
of developing a new GAN architecture, we developed a
new tiling strategy, which can be directly incorporated into
GAN training to further decrease the errors introduced during
patch-based inference.

Our tiling strategy enables theGAN to incorporate adjacent
patch information into the prediction of the next patch.
The tiling strategy allows the GAN to produce arbitrary-
sized high-quality images while inference time is reduced
compared to existing tiling strategies. Our contributions are as
follows: (i) We introduce a tiling strategy benchmark dataset
to quantitatively compare tiling strategies for GANs, (ii) we
show and quantify errors of advanced tiling strategies, (iii) we
introduce our new Stitching Aware Training and Inference

(SATI) to reduce tiling errors and give quantitative results
and (iv) we apply our method to a real-world 3D biological
dataset.

The tiling strategy benchmark dataset created to compare
tiling strategies is introduced in Section II. Afterwards,
we present our method and show how we incorporated it
into the CycleGAN architecture in Section III. In Section IV,
quantitative results on the benchmark dataset are shown.
Furthermore, we applied our method to a real-world 3D
microscopy dataset and present qualitative results. Finally,
we discuss our work in Section V and summarize our
findings together with an outlook for future work in
Section VI.

II. TILING STRATEGY BENCHMARK DATASET
For real-world images, errors occurring during patch-based
inference are manifold and vary depending on the images
in both domains. Therefore, visual assessment and error
quantification are often not possible. To enable both, the tiling
strategy benchmark dataset is introduced.
We used a coloring task for the tiling strategy benchmark

dataset. The task is exemplarily shown in Fig. 2a. Each
white circle in domain X is colored in red, blue, or green
in domain Y . Since no color information is present in X ,
transformation X → Y is a one-to-many mapping. Different
mappings are shown in Fig. 2b. There is no dependency
between different circles in domain Y . This aligns with many
image-to-image translation tasks. For example, the styles of
two cars are not dependent when transferring labels to photos
of street scenes.
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FIGURE 3. Stitching aware inference workflow. An image x too large to be processed by GANXY without tiling is predicted patch-wise. The image z is
created to provide the GAN with context of the previous prediction ŷx1 . This enables the GAN to predict the correct color (red) for the circle on the top
left of x2. Finally, ŷx1 and ŷz are merged to ŷ .

To create a more diverse dataset and assure that many
circles are at patch borders regardless of patch size, we scaled
the problem to images with size 2048 px× 2048 px and
placed 1000 circles with diameter 40 px on each image.
Afterwards, grayscale Gaussian noise is added to domain X ,
and channel-wise Gaussian noise is added to domain Y .
Images in domain X are afterwards converted to RGB
color space, to match the generator input dimensions. All
images are encoded with 8-bit for each color channel.
A total of 512 unpaired images are created for each
domain. Exemplary images for each domain are shown
in Fig. 2c.

The simple output domain allows easy visual analysis and
computational quantification of the errors introduced during
patch-based inference. A circle is predicted correctly, if it
consists exclusively of one of the colors red, green or blue.
An erroneous circle is present, when multiple colors are in
the circle. Because Gaussian noise is present in the images
and the images are encoded with 8-bit per color channel,
we cannot use simple thresholding to detect the presence
of a color. Instead, we check whether a connected area of
more than 30 px2 with color values above the threshold of
60 exists. This is done for each color channel individually.
We choose these values to ensure no areas are selected due
to the Gaussian noise while being able to identify small
mistakes.

III. METHOD
Our new method integrates information from previous
predictions into the training and inference process for
data with a one-to-many mapping. With this information,
GANs are able to infer accurate results for consecutive
patches during patch-based prediction. We call this method
Stitching Aware Training and Inference (SATI). In this
section, we present SATI together with the adaptations
we made. First, we introduce overlap sampling, domain
encoding, and loss ramping. Finally, the inference stitching
strategy optimized for our approach and the pixel overlap
weighting is introduced. An implementation to create the
benchmark dataset and conduct the experiments is avail-
able at https://github.com/MoritzBoe/patch_based_image_
translation.git.

A. STITCHING AWARE TRAINING AND INFERENCE
When training a standard unpaired image-to-image trans-
lation GAN on a one-to-many dataset for X → Y , the
GAN will reduce the problem to a one-to-one mapping.
After training, an image x will be matched to an image ŷ.
A different image ŷ can only be acquired when retraining with
modified network initialization or hyperparameters. Based on
the premise that the GAN can learn the mapping, the output
for a single image will always be a correct prediction from
the target domain. When an image is processed patch-wise
with a tiling strategy, each patch is still a correct prediction
from the target domain. However, errors arise when an object
is visible in two or more patches (see Fig. 2d).

We solve this problem by adding information about
adjacent patches when single patches are processed during
inference (see Fig. 3). Adding all adjacent patches to the
input vastly increases input size and is not feasible. Instead,
we process overlapping patches with areas already predicted
from domainY and new areas from domainX . In the example
in Fig. 3, two patches are needed to process the entire input
image x. Patches are created by tiling. The patch x1 is
processed by the GAN and ŷx1 is synthesized. Subsequently,
the bottom part of ŷx1 merges to the top of x2. A new image z
consisting of both domains is created. We call this new
domain Z . The same network that transforms images from
X to Y is used to transform Z to Y , and ŷz is created from z.
Adding the already predicted areas from ŷx1 to x2 enables the
GAN to continue the prediction of the circle on the bottom
left in ŷx1 , which is on the top left of x2, in the correct color
(red). Finally, ŷz and ŷx1 merge into ŷ.
In contrast to standard GAN inference, our inference

workflow adds images consisting of both domains X and Y
to the process. Therefore, standard GAN training has to be
adapted to handle the domain transfer Z → Y . This transfer
has two constraints: (i) Areas in Z which are already from Y
need to stay constant, and (ii) areas in Z which are from X
need to be transferred to Y with respect to the areas from Y
present in Z .
To meet both constraints, we added the procedure depicted

in Fig. 4 to the training. The GAN transfers an image
x to ŷx . Afterwards, a merged image z is created, where
border regions of x are replaced with parts of ŷx . The merged
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FIGURE 4. Training procedure added to the standard training. After
transferring an image x to ŷx , both are merged to z and transferred again
to ŷz . Afterwards, the adversarial loss and the stitching loss are
calculated. The red and blue line illustrates the information flow through
the GAN. The patch size used for x during training can be adapted to the
available VRAM.

image z is processed again by the GAN to create ŷz. A GAN
able to perform the translation of an image x to ŷx and an
image z to ŷz, can perform the inference workflow depicted
in Figure 3.

Two new loss functions Lstitch and LZYadv are introduced
to enable the transfer from z to ŷz and to meet the required
constraints. The first loss function Lstitch ensures, that the
pixels from ŷx present in z stay constant after transfer
to ŷz. We use the mean squared error as a loss function.
To enable the transfer of pixels from domain X present in z
to the image ŷz and therefore to domain Y , these areas are
excluded from Lstitch. Subsequently, the stitching loss Lstitch
is defined by:

Lstitch = Ez∼pdata(z)[||GANXY (z)(M )− z(M )||2], (1)

whereM corresponds to the indices of all pixels from ŷx in z
and GANXY (z) to ŷz.

The LZYadv is used to ensure the overall quality of ŷz.
A discriminator DY trained to differentiate between real
images from domain Y and synthetic images (ŷx and ŷz)
is needed. Most GANs like CycleGAN, UNIT or DRIT++
have a discriminator DY . Otherwise, DY can be added to the
architecture. LZYadv can be defined as follows:

LZYadv = Ez∼pdata(z)[||1− DY (GANXY (z))||2]. (2)

Errors like the ones shown in Fig. 2c will be detected by the
discriminator, and therefore, the generator is trained to omit
these errors.

In addition to Fig. 4, the pseudocode for a training step
using SATI is depicted in Alg. 1. A random image from
each domain is required for a training step. The steps to
calculate the standard CycleGAN losses for the generators
LCycleGAN
G and the discriminators LCycleGAN

D are not shown
for simplicity. The CycleGAN generator that transfers images
from X to Y is expressed by GenXY and the discriminator
trained to differ between real and generated images from Y
by DY . Finally, λstitch is a scaling factor to vary the influence
of Lstitch on the training of the generator.

Algorithm 1 Pseudocode for a training step using SATI inte-
grated into CycleGAN. The steps needed to calculate Lstitch
and LZYadv are shown. Calculations of standard CycleGAN
losses are not included for simplicity. Comments are marked
with #.
Require: x, y
ŷx ← GenXY (x)
# Generator training:
z,M ← merger(x, ŷx) #M ← indices of px from ŷx in z
ŷz← GenXY (z)
LZYadv ← ||1− DY (ŷz)||2
Lstitch← ||ŷz(M )− z(M )||2
LSATI← LZYadv + λstitchLstitch

optimizerGen(L
CycleGAN
G + LSATI)

# Discriminator training:
LSATID ← ||0− DY (ŷz)||2
optimizerD(LSATI

D + LCycleGAN
D )

Wemade several adaptations to the stitching aware training
and inference to increase performance. The adaptations are
shown in the following paragraphs.

B. OVERLAP SAMPLING
For 2D images, inference starts with a patch from domain
X (see Fig. 3). All remaining patches are from domain Z .
When processing an image row by row, patches in the first
row have only one adjacent patch already predicted, shown
in Fig. 5 z2. The first patch in each following row is depicted
in Fig. 5 z3. All patches not present in the first row or column
have two adjacent patches and are shown in Fig. 5 z1. Starting
with patches from the bottom right results in overlaps on
the bottom side and the right side and therefore an equally
complex training task. Starting in the middle results in more
overlap combinations and should be avoided if not needed.

Image statistics for the mean and variance differ severely
for the three cases. We use instance normalization without
running mean and variance for our experiments. This combi-
nation will result in erroneous predictions when evaluating
overlap combinations not used during training. Therefore,
all overlap combinations are added to the training workflow
to enable high-quality output for all three cases. While z1
is utilized the most during inference, high-quality outputs
for z2 and z3 are desired to omit propagation of errors from
the image borders to the center of the image. Therefore, the
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FIGURE 5. Different overlaps from domain Z created by the merger to
train the GAN on all overlaps needed during inference. For 2D images,
overlaps 2 (b) and 3 (c) are used for the first row and column of
patches during inference, while 1 (a) is used for all other patches.

merger (see Fig. 4) creates each of these cases with the same
probability.

C. DOMAIN ENCODING
Convolutional neural networks work locally, and the recep-
tive field is limited, especially in the early layers. When SATI
is used, the GAN has to learn which parts of an image z are
from domain X and which parts are from domain Y during
training. This can be a challenging task for datasets where
domain X and Y share significant local similarities. For our
tiling strategy benchmark dataset, large local similarities are
present in background areas, where no circles are placed.

Instead of adding an additional layer to the input patch
which encodes the position in the image, we encode the
origin domain directly into the image. We transfer the images
from domain X into the range [−1, 0] and the images from
domain Y into range [0, 1]. As a result, the GAN can identify
the domain according to the range of values and change or
keep pixel values accordingly.

D. LOSS RAMPING
Unpaired image-to-image transfer is a challenging task and it
is common for synthetic images to yield low quality for the
first epochs. It is not useful to force the GAN to keep these
low-quality parts of an image z in ŷz. Therefore, we increase
the scaling ofLstitch from zero to the final scaling factor λstitch
throughout the training.

E. STITCHING STRATEGY
As shown in Fig. 3, the final image consists of overlapping
patches. The overlapping area can be selected from one of the
patches. In Figure 3, the overlapping area from the bottom
patch is selected, while the overlapping area from the top
patch is dismissed. Preliminary tests showed, that using the
complete overlapping area from one of the patches introduces
errors for objects barely starting or ending in the adjacent
patch. We prevent these errors by using the middle of the
overlapping areas as the transition between patches in the
final image.

F. PIXEL OVERLAP WEIGHTING
With the stitching strategy, we cut patches in the middle of
the overlapping area to create the final image. By doing so,

FIGURE 6. Pixels for Lstitch are weighted with respect to two superpixels.
The pixel with the biggest distance to areas from domain X is weighted
with one (top left, white). The pixel with the biggest distance to areas
from domain Y is weighted with zero (bottom right, black). The two
superpixels are used for linear weighting with the euclidean distance for
all other pixels (middle image). Subsequently, pixels from domain X are
set to zero (right image).

we can allow the GAN to slightly change pixels at the border
between domain X and Y when transforming an image z
to ŷz. This can be beneficial if an object just starts at the
end of a patch and the majority of the object is in the next
patch. Having more information about an object in the next
patch will allow the GAN to change the complete object
accordingly. We enable this by weighting the pixels forLstitch
according to their location.

An example is shown in Fig. 6. The final image on the right
shows the utilized weight map. All pixels from domainX are
weighted with zero. The farther away a pixel in the area from
domain Y is from a pixel in domain X , the more the weight
is increased. The weights are scaled linear between zero and
one. Therefore, the relative size of the overlap is included in
the weighting. For bigger overlapping regions, the GAN is
given more freedom to change pixels near the transition from
both domains.

IV. EXPERIMENTS
We incorporated the stitching aware training into Cycle-
GAN,1 since CycleGAN and its variations are often used
for biomedical data synthesis and in material science [8],
[28], [29], [31], [32], [36]. For the generator architecture,
we used the ResNet-Generator with instance normalization,
96 initial generator feature maps, and nine ResNet blocks
in the feature space. For the discriminator architecture,
we used the PatchGAN-Discriminator with instance nor-
malization. We used the mean squared error (MSE) for
the cycle-consistency loss (Lcycle), the identity loss (Lidt ),
and the discriminator loss (Ldisc), which is also used to
optimize the generators (Ladv). For the stitching loss Lstitch,
we also used the MSE and apply our pixel overlap weighting
afterwards. We set the scaling for the stitching loss to
λstitch=10. The other scaling factors are set according to the
original implementation of CycleGAN [19] with λcycle=10,
λidt=5 and Ladv is not scaled. The overall loss is defined by:

L = Ladv + λcycleLcycle + λidtLidt
+ LZYadv + λstitchLstitch, (3)

1For our work, we adapted the original implementation from
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix (accessed:
24.07.2022).
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FIGURE 7. Our method (SATI) is benchmarked against Standard + no tiling, Standard + simple tiling and Standard + weighted
tiling. For benchmarking, we used models trained with standard CycleGAN (Standard + [tiling strategy]). Furthermore, the plot
shows an ablation study, where we deactivated different adaptations (SATI w/o [adaptation]). The error rate is displayed in percent
on a logarithmic scale. The black lines indicate the median for each method. Standard + no tiling is the performance achievable
when the whole image can be transferred to the GPU during inference. While this is possible for the tiling strategy benchmark
dataset, this is not possible for large-scale 2D and 3D data.

where the first row represents the standard CycleGAN
loss and the second row is the additional loss added
with SATI.

A. TILING STRATEGY BENCHMARK DATASET
In our experiments on the tiling strategy benchmark dataset,
we compared SATI to a simple tiling strategy (simple tiling),
to the advanced tiling strategy (weighted tiling) used in [35]
and [37] and to the results processing the whole image at
once (no tiling). Furthermore, we conducted an ablation
study to quantify the usage of the different adaptations
we made to the core of SATI. All networks are trained
on 256 px× 256 px crops and the initial inference crop
size for all tiling strategies is 512 px× 512 px. We chose
this size to enable benchmarking against the maximum
achievable performance, which is done by processing the
whole 2048 px× 2048 px image during inference at once (no
tiling). Evaluations are performed on 50 images not present
in the training data. Using 50 images results in 50.000 objects
being present in the test data. Training a network takes around
27 hours on an NVIDIAGeForce RTX 3090 GPU. Therefore,
we limited the number of runs for each method to ten.
The ablation study, together with the benchmark methods,
results in 60 trained networks and 67 days of training.
No additional networks have to be trained for the SATI w/o
stitching strategy results because the changes only affect
the inference. The same ten trained standard CycleGAN
networks have been used for all Standard + [tiling strategy]
results.

TABLE 1. Results of the tiling strategies and the ablation study on the
tiling strategy benchmark dataset. The best case, Standard + no tiling,
and our method (SATI) are highlighted. The values correspond to the error
in percent.

B. BENCHMARK METHOD COMPARISON
The results for the comparison to the benchmark methods are
shown in Fig. 7 and Tab. 1. The training of GANs is unstable
and sometimes they do not converge, or mode collapse can
occur [27]. To reduce the influence of these training runs,
we opted to evaluate our experiments regarding the median
instead of the mean. The benchmark methods Standard +
simple tiling, Standard + weighted tiling and Standard + no
tiling only differ in the procedure used for inference, while the
same trained networks are used. Processing complete images
at once using Standard + no tiling, reduces the median error
to 0.4%. This represents the best case scenario not applicable
for large-scale 2D and 3D images. Using Standard + simple
tiling results in a bad overall performance with a median
error of 6.6%. Using Standard + weighted tiling reduces the
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FIGURE 8. Exemplary errors present after application of different inference strategies compared to errors using our method SATI. Erroneous circles are
marked with an arrow. For (c) and (d) few or no tiling-related errors are present. Therefore, we show examples of the remaining errors. In contrast to
the tiling-related errors of (a) and (b), the errors in (c) and (d) can further be reduced with GANs better adapted to the task. The bottom left marked
circle in (b) shows an error present, because the GAN made a faulty translation from X to Y . This error is comparable to the errors in (c) and (d). The
top right marked circle in (b) shows an error, where a circle was predicted in blue in one tile and red in the other one, resulting in a purple circle. Due
to the overlap, this type of error can only occur in Standard + weighted tiling. For each method, a complete image synthesized from the same image
in domain X can be seen in the supplementary material.

median error to 3.5%. Using SATI results in a median error
of 0.5%. This is a reduction of 92% compared to Standard+
simple tiling and a reduction of 85% compared to Standard+
weighted tiling.

Exemplary images of errors occurring in the final images
are shown in Fig. 8. For Standard + simple tiling the patch
borders are clearly visible. An example circle present in four
patches is predicted in all three colors, dependent on the
patch. Using Standard + weighted tiling highly improves
the results, and due to the weighted overlap, it is not
possible anymore to identify individual patches. Instead of
a sharp transition between colors, colors are overlapped. The
overlapping results, e.g., in a purple circle being a mixture
of red and blue. The only errors left using Standard + no
tiling are errors not related to tiling. These errors are present
in all inference strategies. They could possibly be reduced
by longer training, more training data, adaptation of GAN
parameters, or usage of a different GAN architecture. Also,
for our method, errors look similar to the remaining errors in
Standard + no tiling.

1) ABLATION STUDY
For the ablation study, we deactivated the single adaptations
we made to our base method and evaluated the performance.
The results are shown in the bottom part of Fig. 7. Disabling
any of the adaptations reduces the performance.

The least impact on performance has SATI w/o loss
ramping, where the median error is only increased by
2.7%. However, one run collapsed, and the mapping was
not learned correctly, which is a common problem for
unpaired image-to-image translation. Because of the limited
sample size, we can only assume that disabling loss ramping
increases the chance of the GAN collapsing.

Disabling pixel overlap weighting increases the median
error by 34%. Pixel overlap weighting allows the GAN
to adapt already predicted pixels in border areas to new
parts of the images not predicted yet. For our tiling strategy

benchmark dataset, this enables the GAN to change the color
of objects which just started at the border between both
domains.

The median error increases by 84.5% when using SATI
w/o stitching strategy. Example images show that the GAN
changes the color of circles with a tiny part in the overlapping
area. This could be because a small part results in a small
weight compared to the overall loss. Color changes can result
in errors in the final image. Using the stitching strategy omits
this problem without needing a specialized loss.

Disabling domain encoding results in a decreased perfor-
mance. The median error increases by 59.0%. Therefore,
domain encoding eases the learning task even for a clear
difference between circles in domains X and Y and no
evaluation of background.

Finally, disabling overlap sampling and only learning to
transfer images where the top and left regions are from
domain Y results in the biggest drop in performance. Four
models collapsed, resulting in an increase of the median
error by 151.9%. An example image is shown in Fig. 9. The
Figure shows that the GAN cannot produce good results when
only the top or left region of a patch is from domain Y . The
input distribution differs a lot whether the top and left are
from domain Y or only the top or the left. The GAN fails
to achieve high-quality output in combination with instance
normalization layers. It is interesting to see that, nevertheless,
the GAN can recover for regions where the top and left
are from domain Y . Recovering from erroneous previous
predictions is a key requirement for patch-wise inference of
large-scale images. It can be concluded that a bad prediction
will not reduce the quality of future patches.

The contours of some circles are distorted on all images
in Fig. 8. This occurs due to the GAN making imperfect
translations between both domains. Therefore, the contours
of the circles can also be distorted when no tiling is applied
(Fig. 8 (c), bottom left). In contrast, the contour information
is available in both domains, and therefore, the GAN is able to
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FIGURE 9. SATI with disabled overlap sampling. The GAN only learned to
predict images with the top and left regions from domain Y . It cannot
produce good results for images with either top or left region from
domain Y .

infer contours throughout different patches. This can be seen
in Fig. 8 (a). To reduce contour distortions, a spatial constrain
can be added to CycleGAN [38].

C. REAL-WORLD DATASET
Additionally to the fully synthetic tiling strategy benchmark
dataset, we expanded SATI for 3D data and applied it to a
real-world dataset of KP-4 cells, where nuclei are stainedwith
Draq5. The goal of this evaluation is to prove the following
hypothesis: 1) SATI can be expanded to 3D, 2) SATI can
be applied to complex real-world data and the GAN is still
able to learn the mapping between both domains. The dataset
consists of four images recorded with a Leica SP8 confocal
microscope (Leica Microsystems, Wetzlar, Germany), has a
voxel size of 568 nm×568 nm×1000 nm and a resolution of
8-bit. The images are cropped to remove areas without cells.
The crops range from 380 px to 550 px in the XY-plane and
140 px to 190 px in the Z-direction. Afterwards, the crops
are downscaled by the factor of 2 in the XY-plane. Thus,
the Z-resolution is matched, and more objects are present
in a single volume during training, easing the learning task.
A crop of an XY-slice can be seen in Fig. 10 (a). Elaborate
methods to create 3D nuclei for the synthetic label images
exist [32], [37]. Both need a set of available annotations,
which are hard to acquire for 3D data. On the other hand,
it has been shown, that ellipsoids are a good estimate for 3D
cell nuclei [29]. Therefore, we created four synthetic label
images by randomly placing ellipsoids. Each image has a
size of 256 px× 256 px× 256 px. The background is set to
a value of 10 and the foreground is set to 130. Afterwards,
Gaussian noise with µ = 0 and σ = 3.33 is applied. Finally,
we rounded the result to integers and clipped the result to the
range [0, 255]. An exemplary crop of an XY-slice can be seen
in Fig. 10 (b).

We trained the networkwith SATI for a total of 1120 epochs
with a batch size of 12 and 256 random crops of size
64 px× 64 px× 64 px per epoch. We set the scaling for the
stitching loss to λstitch=20 and the overlap to 16 px. The
other scaling factors are the same as for the tiling strategy
benchmark dataset. Furthermore, we use the MSE for all loss

functions and start with a learning rate of 0.0002 for theAdam
optimizer. The training took 31 hours on an NVIDIA A100.

A crop of an XY slice of the final generated image can
be seen in Fig. 10 (e). For inference, we used patches
of size 64 px× 64 px× 64 px with an overlap of 16 px.
Therefore, 25 individual patches are shown in the crop. The
generated crop shows that the GAN can match patches to
their predecessors and no sharp transition inside a nucleus is
visible at patch borders. In contrast, the crops shown in (c, d)
were created with the same trained network, but SATIwas not
applied during inference. The borders of different patches are
clearly visible in (c). The visual appearance of Standard +
weighted tiling in (d) is comparable to (e). However, it must
be denoted that a pixel in (d) is the weighted sum of up to
eight individual predictions for 3D data. The results on the
real-world dataset show, that SATI can be expanded to 3D
and the GAN is still able to learn the mapping between both
domains.

Although, the GAN is trained on the real-world data, a
domain GAP regarding the brightness between the real-world
data and the generated crops (c), (d) and (e) still exists. This
is due to the spatial differences in the real-world images. The
brightness of confocal microscopy images is lower towards
the edges and for deep Z-slices. Standard GANs do not
have information about spatial location during training and
inference. If spatial consistency is needed, spatial information
can be added to training and inference while still using SATI
[32], [37].

V. DISCUSSION
Applying existing tiling strategies to the tiling strategy
benchmark dataset shows a need for improvement. Weighted
tiling improves the quality and errors are visually less
prominent. The transition between patches is not learned,
but improved in the post-processing. The advantage of this
is that the training process remains unchanged. Due to the
weighting, individual features are suppressed and erroneous
objects could be smoothed or result in a mixture of object
types. In contrast to this, SATI allows the GAN to learn what
a meaningful transition between adjacent patches looks like.
This allows our method to prevent errors that occur directly
in the prediction of adjacent patches and cannot be corrected
by the other tiling strategies.
SATI produces high-quality results on the tiling strategy

benchmark dataset comparable to the best case results
without tiling. The GAN learns the desired behavior with the
training and inference strategies introduced. The additional
complexity of the learning task is significantly reduced by our
domain encoding adaptation, which is shown by the decrease
in performance when domain encoding is disabled. We do
not think that the remaining increase in complexity of the
learning task is a problem for real-world datasets. Still, it must
be evaluated individually for different learning tasks.

For our 3D real-world dataset of KP-4 cells, SATI was
able to synthesize large-scale images without a visually
notable transition between patches. Also, Standard +
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FIGURE 10. Each image shows a XY-slice of the corresponding 3D volume cropped to 256 px × 256 px. A crop of the real-world image is shown in (a).
The images c-e are generated with the image shown in (b). The generation process for SATI is performed with 3D volumes of 64 px in each dimension
and an overlap of 16 px. The final image in (e) consists of 25 individual patches. The brightness of (c-e) is higher than (a). This is because the
brightness of the real-world images decreases at the borders of an XY-slice and for deep Z-slices. A standard CycleGAN cannot reproduce this
behavior. Several approaches, compatible with SATI, can be used to remove the decrease from real-world images or enable CycleGAN to reproduce
the behavior [32], [37], [39]. An example for Standard + simple tiling is shown in (c). The patch borders are clearly visible compared to (d) and (e).

weighted tiling yielded visually appealing images. Therefore,
Standard + weighted tiling can still be a valid option for
grayscale data, while weighting up to eight individual patches
for 3D data can potentially change the noise in the image.
SATI is designed to work for objects with a limited spatial

extent and no relations between distant objects. This is
the case for many biological, medical, or material science
datasets. However, there are datasets where SATI is of limited
use. For example, creating a high-quality image of a blue
car with red or green exterior mirrors can still result in
a red left mirror and a green right mirror. The spatial
distance of the mirrors is too large to be present in the
overlapping areas. Therefore, the GAN has no information
whether the first mirror was red or green when predicting the
second one.

The inference time of Standard+weighted tiling increases
by the factor of 4 for each dimension compared to Standard+
no tiling. This is due to the large overlap [35]. The overlap
is needed to guarantee a small change in image statistics
between patches. SATI does not need a big overlap because
it explicitly learns the transfer between patches. The overlap
is only related to the spatial extent of information needed
to predict the next patch correctly. In our experiments, the
inference time is increased by a factor of 1.25 in each
dimension compared to simple tiling. For 3D images, this
results in an increase by the factor of 64 for Standard +
weighted tiling and 1.95 for SATI compared to Standard +
simple tiling. Memory usage is the same, for all methods
during inference.

Using SATI adds additional predictions and loss functions
to the training procedure. This increases training time. Stan-
dard training finished after approximately 24h. A training run
for SATI took around 27:30h. Although this is an increase
by 15%, we did not evaluate the influence on the training
needed for convergence by adding SATI to the training
procedure, as it is still an open question how to determine
when to stop training GANs. Therefore, we advise users
incorporating SATI to use the same number of epochs they
used without SATI. This led to good results for all our
experiments.

The complexity of the training task for the GAN is
increased when SATI is used. This could potentially result
in the need for increased network size. However, that
was not the case for our experiments. Furthermore, using
SATI during training results in increased VRAM utiliza-
tion. The memory utilization on the benchmark dataset
increased to 22.8GB compared to 19.9GB when training
without SATI.
SATI results in high-quality images when used with the

CycleGAN architecture. We aimed to design SATI to be
integrable into different GAN architectures. This is necessary
to ease usage and enable researchers to stick to their preferred
architectures. A possible routine for working on new projects
could be as follows: (i) Adapt a standard GAN architecture
towards a new problem setting. (ii) Evaluate whether the
patch quality is sufficient. (iii) Incorporate SATI to bridge
the gap between patch-wise prediction and large-scale image
prediction. This will result in a minimal additional workload.

VI. CONCLUSION AND OUTLOOK
Deep learningmodels for image segmentation require labeled
training data. Labeling large-scale 2D and 3D data is a
challenging task, time-consuming, and the interobserver vari-
ability is high. Researchers try to reduce manual labeling by
using GANs performing unpaired image-to-image translation
to create synthetic training data. Using GANs trained for
unpaired image-to-image translation to predict large-scale 2D
and 3D images requires patch-wise inference due to VRAM
limitations. As of now, the final images are typically created
using a simple tiling strategy or weighted tiling.

Our experiments show that GANs suffer from tiling-related
errors for one-to-many transformation tasks. These errors
are most prominent when using Standard + simple tiling.
Advanced methods like Standard + weighted tiling cannot
completely remove these errors. With SATI, GANs produce
high-quality output when inference is performed patch-wise.
We achieved an error of 0.5% compared to 3.5% using
Standard + weighted tiling on the tiling strategy benchmark
dataset. Therefore, we reduced the error by 85% compared to
the state-of-the-art.
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The ablation study shows that the individual adaptations
made to SATI further increase the final output quality, and the
GAN can recover from single erroneous predictions through-
out the patch-wise inference. This allows the prediction of
arbitrarily large images.

The results using SATI on a real-world dataset prove that
our method can create high-quality synthetic 3D images with
complex content.
SATI can be incorporated into different GAN architectures

to create large-scale 2D and 3D images. We hope that
this will lead to better synthetic datasets for real-world
problems. While better synthetic data is always desirable, the
implications on downstream tasks using the synthesized data
e.g., for training of segmentation networks is up to future
research. It is highly dependent on the data, the learning task
and the downstreammethod used, whether large-scale 2D and
3D images are needed.

Possible applications of SATI range from 3D microscopy
to large-scale 2D data like whole slide images or aerial
hyperspectral images. In the future, we want to apply SATI
to a variety of real-world datasets and examine the influence
of different tiling strategies not only on foreground objects,
but also on image properties such as background noise.

The performance of SATI incorporated in different GAN
architectures, especially for multimodal architectures like
DRIT or MUNIT using content, and style or attribute feature
spaces, needs to be evaluated in future work. The main
limitation of SATI is the increased complexity of the learning
task which could lead to longer training or the need for larger
networks. Future research needs to focus on reducing this
increase. In the future, we will adapt SATI to handle 3D+time
data.
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