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ABSTRACT Massive Multiple-Input Multiple-Output (MMIMO) is one of the 5G key enablers. Though,
most of the works consider MMIMO under assumptions of ideal hardware. It has been shown that Power
Amplifiers (PAs) introduce nonlinear distortion while operating close to their saturation power. Moreover,
these distortions are in some cases beamformed toward the user, preventing antenna array gain from solving
this problem. One of the possible solutions is an adaptive adjustment of the PA operating point, measured by
Input Back off (IBO), to find a balance between wanted signal power and nonlinear distortion power. This
work proposes a Contextual Bandit-Based IBO Optimization (COBBIO) algorithm to find rate-maximizing
IBO for a given user’s radio conditions using learning through interaction. The proposed solution is tested in
a realistic analog beamforming MMIMO cell simulator with multiple functional blocks, e.g., precoder, user
scheduler, and utilizing an accurate 3D Ray-Tracing radio channel model. COBBIO provides throughput
gains both over fixed-IBO schemes and state-of-the-art analytical IBO adjustment algorithms. The highest
gains were observed for the so-called cell-edge users, where up to 83% improvement over the state-of-the-art
algorithm was observed for the proposed COBBIO algorithm.

INDEX TERMS Massive MIMO, 5G, machine learning, nonlinear distortion, input back-off (IBO).

I. INTRODUCTION

The Massive Multiple-Input Multiple-Output (MMIMO)
technology is a key enabler for achieving high user
throughputs in 5G, and presumably 6G networks [1].
However, the phenomena related to hardware impairments
in MMIMO still require attention. In [2] the influence of
nonlinear PA on the out-of-band radiation of an MMIMO
transmitter has been analyzed. Unlike previous studies,
e.g., [3], it shows that the nonlinear distortion can achieve
a similar array gain as the wanted signal. Therefore, this
problem needs proper countermeasures, e.g., nonlinearity-
minimizing precoders [4]. Moreover, the nonlinear distortion
problem statement and some of its solutions, common
for Orthogonal Frequency Division Multiplexing (OFDM)
systems, can be applied directly to MMIMO OFDM systems,
e.g., iterative, nonlinearity-aware reception [5], [6]. Another
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approach to decrease the impact of nonlinear distortion on
the OFDM system is to reduce the Peak-to-Average Power
Ratio (PAPR), e.g., with the use of the dedicated waveforms
designed using Machine Learning (ML) models [7]. The
drawback of this approach is that utilization of a new
waveform requires redesigning network protocols for both
Base Station (BS) and User Equipment (UE). However, this
problem can be addressed from the transceiver control per-
spective, by adjustment of the PA operation point, measured
by the Input-Back-Off (IBO) being the ratio between the input
saturation power of the PA and the average power of the input
signal. In state-of-the-art systems, the PA’s IBO is fixed to
make Error Vector Magnitude (EVM) or spectral emission
mask at the transmitter output compliant with the standard.
However, by changing IBO the relation between wanted
signal power, distortion power, and the thermal noise at the
receiver can be balanced, as such optimizing the network’s
performance. Most importantly, the adjustment of IBO does
not require changes in the 5G network protocols enabling
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its adoption in the existing networks. Moreover, while the
IBO modification can increase adjacent channel emission the
coexistence ability can be restored by proper filtering [5].

In [8] the Signal-To-Noise-and-Distortion Ratio (SNDR)
of an OFDM link is maximized by the PA IBO adjustment at
BS which utilizes OFDM. While this solution can be adapted
to some configurations of MMIMO systems, e.g., analog
beamforming, the authors assumed a simplified system
model, e.g., flat fading channel. This is not the case in real-
world scenarios, where the radio channel is rich in reflections,
and diffractions, making it frequency selective. Moreover, the
authors of [8] do not consider layered signal processing in
a real BS composed of, e.g., scheduling, and utilization of
a fixed set of Modulation and Coding Schemes (MCS), that
affect the throughput achievable by the network users.

While accurate mathematical modeling of a 5G MMIMO
system may be difficult, its analytical optimization may be
even harder. We propose to utilize ML, which is considered
one of the key enablers for intelligent 6G networks [1].
In detail, we propose a COntextual Bandit-Based amplifier
IBO Optimization (COBBIO) algorithm. Contextual bandit is
a sub-class of the Reinforcement Learning (RL) algorithms,
where the aim of the agent is to learn what actions
should be taken within the current context in order to
maximize reward [9], i.e., how to adjust the value of IBO
dynamically, with respect to the radio channel conditions,
so as to maximize user throughput. The proposed COBBIO
algorithm utilizes a Deep Q Network (DQN) model, which
unlike the state-of-the-art IBO optimization method [8] is
trained directly on the network data making it aware of
the frequency-selective radio channel, and multi-stage signal
processing used inside the BS [10]. The proposed COBBIO
algorithm is built on top of the contextual bandit framework
that defines internal algorithms for data capture, model
training, and providing a balance between exploitation and
exploration. The superiority of the proposed solution is
justified by an advanced, analog beamforming MMIMO BS
simulation using a 3D Ray-Tracing radio channel model.
One should notice that considered analog beamforming is
the worst-case scenario from the perspective of nonlinear
distortion, i.e., the same MMIMO array gain is applied to both
the wanted signal and distortion term [6].

The paper is organized as follows: the system model
is described in Sec. II. The proposed method of IBO
optimization, i.e., the COBBIO algorithm based on the
contextual bandit is described in Sec. III. The simulation
environment is described in I'V. The results are presented and
discussed in Sec. V. Conclusions are formulated in Sec. VI.

Il. SYSTEM MODEL

A downlink in a single MMIMO cell is considered utilizing
M transmit antennas and Ny, Resource Blocks (RBs) with
the block diagram depicted in Fig. 1. First, a user scheduler
decides on the allocation of the radio resources. Its decisions
are passed to the so-called 5G Distributed Unit (DU), which
is responsible for the physical layer processing of the user’s
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data, e.g., bit-symbol mapping and coding according to
given Modulation and Coding Schemes (MCSs), channel
estimation, and OFDM multiplexing. The output signal is
then fed into the Power Amplifier (PA). The PA nonlinear
effects are reflected by the soft limiter model where the output
OFDM sample $(n) at n-th time instance is related to the input
OFDM sample s(n) by [8]:

) = ’ s(n),

for |s(n)| < Asat’

for |s(n)| > Asat,

Ay, - €0 M

where Agy is the PA saturation voltage. The IBO (y2) is given

by:

2 _ Agat — Agat )
P E{ls(m)?}’

where Pj, denotes the average power of input signal s(7).

It has been shown in [8] that the PA output can be decomposed

as

v

5(n) = as(n) +d(n), 3)
where
a=1—e" ¢ gy “erfe(y) € (0; 1) 4)

is the wanted signal scaling factor and d(n) is nonlinear
distortion sample uncorrelated with signal s(r) of power

2
Asgt (1 e e—yz) . (5)
14
If for a given PA the mean power of s(n) is increased,
decreasing y, the higher wanted signal power at the receiver is
expected at the cost of increased 03. Next, the signal from the
PA output is equally divided between M antenna elements.
Here, an analog beamformer is considered which utilizes M
phase shifters to steer the beam in the direction of the user.
Although such a solution allows simultaneously serving only
one user, it has the advantage of low hardware and signal
processing complexity [11]. While the same precoding is
applied to both the wanted signal and distortion the same
radiation pattern will be obtained for both signals, resulting
in the worst-case scenario, i.e., the MMIMO array gain will
not increase the signal-to-distortion ratio [12], independently
from the wireless channel properties. The array-channel
gain G of signal 5(n) at the resource block / can be calculated

2 _
O'd—
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as G; = Z%:o hm.iwm, where hy,; is a complex channel
coefficient between the single antenna user, and m-th antenna
of the BS at RB [/, and w,, = \/Lﬁe/“’m is the beamforming

coefficient for m-th antenna. The highest Signal-to-Noise
Ratio (SNR) can be obtained using the considered PA for
transmitting a single carrier of amplitude Ay, with perfect
beamformer, i.e., ¢, = —arg{hy }, resulting in G; =
\/—11‘7 Z%:o |,1]. In this case the SNR equals GIZA2 /a,%,

sat
where the o> denotes the power of Additive White Gaussian
Noise (AWGN). However, as there are multiple frequencies /
to be used we average this metric over all RBs obtaining the
saturation SNR

A2 1 MM ?
SNRgy = —32¢ . |Bm,1] ) - (6)

This is an adaptation of SNRg,; metric used for Single Input
Single Output (SISO) wireless channel description in [8] to
an MMIMO system.

Authors of [8] assume the wireless channel is frequency
flat over the whole OFDM band resulting in a constant gain
in the whole band, i.e., VIG; = G. In such a system signal-to-
noise-plus-distortion ratio (SNDR) is given by:

2
SNDR = G;—P’”Q. (7
Go; +o;
While this assumption allowed to propose an analytical
formula for the optimal IBO, it is suboptimal in a frequency-
selective channel. Moreover, the practical 5G system has
some limitations, e.g., due to the MCS selection mechanism
at some point increasing SNDR would not provide further
user-throughput improvement. This is not considered in [8].

IIl. FRAMEWORK FOR CONTEXTUAL BANDIT-BASED

IBO OPTIMIZATION

In this work, we propose to extend the MMIMO BS with
the dedicated IBO optimization module, where the proposed
COBBIO algorithm is deployed. Our objective is to adjust
IBO (y?2) fora currently scheduled user so as to maximize its
throughput. The system model described in Sec. II consists of
many functional blocks like user scheduler, analog precoder,
MCS selection, and most importantly it is affected by the
nonlinear distortion, that is steered toward UE together with
a desired signal. Such a complex system is hard to be
modeled analytically and optimized with the use of standard
optimization methods. Instead, we propose to utilize ML
techniques. The considered problem can be classified as
the so-called contextual bandit problem [9], i.e., within the
context of a currently scheduled user our objective is to select
IBO, which will result in the highest throughput.

A. CONTEXTUAL BANDIT FRAMEWORK

The framework for the proposed COBBIO algorithm is
depicted in Fig. 2. It is similar to a RL framework in that it
involves an agent interacting with the environment by taking
proper actions based on the observed states and received
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FIGURE 2. Contextual bandit based IBO optimization.

rewards. The difference is that there is no dependency
between the consecutive states, i.e., the contextual bandit
agent may focus only on the maximization of the reward in the
current state. The components that constitute the contextual
bandit framework for the proposed COBBIO algorithm are
defined as follows:

« Environment is a downlink in the MMIMO cell, i.e.,
our system model described in Sec. II.

« State is defined as the SNRg, computed according to (6).
Due to the averaging over the RBs, this metric would
be relatively stable, and good for the characterization of
the user’s radio conditions. It’s important to note that
SNRy; is a continuous variable, making the RL state
space continuous as well.

« Action is defined as the IBO (y?), and is also
continuous. Both the wanted signal power and distortion
power change monotonically in the function of y2. Thus
the problem of continuous action space can be resolved
by discretization as proposed in [13]. As a result, action
is one of the fixed IBO levels ranging from )/I%lin t0 Y2
with the equal step of ysztep.

+ Reward is defined as the throughput that was achieved
by the currently scheduled UE. In Fig. 2 the throughput
is reported by the UE to visualize the contextual
bandit cycle. In practice, such a value is available at
the 5G DU.

o Agent is the proposed COBBIO algorithm. It recognizes
the state (SNRs,¢) and performs an action, i.e., selects the
value of IBO (y2). A detailed description of the agent’s
internal algorithms is provided in the following sections.

B. DEEP Q NETWORK

The aim of the agent is to select the IBO (y?) that provides
the highest user throughput, based on the SNRg. In other
words, the agent must approximate the so-called Q-function
to determine the expected reward associated with each action
(IBO value). For a problem that has a continuous state
space and discrete action space, a common approach is to
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utilize a dedicated artificial neural network, i.e., the so-called
DQN [14]. The DQN takes the state (SNRy,;) as an input and
outputs the Q-values. In the case of the contextual bandit,
where the agent is focused only on the maximization of
the reward in the current state, the Q-values are directly
the expected reward (user throughput) associated with each
action (y2). It has been proven that a 3-layer neural network
can approximate any discontinuous function [15]. Thus we
propose the DQN architecture to consist of an input layer
of size 1, 3 hidden dense layers of size K, followed by
the so-called rectified linear unit (ReLLU), which introduces
a following nonlinear function between input and output
g(x) = max{0, x}, and an output layer of size equal to the
number of actions. As can be seen in Fig. 2, the training
of DQN is incorporated at the end of the contextual bandit
cycle. After the agent receives the reward, the experience
sample that is defined as state, action, and reward tuple is
put into the so-called Replay Buffer, a cyclic buffer data
structure of size J. Then a batch of L experience samples
is taken from the Replay Buffer and used to perform a
single Stochastic Gradient Descent (SGD) step to update the
weights of DQN [16]. The L samples are selected from the
Replay Buffer according to the Combined Experience Replay
(CER) [17]. CER is a low-complexity algorithm that takes the
latest observed experience sample and randomly selects the
remaining L — 1 experience samples from the Replay Buffer.
The SGD optimizes the DQN weights so as to minimize the
Mean Absolute Error (MAE) between the received rewards,
and DQN output, i.e., estimated Q-values.

C. ACTION SELECTION

One of the challenges in solving the Contextual Bandit
problem is the balance between exploration and exploitation,
i.e., how much time an agent should spend on exploring
new actions, and when it should act greedy by selecting
the best-known action (the one associated with the highest
Q-value). In our previous work, we have shown that
Upper Confidence Bound (UCB) provides good exploration-
exploitation balance, and fast convergence [18]. However,
UCB is not proper for dealing with continuous state space as it
requires storing a number of visits in each state. We propose
to utilize a well-known e-greedy strategy [9], i.e., with the
probability of € agent selects the random action, and with the
probability of 1 — € selects the greedy (best-known) action,
associated with the highest Q-value. It is expected that the
agent would spend more time on exploration during the first
phases of training, and after getting enough experience would
turn into the exploitation of current knowledge. We propose to
start with an € = 1.0 and decay it according to the following

rule:
e
=, 8
Na) (8)

where €pjp is the minimal arbitrary chosen probability of
exploration, & is the decay step, and N, is the total number
of actions that the agent has already taken.

€ < max (emin, € —
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IV. SIMULATION ENVIRONMENT

To evaluate the proposed IBO optimization module based on
the deep contextual bandit framework, we have developed an
advanced simulator of the MMIMO 5G cell. In this section,
the utilized 5G network simulator is described together
with its parameters. Moreover, the utilized 3D Ray-Tracing
channel model is presented that has been used to generate
accurate and realistic radio channel coefficients.

We are considering a downlink in a single MMIMO cell,
which operates at the center frequency of 3.6 GHz, i.e., within
the 3GPP n78 band [19]. The available bandwidth is equal
to the 25 MHz and is divided between Ny, = 69 resource
blocks, including a guardband. The MMIMO BS is equipped
with a rectangular antenna array of M = 128 elements
(8 vertical x 16 horizontal). The saturation power of PA
A2, is equal to the 38 dBm, which corresponds to the 3GPP
Medium Range BS. The transmit power is divided equally
between the resource blocks. The power of thermal noise
is —174 dBm/Hz. The MMIMO cell utilizes the following
algorithms for the purpose of downlink transmission:

o User Scheduler: we utilize a Round Robin user
scheduler. This ensures the same sequence of scheduled
users during each simulation in order to provide a fair
comparison between the proposed IBO optimization
algorithm and baseline solutions.

o Precoder: we utilize the so-called Equal Gain Trans-
mission (EGT) precoder [20]. The EGT is a phase-only
precoder, proper for analog systems, and ensures that
equal power is being allocated per antenna.

o MCS Selection: we consider MCSs selection algorithm
that is based on the SNR estimates obtained at the
stage of user scheduling and precoding, i.e., one of
the 15 MCSs is assigned to the scheduled user based
on the Exponential Effective SNR (EES) mapping,
as defined in [21] and [22]. The minimal required EES
is —6.28 dB, while the highest, 15th MCS is assigned
when the estimated EES is above 20.13 dB.

While evaluating the algorithms oriented on the optimiza-
tion of the MMIMO network it is of high importance to utilize
realistic radio channel models. Measurement studies show
that the commonly used i.i.d. Rayleigh channel model signif-
icantly differs from the real propagation environment [23].
Thus, to obtain radio channel coefficients between the BS
and users, we utilize the realistic Wireless InSite™ 3D
Ray-Tracer. It is configured to consider 15 reflections and
1 diffraction between the MMIMO BS’s antennas and each
of the single-antenna users. We have defined the 3D urban
scenario that follows the well-established Madrid Grid test
environment [24]. The deployment of a MMIMO BS, and
example placement of users is depicted in Fig. 3. The
MMIMO BS is deployed 2.5 m above the rooftop of the
central building, i.e., at a height of 45 m, with a 5 deg down-
tilt. The users are uniformly distributed over the cell area to
create a heterogenous radio environment that includes both
Line of Sight (LOS) conditions in a park area (green square),
and Non-Line of Sight (NLOS) in the narrow streets between
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FIGURE 3. Deployment of the MMIMO BS (blue dot) and example

placement of the users (red dots). Values on grey rectangles, e.g., 52.5 m,
denote building heights.

TABLE 1. Simulation parameters.

Parameter Value
Center Frequency 3.6 GHz
Bandwidth 25 MHz
Number of Resource Blocks Ny, 69
Number of Antennas M 128 (8 vertical, 16 horizontal)
Saturation Power Agat 38 dBm
Thermal noise —174 dBm/Hz
Analog precoder Equal Gain Transmission [20]
User Scheduler Round Robin

Urban model
Radio channel model

Madrid Grid [24]
Wireless InSite™ Ray-Tracer

the relatively high buildings of tens of meters. The simulation
parameters are summarized in Table 1.

We compare the proposed COBBIO algorithm against the
baseline algorithm (“‘Reference’”), that maximizes the SNDR
given by (7). The baseline algorithm approximates optimal
IBO )92 based on the SNRg, according to the following
equation [8]:

392 —5.975. 60.00943~SNRM —12.79. 670.0775~SNR5;,([dB]'

©))

Besides the baseline algorithm, we also consider two schemes
of constant IBO (“Fixed IBO”): y> = 0 dB, and y> = 6 dB
respectively.

V. RESULTS

The simulation environment described in the previous section
is utilized to evaluate the proposed COBBIO algorithm in
terms of computer simulations. Regarding the RL terminol-
ogy that is also valid for the contextual bandit, the simulation
experiments consist of episodes. Each episode is a sequence
of steps, i.e., a sequence of contexts (states) that the agent
recognizes to take proper action and observe the reward.
In this simulation, the experiment step is a single time slot.
Within the time slot, IBO is adjusted based on the SNRq,,
and user throughput is observed as a reward. However, firstly,
COBBIO’s hyperparameters must be obtained. Some of them
can be selected based on state-of-the-art knowledge about the
RL and 5G MMIMO networks, while others must be obtained
through simulation studies. The action space (discretized
values of IBO) ranges from yl’%lin = 0dB, to Vnzlin = 9dB
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FIGURE 4. 90th, 50th, and 10th percentiles of user throughput
distribution in the function of training epoch, for number of neurons per
layer K = 128, and varying experience samples L.

with a step of ys%ep = 1 dB. The motivation for such a
range is that low values of IBO, e.g., Vn21in below 0 dB
produce large nonlinear distortion that causes significant QoS
degradation. On the other hand high values of IBO yrflin, e.g.,
above 9 dB can result in the poor energy efficiency of a PA,
without additional QoS improvement [25]. The studies on
CER have shown that the size of a Replay Buffer equal to
J = 1000 is a good choice [17]. Our target is to train the agent
to select greedy actions that will maximize the throughput of
a currently scheduled user, thus the minimal probability of
exploration is €pip = 0. While implementing this solution in
areal 5G network, one may consider setting the probability of
exploration €, to a non-zero value, to deal with changes in
a radio environment. The training step takes only a one-time
slot (0.5 ms for a 5G OFDM network under the assumption
of 30 kHz subcarrier spacing). The convergence time is not
crucial in this case, i.e., collecting 1000 data samples takes
only 5 seconds. Thus we have set a relatively large epsilon
decay step of 6. = 1000.

To adjust the number of experience samples L to be taken
from Replay Buffer for a single SGD step, we have set a large
number of neurons in hidden layers: K = 128 and tested
different values of L for 200 pedestrian users randomly placed
over the cell area, and moving with the speed of 1.5 m/s.
We have conducted 225 episodes of online training, within
every episode each user was scheduled once so there were
200 steps taken by the agent . The 90th, 50th, and 10th
percentiles of user throughput distribution in the function of
training episode, for K = 128 neurons per layer, and varying
number of experience samples L are depicted in Fig. 4. The
first observation is that users with the best radio conditions
(90th percentile) reach the maximum throughput all the time.
The throughput achieved by 50th and 10th percentile users
stabilize after about 225 episodes. It can be seen that for
L > 4 performance of COBBIO starts to degrade for the 50th
and 10th percentile of users. One of the hypothesis for such
a behavior is that during SGD the loss and related gradient
are computed over a bigger set of samples. This reduces the
noise, and increases the stability of learning, but for arbitrary
non-convex functions, SGD with large batch size can stuck
in local optimum [26]. In such a case some instability related

127039



IEEE Access

M. Hoffmann, P. Kryszkiewicz: Contextual Bandit-Based Amplifier IBO Optimization in Massive MIMO Network

— K=128 -90th
-+ K=128 -50th
——K=128 -10th
— K=16 -90th

User Throughput [Mbps]

0 50 100 150 200
Episode

FIGURE 5. 90th, 50th, and 10th percentiles of user throughput
distribution in the function of training episode, for experience samples
L =2, and a varying number of neurons per layer K.

to small batch size can potentially help to search for global
optimum. Based on the observation of the results we have
selected the L = 2, because of the best convergence for 10th
percentile users, i.e., the most challenging group of users that
suffer the worst radio conditions.

After tuning the number of experience samples to
L = 2 our target is to tune the number of neurons in
the hidden layers K. For this purpose, we have utilized the
same setup of online training as for adjusting the number of
experience samples L. The results in terms of 90th, 50th, and
10th percentiles of user throughput distribution are depicted
in Fig. 5. It can be seen that for the number of neurons in
hidden layer K equal to 2 and 4 the performance of COBBIO
is significantly degraded. However, the number of neurons
per hidden layer can be lowered to K = 8 without decreasing
the COBBIO’s performance in terms of user throughput.
On the other hand, a lower number of DQN parameters
reduces the prediction time and required memory. The final
architecture of the DQN can be summarized as follows: input
layer of size 1, followed by the three hidden layers of size
K = 8, and an output layer of size 9, i.e., the number of
actions that the agent can take. This DQN has a total number
of 241 trainable parameters.

After tuning the hyperparameters we have compared the
COBBIO algorithm against the two fixed IBO schemes of
)/2 = 0 dB, and y2 = 6 dB, and reference algorithm based
on [8]. The scenario was the same as for the adjustment of L
and K. The results in terms of 90th, 50th, and 10th percentiles
of user throughput distribution are depicted in Fig. 6. It can be
seen that the 90th percentile is deteriorated by 51% for fixed
IBO of y? = 0 dB, compared to the remaining algorithms.
This is caused by the high nonlinear distortion. In the case
of the 50th percentile the proposed COBBIO algorithm has
the best performance, i.e., the reference algorithm, fixed
IBO of y> = 6 dB fixed IBO of y> = 0 dB are
characterized by the median user throughput decreased by
8%, 36%, and 86% respectively, in relation to the COBBIO
algorithm. A similar tendency is observed for the 10th
percentile user throughput, where compared to COBBIO the
45% degradation is observed for the reference algorithm and
fixed IBO of y? = 6 dB, and 93% for > = 0 dB. This shows
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the reference algorithm, and the proposed COBBIO algorithm.

the benefits of learning through interaction that allows one to
select proper IBO after approximately 200 training episodes.

The comparison of IBO selected by the reference algo-
rithm [8] and the proposed COBBIO algorithm in a function
of SNRg,; is presented in Fig. 7. We can see that the theoretical
IBO values computed according to [8] do not align with
the actions taken by the COBBIO. Most importantly for the
low values of SNRyy (e.g., below 20 dB), the theoretical
optimum is up to several dBs lower than the IBO values that
are selected by the COBBIO. Within the next few paragraphs,
we will show that this is the result of the simplified system
model assumed by the authors of [8], i.e., mostly by the flat
radio channel. On the other hand for SNRg,; > 40 dB the
theoretical optimal IBO values are much bigger than the ones
selected by the COBBIO. It is because the practical system
has an upper bound of the reasonable SNDR to be achieved
related to the maximal possible MCS. In such a case it is not
necessary to increase further IBO in order to reduce nonlinear
distortion power.

For further investigations we compared the previously
trained COBBIO (K = 8, L = 2) against the reference
algorithm, and fixed IBO schemes under the new set of states
(contexts, related to a newly generated set of UEs), indepen-
dent from those used previously to tune the hyperparameters.
From Fig. 7 it can be seen that the biggest difference between
the value of IBO indicated by the reference algorithm,
and the proposed COBBIO algorithm was observed for the
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relatively low values of SNRgyy < 40. These values of
IBO correspond mainly to the 10th and 50th percentile of
user throughput distribution depicted in Fig. 6, for which
the highest benefits of utilizing COBBIO were observed.
To focus on these challenging cases, 1620 pedestrian users
are randomly placed over the cell area such that their path
loss is at least 100 dB. Later on they are moving with
the speed of 1.5 m/s. In such a scenario the proposed
prediction of IBO is the most beneficial, i.e., its results
are significantly different than the results of the reference
algorithm. Following the Round Robin scheduling strategy,
each user receives in total 6 time slots of 0.5 ms duration, with
the first allocation being neglected while obtaining statistics,
i.e., average user rate, Capacity Effective SINR Mapping
(CESM) [27], and wideband SNDR calculated according to
the (7). The statistics are aggregated over the 81 simulation
runs. As a result, there are 1620 values of each metric taken
for statistical analysis.

In Fig. 8 there is a comparison between the Cumulative
Distribution Function (CDF) of the wideband SNDR distri-
bution among users for all tested IBO adjustment solutions.
It can be seen that the reference algorithm provides the best
wideband SNDR. Such a result could be expected because
wideband SNDR is exactly what has been optimized by the
authors of [8]. However, the real radio environment is not
characterized by a flat wideband channel. One of the statistics
that includes channel frequency-selectivity is CESM which
relies on per-RB Shannon capacity. The CDFs of CESM are
shown in Fig. 9. The fixed IBO scheme of y> = 0 dB is
characterized by the worst CESM resulting from too high
distortion power. The second fixed IBO scheme of y*> = 6 dB
outperforms the previous one, the reference algorithm, and
sometimes even slightly the proposed COBBIO algorithm
(recall the COBBIO maximizes rate, not CESM). Recalling
Fig. 7 the IBO of 6 dB is good for users that suffer poor
radio conditions. However, this does not allow users under
better channel conditions to achieve CESM higher than
around 27 dB, limiting potentially their rate. On the other
hand, the reference algorithm, due to the assumption of a
flat radio channel, obtains in many cases CESM lower than
the other solutions. This shows that the wideband SNDR
optimization is not optimal in a frequency-selective channel.
Finally, the COBBIO algorithm is designed to maximize each
user rate that is reflected by relatively high CESM values.
The main advantage of this approach is that it is trained
through interaction on real-network data considering, e.g.,
a limited set of MCS and frequency-selective radio channels.
It is visible that the reference solution obtains higher CESM
for around 10% of best channel users. This is caused by
the limited MCS set, i.e., the COBBIO algorithm achieves
for these users maximal MCS and does not need to increase
CESM any further.

Finally, in Fig. 10 the users’ throughput is shown. All
considered schemes are compared in terms of the 10th
percentile (cell-edge users throughput), median, and 90th
percentile of user throughput distribution. The COBBIO
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FIGURE 8. CDF of the wideband SNDR calculated using (7) for the fixed
IBO schemes (y2 = 0 dB, and y2 = 6 dB), reference algorithm, and the
proposed COBBIO algorithm.
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FIGURE 9. CDF of CESM obtained for the fixed IBO schemes (y2 = 0 dB,
and y2 = 6 dB), reference algorithm, and the proposed COBBIO algorithm.
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FIGURE 10. Statistics of user-rates: 10th percentile, median, and 90th
percentile, computed for the reference algorithm, COBBIO algorithm, and
fixed IBO schemes, of y2 = 0 dB, and y2 = 6 dB.

algorithm provides the best user throughputs for all consid-
ered percentiles. While the reference solution is the closest in
terms of performance for the median and 90th percentile, it is
significantly outperformed by the 10th percentile achieving
only 17% of the COBBIO’s throughput. For the worst-case
users (10th percentile) the fixed IBO of y2 = 6 dB achieves
the user’s rate closest to the ML-based solution. Still, the
achievable throughput is lower by around 32%.

VI. CONCLUSION

The management of contemporary 5G and future 6G
networks should take into account the nonlinear distortion
generated by the PAs. We have shown utilizing an accurate
3D Ray-tracing radio channel model that adjustment of
PA IBO based on the proposed COBBIO algorithm can
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significantly improve throughput in an MMIMO 5G network.
This is not achievable with state-of-the-art analytical IBO
adjustment solutions nor with the fixed IBO solutions, that
are contemporarily used to guarantee a given EVM at the
transmitter output.
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