
Received 22 October 2023, accepted 6 November 2023, date of publication 9 November 2023,
date of current version 17 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3331739

Detection of Android Malware Using Machine
Learning and Siamese Shot Learning
Technique for Security
FAHDAH A. ALMARSHAD 1, MOHAMMED ZAKARIAH 2, (Member, IEEE),
GHADA ABDALAZIZ GASHGARI3, EMAN ABDULLAH ALDAKHEEL 4, AND
ABDULLAH I. A. ALZAHRANI 5
1Department of Information Systems, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
2Department of Computer Science, College of Computer and Information Science, King Saud University, Riyadh 11633, Saudi Arabia
3Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah, Jeddah 23445, Saudi Arabia
4Department of Computer Science, College of Computer and Information Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
5Department of Computer Science, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Shaqra 11961, Saudi Arabia

Corresponding author: Eman Abdullah Aldakheel (eaaldakheel@pnu.edu.sa)

This work was supported by Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia, through Researchers Supporting, under
Project PNURSP2023R409.

ABSTRACT Android malware security tools that can swiftly identify and categorize various malware
classes to create rapid response strategies have been trendy in recent years. Although many application
fields have demonstrated the usefulness of implementing Machine Learning and deep learning methods to
provide automation and self-learning services, the scarcity of data for malware samples has been cited as a
hurdle in creating efficient deep learning-based solutions. In this paper, a one-shot learning-based Siamese
neural network is proposed to overcome this issue, as it can both identify malware assaults and categorize
malware into multiple categories. The Drebin dataset, which is divided into benign and harmful components,
is used in our suggested methodology. The efficiency of the suggested strategy is evaluated through a dataset
made up of 9476 goodware applications and 5560 Android malware apps. The five critical phases of its
implementation are pre-processing, data partitioning, model architecture, training, and assessment. In both
the training and testing phases, Siamese networks are trained to rank sample similarity, and the accuracy is
determined using N-way one-shot tasks. According to the experiment’s findings, our Siamese Shot model
fared better than the other standard approaches, obtaining an accuracy of 98.9%. Additionally, the most
well-liked platforms are Keras and TensorFlow.

INDEX TERMS Android malware, security tools, machine learning, deep learning, one-shot learning,
Siamese neural network, Drebin dataset, efficiency, N-way one-shot tasks, TensorFlow.

I. INTRODUCTION
The ‘easy to use’ feature and the effectiveness of various
apps, as well as the ongoing improvements in smart devices’
hardware and software, are driving a rapid increase in smart-
phone usage and related applications in this technological era
[1]. Studies conducted in this field indicate that by 2024,
4.5 billion people are anticipated to own smartphones [2].
Among these smartphone devices, the most popular smart-
phone operating system is Android [3]. A 75.5% market

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Masucci .

share is held by Android [4]. As a result of its widespread
adoption, Android is more vulnerable to malware and viruses
which makes it an appealing target for attackers. However,
studies indicate that these threats and assaults can be tackled
using Machine learning (ML) as ML algorithms can create a
classifier from a set of training instances [5], [6]. Thus, utiliz-
ing examples while developing malware detectors avoids the
need to specify identifiers explicitly.

Moreover, Machine learning-based malware detection
studies are becoming increasingly common to achieve a high
degree of detection accuracy [7], [8]. ML algorithms, which
can make decisions after learning from data templates, have

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 127697

https://orcid.org/0009-0004-6047-7844
https://orcid.org/0000-0002-2488-2605
https://orcid.org/0000-0002-4035-7763
https://orcid.org/0000-0002-4718-7568
https://orcid.org/0000-0002-1570-8576


F. A. Almarshad et al.: Detection of Android Malware

FIGURE 1. Overview of the proposed model for Android Malware detection using the Siamese one-shot learning technique.

been used in past studies. Also, ML aims to keep humans
out of computer systems as much as possible [9]. Decisions
are predicted by machine learning using experience or prior
data as well as computer learning approaches. Supervised and
unsupervised learning approaches may examine the charac-
teristics andmonitor themodel [10]. The training is continued
until the model masters accurately predict every sample [11].
Furthermore, the development of malware detection systems
has made use of a variety of ML methods, including support
vector machines (SVM) [12], K-nearest neighbor (KNN)
[13], Bayesian estimation [9], genetic algorithms [14], etc.
These ML algorithms are trained to discriminate between
malicious and benign samples using unsupervised learning
techniques that supply the inputs without goals [15]. How-
ever, the supervised and unsupervised learning approaches
were combined in several experiments to detect anymalicious
activity.

Additionally, malware detection is a crucial information
security area closely related to businesses’ economic, legal,
and reputational problems. It has presented a severe threat
to individuals and businesses due to the rapid multiplication
of malware varieties. A viable strategy to address several
issues with malware detection is, to use deep learning as a
tool for creating and improving detection algorithms [16].
Three complex and symmetric techniques are provided to
influence performance: the dense layer model, the LSTM

model, and correlation-based feature selection. The malware
variants updated from earlier versions will avoid detection
through various signatures by utilizing highly specialized
replication techniques [17]. But when it comes to deep learn-
ing, there are a lot of challenging factors to be kept in
mind while considering detection algorithms. In addition,
Machine learning-based detection techniques have received
much attention recently to match detection with the rate of
malware growth. The strong performance of learning out-
comes utilizing either supervised machine learning models
or deep learning models has been demonstrated in several
articles [18]. However, they need many training samples and
a considerable learning period in the training process. Given
the early introduction of new malware types, it is impossible
to gather enough samples. Training on an extensive range
of malware samples is essential for developing sustainable
learning models [19]. If any newmalware surfaces, the model
must be retrained on the full sizable dataset.

Another type that trains models with limited data is known
as ‘One-shot learning’ and holds the ability to effectively
prevent overfitting. Humans can learn things from a limited
number of instances, which is how this notion is created.
If trained on a small number of examples, the traditional
machine-learning approach will incur considerable overfit-
ting [20]. Our method, however, used Siamese networks,
which use twin convolutional neural networks to form the

127698 VOLUME 11, 2023



F. A. Almarshad et al.: Detection of Android Malware

architecture and share the same parameters. According to
empirical data, utilizing the Drebin Dataset, Siamese convo-
lutional networks achieved a test accuracy of 92.0% when
used for one-shot image recognition [21]. In our approach,
the malware samples underwent pre-processing procedures
to become picture representations before being fed into
the Siamese convolutional neural networks. The output sig-
moid layer’s similarity score represents the malware family
determination, which is the fundamental idea behind using
Siamese networks to identify Android malware.

In this paper, a one-shot learning-based Siamese neural
network is proposed to overcome this issue, as it can both
identify malware assaults and categorize malware into multi-
ple categories. Siamese One-Shot Learning technique is used
to propose a model for Android malware detection as shown
in the Fig. 1.

The following are the contributions made by our suggested
model:

- The study develops a robust and dynamic model by
combining Siamese one-shot learning with the outcomes
of machine learning-based algorithms. In particular, this
combination enables the model to deal with a lack of
training samples during the early stages of fresh mal-
ware development and yet achieve good classification
performance.

- Limited training samples are overcome via one-shot
learning utilizing Siamese networks. When it comes to
malware detection, traditional machine-learning tech-
niques may need a significant amount of labeled data
for training, which might be challenging to collect. The
suggested method effectively manages the lack of data
by training on a single sample from each class and
learning to generalize from it.

- To find patterns and connections among the features in
the Drebin Dataset, the study uses visualization analysis.
The researchers can identify the most crucial factors that
affect application categorization by visually represent-
ing the relationships between distinct attributes.

- The proposed model performs better than comparable
research and has a resilient and dynamic structure. The
model outperforms other conventional methods for mal-
ware identification by achieving an accuracy of 98.9%
by utilizing Siamese one-shot learning and visualization
techniques.

The research under study is divided into 7 sections: the
1 section is the introduction part that has already been dis-
cussed. The 2 section is the literature review part which
presents a quick synopsis of current research on the issue.
The dataset, the suggested model and its characteristics, ML-
based techniques, and performance measures to be used in
the experimental evaluation are all discussed in Sections III
and IV. Whereas Sections V and VI explain the experiments’
results and discussion. A summary and recommendations for
more research on the subject are included in the last section,
which is 7.

II. LITERATURE REVIEW
The designed software used for malevolent intent is called
malware. Malware producers are concentrating on this area
due to the extensive usage of mobile devices and the rising
user base [5], [7], [9]. This software may be used to achieve
several objectives. Some of these malicious goals include:
interfering with the regular operation of the Android oper-
ating system it is working on, obtaining the user’s personal
and sensitive information illegally/without the user’s consent,
seizing the user’s device, obtaining information for ransom,
or displaying unwanted advertising content to the user. A sig-
nificant amount of research has been done in the area of
malware detection to prevent malware makers from reaching
these aims [9]. Static, dynamic, and hybrid analyses are the
three primary types of studies done in this setting.

The static analysis methods look at an application’s source
code without executing it [10], [11] to find malicious activity
in the suspect program. Both permission-based [11] and these
systems primarily use signature-based [12] mechanisms. The
signature-based techniques help in detecting malware by
comparing the application code to known harmful code
fragments which are stored in a database. However, with
permission-based techniques, the application’s requests for
permission are compared to the kinds of permissions that
malicious programs typically make. While static analysis
techniques are quicker than dynamic analysis techniques
[16], they are less effective at revealing information about
an application’s behavior. At the same time, they are in use
because they need to identify the application code that will
dynamically load. In contrast, it is being used [17].

Another method is the ‘One-shot learning’ technique
which uses past information and a small sample of images
to get a general idea of the database. This technique has
been widely used in some applications, including the clas-
sification and identification of images, voice recognition,
Siamese neural networks, and prototype networks. Through
the display of harmful code, Sharma et al.’s static approach
of assembly language operation code analysis was suggested
[20]. A Siamese neural network-based end-to-end framework
was recently created in this study [21] to identify malware.
Fuzzy class memberships were used in this research [22] to
try the modification of raw data, which was subsequently
put into the Siamese neural network to prevent intrusion
assault. Even though multiple feature extraction techniques
were employed in this study to obtain competitive results,
only semantic feature embedding can be learned. Under-
standing how these were employed for feature embedding
was challenging because the semantic content of the raw
binary files they utilized, needed to be clearly described.
A model learned for a general characteristic from uncommon
categories was unreliable for capturing the typical features
of malicious code. A high-level malware class feature with a
meta-learner was presented in this study [23], which assessed
the effectiveness of their concept in identifying malware with
distinctive properties. The issue with accurately capturing

VOLUME 11, 2023 127699



F. A. Almarshad et al.: Detection of Android Malware

TABLE 1. Review of the literature including the dataset used, technique used, and the findings.

the distance across intra-class variation persists because this
group of works must consider the distance between the pos-
itive and negative pairings. These few-shot learning models
frequently incorporate contrastive loss, which does not help
reduce intraclass variation. It is true of much state-of-the-art
that these models are now suggesting.

To detect Android malware, the study [24] created a
brand-new fuzzy integral-based multi-classifier ensemble
model. They used the XGBoost, RF, DT, AdaBoost, and

Light-GBM methods to merge the classifiers’ outputs across
the Choquet fuzzy integral. The experimental outcomes
revealed that their proposed approach based on the fuzzy
integral technique achieved a higher performance, with an
accuracy value of 96.56% compared to those of the classifiers
used individually. The dataset contained 6100 malicious and
9500 benevolent applications, containing 9500 applications.
This study [25] used the risk-based fuzzy analytical hierarchy
process technique to create multi-criteria-based decision and

127700 VOLUME 11, 2023



F. A. Almarshad et al.: Detection of Android Malware

mobile virus detection systems. This strategy’s objective was
to increase user awareness of high-risk permissions by doing
a static analysis of the permission-based features. The Drebin
and AndroZoo dataset assessments have an accuracy rating
of 92.95%.

SecureDroid is a solution that was [28] created to improve
the security of machine learning-based Android malware
detection. They offered a unique feature selection technique
to make the classifier more challenging to manipulate, and
they suggested an ensemble learning strategy by combin-
ing the separate classifiers. The research [29] developed a
hybrid Android malware detection model combining net-
work traffic characteristics and supervised learning (KNN
and K-medoids) techniques. Using the KNN, [30] malware
documents were categorized by proposing modeling malware
as a language and evaluating the viability of extracting seman-
tics from examples of that language.

In [31], the authors proposed an efficient malware detec-
tion approach that utilizes feature weighting based on Harris
Hawks optimization. The study focuses on enhancing the
accuracy of malware detection through optimization tech-
niques. The authors of [32] presented MAPAS, a practical
deep learning-based Android malware detection system. The
research emphasizes the practicality and effectiveness of
deep learning models in identifying malware instances. In
another study [33], authors introduced a two-stage deep learn-
ing framework for image-based Android malware detection
and variant classification. The study focuses on enhancing
classification accuracy by considering variants of Android
malware. The authors of [34] proposed a deep learning-based
Android malware detection system using static analysis.
The research investigates the application of deep learning
models to identify malware based on static code analysis.
The authors of [35] developed DroidRL, a feature selection
approach for Android malware detection using reinforce-
ment learning. The study explores the use of reinforce-
ment learning to optimize feature selection in the detection
process. The authors of [36] focused on Android mal-
ware detection using network traffic and sequential deep
learning models. The research highlights the significance
of analyzing network traffic patterns to identify malicious
activities.

A research on the identification of Android malware in
the context of the Internet of Things was presented by Bab-
bar et al. [42]. They contributed to the continuing study
of malware identification in IoT environments by using
the K-Nearest Neighbor Algorithm for their investigation.
A study on Android malware detection using machine learn-
ing classifiers was done by Raymond et al. [43]. Their study
included an Enhanced PCA Algorithm, illuminating creative
strategies to address the escalating difficulties in malware
identification. The analysis and classification of malware
for Android that is obfuscated was covered in depth by
Aurangzeb and Aleem [44]. They used ensemble voting and

deep learning approaches to provide insights into the chang-
ing malware obfuscation and detection landscape.

‘‘ImageDroid,’’ a ground-breaking deep learning program
for effective Android malware detection, was introduced by
Liu et al. [46]. Their efforts provide a substantial improve-
ment in mobile security by automating the detection of harm-
ful elements. For the objective of increasing cybersecurity
and Android virus detection, Albakri et al. [47] investigated
the combination of metaheuristics with deep learning mod-
els. In the context of malware categorization, their study
provides insightful information about the possible synergy
between optimization approaches and deep learning. In a
study they conducted, Alkahtani and Aldhyani [27] investi-
gated the use of artificial intelligence algorithms for malware
detection in mobile devices running the Android operating
system. They have made a sizable contribution to the ongoing
work in mobile security with their work. Yumlembam et al.’s
[48] research on IoT-based Android malware detection using
adversarial defense mechanisms and graph neural networks.
Their research is in line with the changing difficulties in
mobile malware detection and Internet of Things security.

The list of previous literature in the field of android mal-
ware, including the dataset, technique, and findings, is shown
in Table 1.
The literature evaluation identifies various research gaps in

the area of Android malware detection. Traditional methods
for static analysis, such as signature-based and permission-
based approaches, are limited in their ability to show an
application’s behavior and have difficulty effectively cap-
turing intra-class differences, which has an impact on the
effectiveness of malware identification. Another key dif-
ficulty is managing limited data because typical machine
learning models need a lot of labeled samples to train, which
makes it challenging to collect enough data for uncommon
or novel malware kinds. Addressing intra-class variation,
necessary for accuratemalware classification, remains a diffi-
culty, even with the adoption of few-shot learning models like
Siamese networks. Furthermore, even though some research
has achieved excellent detection accuracy, it is still impor-
tant to improve generalization across various datasets and
unknown malware samples.

Innovative strategies that combine Siamese one-shot learn-
ing with visualization analysis have been put advanced in
the literature to close these gaps. These methods seek to
improve malware detection skills, particularly when data is
scarce in the early phases of the generation of new malware.
The suggested model outperforms conventional approaches
in terms of accuracy and performance, suggesting that it can
solve the problems facing current research. The model effi-
ciently identifies hazardous and benign applications based on
their properties by showing the correlations between various
qualities. To fully evaluate the model’s bridging of the stated
research gaps, though, a thorough grasp of its design and
experimental findings is required.

VOLUME 11, 2023 127701



F. A. Almarshad et al.: Detection of Android Malware

III. DATA COLLECTION
A list of Android apps classified as dangerous or benign is
available to the public and is called the Drebin Dataset. The
dataset was developed in 2014 due to a study on identify-
ing malware on Android devices conducted by Northeastern
University researchers [37]. Being one of the largest pub-
licly available databases, the collection comprises more than
120,000 Android apps. Using static and dynamic analysis, the
researchers classified every program in the dataset as either
malicious or benign. 5,560 applications from 179 distinct
malware families are included in the dataset. The collec-
tion comprises 13,106 samples from other sources, includ-
ing Android websites, malware forums, and security blogs,
in addition to 96,150 programs from the GooglePlay Store,
19,545 applications from various alternative Chinese Mar-
kets, 2,810 applications from alternative Russian Markets,
and more. The more details about the Drebin Dataset is
available in the paper [38].

Dynamic analysis includes executing an application in
a controlled environment and watching its behavior, while
static analysis is inspecting the code of an application with-
out actually running it. The researchers used both methods
to locate suspected malware, then carefully checked their
results. In some studies, and research initiatives, the Drebin
Dataset has become a well-liked source for those studying
mobile security. Through the website of Northeastern Uni-
versity, the dataset is publicly accessible for download.

A. DATA DESCRIPTION
Table 2 in the dataset, part of the Drebin Dataset, lists
the characteristics taken from each Android application. To
create and test machine learning algorithms for malware
detection on Android devices, these attributes were extracted
to aid researchers.

The permissions, API calls, and string features in the
Drebin Dataset may be generally divided into three areas.

Following’s a brief overview of each of these group
features:

1. PERMISSIONS: The Android operating system uses
permissions as one of its primary security measures. It
enables an application to use certain device resources
or perform specific tasks. There is a list of all the per-
missions that each application in the dataset uses in the
Drebin Dataset.

2. API CALLS: A collection of APIs (Application Pro-
gramming Interfaces) allows Android applications to
communicate with the operating system and other appli-
cations. Each application in the dataset’s Drebin Dataset
makes a list of all the API calls they performed.

3. STRINGS: In the application code, strings represent a
thread of characters. A list of all the strings used in each
application in the Drebin Dataset is included. A binary
vector indicating whether an application utilizes specific
permission, API call, or text describes each application’s

characteristics in the dataset. The total number of distinc-
tive features in the dataset determines the overall vector
size. Several key elements have been highlighted to aid
in better understanding the dataset.

4. TRANSACT: The Android operating system provides a
technique that enables an application to initiate a remote
procedure call (RPC) to another process.

5. ON SERVICE CONNECTED: When a Service is
linked to a component in an Android application, the
callback function On Service Connected is activated.

6. BIND SERVICE: This method can be used to bind an
Android application to a service.

7. ATTACH INTERFACE: Using this method, the
Android allows you to attach an interface to a binder
object

8. SERVICE CONNECTION: An application can con-
nect to a service using the Service Connection interface
in the Android operating system.

9. ANDROID. OS.BINDER: This class in the Android
operating system offers a straightforward implementa-
tion of the IBinder interface.

10. SEND_SMS: This authorization enables an application
to send SMS messages from the device.

11. LJAVA. LANG.CLASS.GETCANONICALNAME:
This Java method retrieves the class’s canonical name.

12. LJAVA. LANG.CLASS.GETMETHODS: This Java
method returns an array of Method objects that corre-
spond to the class’s public methods.

13. LJAVA. LANG.CLASS.CAST: In the Java program-
ming language, this method casts an object to the type
of the provided class.

14. READ_CONTACTS: This permission enables an appli-
cation to read the user’s contacts.

15. DEVICE_POWER: This permission gives a program
16. control over the device’s on/off status.
17. HARDWARE_TEST: An application may access

low-level hardware diagnostic tests with the HARD-
WARE_TEST permission.

18. ACCESS_WIFI_STATE: This permission enables an
application to get access to details about the Wi-Fi
network.

19. WRITE_EXTERNAL_STORAGE: This permission
enables a program to write to external storage.

20. ACCESS_FINE_LOCATION: This permission
enables an application to obtain exact location data.

21. SET_WALLPAPER_HINTS: The permission
SET_WALLPAPER_HINTS enables an application to
set wallpaper hints.

22. SET_PREFERRED_APPLICATIONS:With this per-
mission, an application can choose which apps the user
prefers.

23. WRITE_SECURE_SETTINGS: This permission
enables a program to alter secure system settings.

24. CLASS: This feature identifies the class of the Android
application.

127702 VOLUME 11, 2023



F. A. Almarshad et al.: Detection of Android Malware

TABLE 2. Drebin’s dataset.

Two hundred fifteen characteristics categorize malware
assaults into 5,560 Drebin malware applications and 9,476
innocuous apps.

B. DATA VISUALIZATION
Numerous characteristics of the Drebin Dataset make it chal-
lenging to examine using conventional statistical techniques
[38]. Visualization will help reveal these relationships when
patterns and connections between characteristics are present
but not always apparent through numerical analysis alone.
The dataset’s most significant characteristics may be found
with visualization. Visually representing the links between
various features and their influence on application categoriza-
tion can provide insights into which elements are most crucial
for differentiating between dangerous and benign apps. The
graph showing the distribution of malware attacks in class is
shown in Fig. 2.
With 5,560 Drebin malware applications and 9,476 benign

apps, S and B are the two classified categories of the predicted
class. It is the sole predicted class among the elements in the
data frame.

There are 215 characteristics in the dataset, which is an
essential distinction. Due to limitations, only the most signif-
icant characteristics will be displayed, as it is not feasible to
show visualizations for all features. It should be noted that the
attributed values are likewise categorical and fall within the
range of 1 or 0.

FIGURE 2. Distribution of malware attacks in class.

FIGURE 3. Transact feature values count.

In the Drebin Dataset, the ‘‘transact’’ feature can only take
on binary values of 0 or 1. The usage of the ‘‘transact’’ tech-
nique of the Android Binder Inter-Process Communication
(IPC) mechanism is indicated by this feature. When commu-
nicating between separate parts of an Android application,
such as an activity and a service, one uses the ‘‘transact’’
method. Malicious programs can connect with other com-
ponents using the ‘‘transact’’ technique that goes against
Android security guidelines.

The Values Count of the Transact Feature graph is dis-
played above in Fig. 3. Use of the ‘‘Transact’’ approach
is indicated by a value of ‘‘1’’ whereas ‘‘0’’ indicates not
used. Researchers may learn more about how frequently
malicious apps employ the ‘‘transact’’ approach compared to
benign applications and how crucial this characteristic is for
telling the two apart by examining this feature throughout the
dataset.

The ‘‘onServiceConnected’’ feature in the Drebin Dataset
Is also binary, whichmeans it can have a value of either 0 or 1.
The implementation of the ‘‘onServiceConnected’’ callback
function, which is used to connect an Android service with
an application component, such as an activity or a broadcast
receiver, is represented by this feature.

A graph displaying the value of the service-connected
feature is shown above in Fig. 4. The application implements

VOLUME 11, 2023 127703



F. A. Almarshad et al.: Detection of Android Malware

FIGURE 4. The value of the service-connected feature.

the ‘‘onServiceConnected’’ function if this feature has a value
of 1, else it has a value of 0. Malicious programs may
utilize the ‘‘onServiceConnected’’ function to connect to a
vulnerable or malicious service, allowing them to conduct
unauthorized operations on the device.

Another binary feature that can only accept values of 0 or 1
is the ‘‘bindService’’ feature in the Drebin Dataset, as seen
in Fig. 5. The ‘‘bindService’’ function, which connects an
Android service and an application component, is used to
determine whether an application is using it.

When an application binds to a service using the ‘‘bind-
Service’’ method, it can obtain a reference to the service’s
underlying ‘‘Binder’’ object, which can further be used to
communicate with the service and carry out different oper-
ations, such as providing data and receiving callbacks. The
‘‘bindService’’ technique can be used by malicious apps to
obtain confidential information or carry out illegal operations
on the system. The value of 1 for the ‘‘bindService’’ feature
denotes that the application uses the ‘‘bindService’’ method,
whereas a value of 0 denotes the opposite.

FIGURE 5. Value count for blind service feature.

The Android IPC system, which enables inter-application
communication between various components of an appli-
cation, is fundamentally dependent on the Binder object.
A component can connect with other components Safely and

in a more organized way by binding an interface to the Binder
object using the ‘‘attachInterface’’ method. The ‘‘attachInter-
face’’ function may be used by malicious programs to access
system resources without authorization or to connect with
other components in a way that is against Android security
guidelines.

FIGURE 6. Value count for attack interface feature.

As shown in Fig. 6, an application employs the ‘‘attach-
Interface’’ technique if the ‘‘attachInterface’’ feature in the
Drebin Dataset has a value of 1 instead of 0. The ‘‘attachIn-
terface’’ function is used to attach an interface to an Android
Binder object, and this feature indicates if the application uses
that method.

When an application component connects to a service
using the ‘‘bindService’’ function, it implements the ‘‘Ser-
viceConnection’’ interface, which receives callbacks, rele-
vant to the service connection lifecycle. Harmful apps may
use the ‘‘ServiceConnection’’ interface to get unauthorized
access to system resources or to carry out harmful operations
on the device.

If the application in the Drebin Dataset has a value of
1 for the ‘‘ServiceConnection’’ feature, it implements the
‘‘ServiceConnection’’ interface otherwise, it does not. This
attribute indicates that if the application implements the ‘‘Ser-
viceConnection’’ interface, it will handle the callbacks asso-
ciated with the connection between an Android service and
an application component. The graph indicating the Service-
Connection Feature value count is displayed in Fig. 7.

SMaliciousapplications can exploit the ‘‘SEND_SMS’’
permission to send expensive messages, make money for
the attacker, or even infect other devices with malware.
That’s why it is considered potentially harmful permission
on Android. The Android operating system demands that
users expressly grant this permission to apps before such
applications may send SMS messages.

The value count graph for the Send SMS capability is
shown in the above Fig. 8. When the ‘‘SEND_SMS’’ feature
in the Drebin Dataset has a value of 1, then it means that the
program makes use of the ‘‘SEND_SMS’’ permission, but
when it has a value of 0, it does not. The ‘‘SEND_SMS’’ per-
mission, which enables an application to send SMSmessages

127704 VOLUME 11, 2023



F. A. Almarshad et al.: Detection of Android Malware

TABLE 3. Sample dataset.

FIGURE 7. Value count for service connection feature.

from the device without the user’s permission, is represented
by this feature.

While there are numerous features like Android.
content.pm.packageinfo.kkeyspec, Dexclassloader, and secret
key, the mentioned characteristics significantly influence the
classification of malware infections as malicious or benign.

C. DATA PROCESSING
Any data analysis or machine learning effort, including the
use of Drebin Dataset, must first analyze the data. Therefore,
to process the dataset, you can follow these general proce-
dures:

1. DATA CLEANING: The first stage in data processing
is the cleaning of data. Duplicate entries may need to

FIGURE 8. Value count for send SMS feature.

be removed, as well as any missing or null values and
unnecessary or distracting characteristics [39].

2. FEATURE SELECTION AND REDUCTION: After
creating new features, choose the ones that will help the
machine learning model make the best predictions. Tech-
niques like feature significance ranking, dimensionality
reduction, and correlation analysis can be used. Critical
data-processing stages like feature selection and feature
reduction can enhance the effectiveness of machine learn-
ing models, lessen overfitting, and simplify the model [9].

3. DATA SPLITTING: The dataset has to be divided
into training, validation, and testing sets before creating
the machine learning model. The validation and testing
sets are used to fine-tune the model’s hyperparameters,

VOLUME 11, 2023 127705



F. A. Almarshad et al.: Detection of Android Malware

whereas the training set and testing set is used to train the
model.

4. NORMALIZATIONAND SCALING: It is important to
normalize or scale the features so that they are at the same
scale and have the same extent. Some machine learning
models, such as the ones that use distance measurements,
may perform better due to this.

5. DATA CLEANING: Finding invalid entries and other
unrecognized symbols in the dataset is the initial stage in
data cleansing. The dataset has no null entries, as seen in
the table below.
The Null values information datastore is shown in Table 3

above. The next stage is to identify any symbols in the collec-
tion that are missing or unrecognized. To process the dataset,
we will remove special characters like ‘‘?’’ and ‘‘S’’ or set
them to NaN (Not a Number).

1) LABEL ENCODING
The categorical data must be transformed into numerical data
before being utilized in amachine-learningmodel sincemany
algorithms cannot handle them directly. For this purpose,
a data preparation technique known as Label encoding is used
to transform categorical data into numerical data. The two
categorical items S and B in the class column of our dataset
will be labeled encoded and turned into 0 and 1, as seen in the
following example.

• Categorical Class
- B 9476
- S 5560
- Name: class
- Label Encoded
• 0 9476
- 1 5555

D. FEATURE SELECTION AND REDUCTION
By removing irrelevant features and concentrating on
informative traits, reducing overfitting in high-dimensional
datasets, and increasing computing efficiency, feature selec-
tion and dimensionality reduction are essential in machine
learning for enhanced model performance. They also aid in
model interpretability, deal with multicollinearity problems,
handle scenarios involving little or no data, and enhance
model generalization by simplifying the design. Addition-
ally, by directing feature engineering efforts and helping
to understand how features affect the target variable, these
strategies help create models that are overall more effective
and efficient. Due to their efficiency and applicability to
the issue, SelectKBest and PCA were chosen for feature
selection and dimensionality reduction in Android malware
detection. To distinguish between legitimate and malicious
apps, SelectKBest aids in the identification of the most
significant features, enhancing predictive performance. How-
ever, PCA prevents overfitting and improves computational
efficiency by deleting unimportant features and reducing
data dimensionality by capturing key patterns. These tech-
niques are well-known for enhancing model performance and

interpretability and are often employed in machine learning,
making them appropriate options for this study.

1) SELECTKBEST METHOD
SelectKBest is a feature selection technique that chooses
the top k features based on their statistical importance with
the target variable. This technique may be implemented
using the SelectKBest class from the sci-kit-learn package.
The fit transform function of this class takes the original
data and the target variables as input and outputs the new
dataset with the chosen top k features. Altogether, there are
215 features. During the first stage of feature reduction and
selection, the choose K best approach was utilized to select
the top 50 linked features. Despite the dataset’s simplicity,
the machine learning model may find it simple because
each feature has two entries, 0 and 1. However, the dataset
was standard-scaled to identify the most connected and
standardized characteristics [40].

2) PCA (PRINCIPLE COMPONENT ANALYSIS)
The feature reduction technique PCA (Principal Component
Analysis) lowers the dimensionality of the data by relocating
it to a lower-dimensional space [41]. It functions by deter-
mining the main components of the data, which serves as
directions in the feature space and represents the maximum
variance in the data. This technique may be applied using
the PCA class from the sci-kit-learn package. A new dataset
with fewer features is returned by this class’s fit-transform
function, which takes given data as inputs. Using the PCA fit
transform technique, the 50 features chosen from the chosen
K best, were then put through PCA to minimize their number
to normalize the remaining 40 features. Despite the initial
dataset’s size, we have selected only the top 40 features.
When performing model training on the original data store
without standardization, we expect to achieve the best results.
However, the best practice for such a large dataset is to reduce
the features to a reasonable size with the dataset standard-
ized and normalized to achieve the top training and testing
accuracy. The decreased feature datastore is shown in Table 4
below.

The outcomes of using the PCA approach to lessen the
dataset’s dimensionality are shown in Table 4. The table
contains the PCA-reduced dataset with its original features.
The columns PC32 through PC40 are the main compo-
nents derived by PCA, and each row represents a particu-
lar occurrence or sample. The new orthogonal axes in the
lower-dimensional space known as the principle components
are what account for the majority of the variance in the
data. The final column, ‘‘labels,’’ lists the appropriate class
labels for each sample. The principal components in the table
represent the new lower-dimensional representation of the
data.

The performance of machine learning algorithms may be
improved by reducing overfitting and the efficiency may be
increased by lowering the dimensionality of the data, which

127706 VOLUME 11, 2023



F. A. Almarshad et al.: Detection of Android Malware

TABLE 4. PCA approach results.

SelectKBest and PCA are both excellent at doing. To ensure
that the final dataset has enough information for the job at
hand, it is crucial to consider that both procedures might lead
to information loss. Therefore, it is important to consider how
many features to select and reduce.

E. TRAIN-TEST SPLIT
In machine learning and data science, a technique known
as the train-test split is employed to assess a model’s per-
formance. The train-test split is a technique that divides the
available data into two sets: training the model and evaluating
it.

An assigned percentage of the data is randomly split
between a training set and a test set. A typical split distributes
70–80% of the data to the training set and the remaining
20–30% to the test set. However, the percentages might vary.

The dataset for our model is split into two parts: training
and testing. 90% of the dataset is utilized for training and
10% for testing. These are the two new data stores with a
total of 41 entries. The last item is of the response class,
which contains two categorical answers, i.e., 1 or 0. The first
40 entries are the features, while the last entry is the response
class.

- Train size = 13528
- Test size =1503.

F. MODEL DESIGN
One-shot learning aims to learn a classification problem using
very little labeled data and in the case of one-shot learning
tasks, a particular kind of neural network called a Siamese
network is frequently employed. As a result, the application
of the Siamese network is proved to be very effective since it
is designed to learn the similarity between two input examples
rather than their absolute categorization labels.

Although Siamese networks are frequently used for image
data, they may also be utilized for other data types.

IV. MATERIALS & METHODS
The following is the process for designing a one-shot Siamese
network with non-image data:

1. DATA PRE-PROCESSING: Before being sent to the
Siamese network, non-image data must be pre-processed
to guarantee it is in the proper format. Feature scalability,
normalization, and categorical variable encoding are nec-
essary for this situation.

2. DATA SPLITTING: A set of ‘‘support’’ and ‘‘query’’
instances The support cases are the labeled examples used
to train the Siamese network. The networkwill be assessed
using the query instances as the test cases.

3. MODEL ARCHITECTURE: The Siamese network com-
prises two identical sub-networks that use the same
weights. A single input instance is taken by each sub-
network, which then converts it to an embedding vector of
a given length. Next, the two embedding vectors are con-
trasted using a distance function, such as cosine similarity
or Euclidean distance. A binary classification judgment
(i.e., whether the two occurrences are similar or different)
is made using the obtained distance score.

4. Model training: Support instance pairs are used to train
the Siamese network. The network calculates the distance
score between the two embeddings for each pair to update
the weights using a contrastive loss function. The network
is encouraged to learn similar embeddings for the exam-
ples of the same class and dissimilar for cases of the other
classes via the contrastive loss function.

5. MODEL EVALUATION: After training, the network may
compare two query instances. The trained network is first
used to embed the query instances, and then the com-
parison is performed using the same distance algorithm.
Making a binary classification choice is possible using the
resultant distance score.

FIGURE 9. Steps for designing a one-shot siamese network.

Generally, a Siamese network for one-shot learning on non-
image data entails pre-processing the data, dividing it into

VOLUME 11, 2023 127707



F. A. Almarshad et al.: Detection of Android Malware

FIGURE 10. The siamese-shot model architecture of the proposed model.

support and query sets, constructing an appropriate archi-
tecture, training the network on pairs of support instances,
and assessing the performance on pairs of query examples as
shown in Fig. 9.

A. MODEL ARCHITECTURE
The one-shot learning that our Siamese network can do with
non-image material is what it is intended for. Two identically
shaped data points, each with a tuple of 40 values, serve as
the model’s input.

Two input layers were created, one for the left data points
and another for the right data points, to process them. The
variables’ input-left, and input-right are given the definition
of these input layers and the Input class from the Keras API.

Afterwards, we create a dense neural network using a
ReLU activation function and 64 hidden units. The weights
and biases used for both inputs are the same since the left and
right input layers share this neural network. To do this, use the
shared_dense_1 object to define the dense neural network as
Dense (num_hidden_units, activation=’relu’) and then apply
it to the left and right inputs. The suggested model’s Siamese-
Shot model architecture is shown below in Fig. 10.
Another dense neural network with 64 hidden units and a

ReLU activation function is then used to repeat this proce-
dure. This time, a separate shared_dense_2 object processes
the left and right inputs, and the encoded left and corrected
data points are saved in the encoded_left and encoded_right
variables.

To determine their similarity, a lambda layer is created to
compute the absolute difference between the encoded left and
right data points. It is accomplished by utilizing the Lambda
class from the Keras API, with the lambda function supplied
as K.abs(tensors [0] - tensors [1]).

The output of the lambda layer is then sent through a fully
connected layer with a sigmoid activation function to provide

a prediction for binary classification. Using 1 output unit and
a sigmoid activation function, the Dense class from the Keras
API is used to do this.

The left and right input layers serve as the inputs and
outputs of the Siamese network model, which is created using
the Model class from the Keras API. Accuracy and a binary
cross-entropy loss function are used as the evaluation metric
during model construction.

The model is trained to utilize on-the-fly-generated train-
ing and validation data produced by a unique generating
function. At the beginning of each training epoch, the gen-
erator function randomly chooses pairs of data points and the
labels that go with them from the training or validation set,
and then it feeds those pairs through the Siamese network.
As a result, the model can be trained with an 8-batch size,
which is effective even for big datasets.

In general, our Siamese network architecture is intended
to learn a similarity metric between pairs of non-image input
points, whichmay subsequently be used for one-shot learning
tasks. ReLU and sigmoid activation functions guarantee that
the model can learn intricate non-linear correlations between
the input data points. At the same time, shared weights and
bespoke data generators make it possible to train the model
quickly on big datasets.

B. MODEL TRAINING
The Siamese network design, frequently employed for
one-shot learning issues, was utilized for training our model.
The model learned to predict whether two data points belong
to the same class by using pairs of data points as its input. Two
input layers were the first component of the model’s design,
followed by two shared dense layers with 64 hidden units
each, a distance layer, and a sigmoid output layer. Utilizing
stochastic gradient descent, the model was optimized after
being trained using binary cross-entropy loss.

127708 VOLUME 11, 2023



F. A. Almarshad et al.: Detection of Android Malware

The training was conducted for 100 epochs using an 8-
person batch size. Additionally, for each batch of data, this
study employed a generator function to create pairs of data
points, with 90% of the data being used for training and 10%
for validation. To ensure the model was not overfitting the
training data, the training and validation loss and accuracy
were monitored during the training process.

Two efficient methods, stratified sampling, and class
weights, were utilized tomitigate the influence of class imbal-
ance during model training. Malware detection frequently
faces the problem of class imbalance, where samples from
one class outnumber those from other classes by a large
margin. By using stratified sampling, each mini-batch used
for training is guaranteed to contain a proportionate rep-
resentation of the various classes, maintaining the original
dataset’s class distribution. This strategy ensures that the
minority classes receive adequate attention during training
and prevents the model from being skewed toward the dom-
inant class. Class weights have also been included in the
optimization process. The model concentrates more on cor-
rectly identifying data from the minority classes by giving
these classes higher weights, which effectively addresses the
class imbalance issue. These methods improve the model’s
capacity for generalization and correct classification of both
majority and minority classes, making the Android malware
detection system more effective and dependable.

A thorough evaluation of a machine learning model’s
performance must consider both the training and testing
accuracies. It has several functions that contribute to the
efficacy and dependability of the model. First off, it aids
in the detection of overfitting, which occurs when a model
becomes overly focused on memorizing training data and
performs poorly when presented with new data. Overfitting
can be detected by comparing the accuracies of training
and testing data, and appropriate actions can be taken to
correct it. The model’s generalization ability, or how well
it can categorize examples that have not yet been observed,
is reflected in testing accuracy. A model can be trusted to
function accurately in real-world circumstances if its testing
accuracy is good. Thirdly, choosing the right model is aided
by examining both accuracies. A model can be trusted to
function accurately in real-world circumstances if its testing
accuracy is good. Thirdly, choosing the right model is aided
by examining both accuracies. A model may be excessively
complex or overfitted if it has a high training accuracy but
a low testing accuracy, in which case it should be simplified
or regularized. On the other hand, low accuracy in training,
as well as testing, may point to the need for more intricate
models or better features.

Fig. 11 above shows the training and validation accuracy
performance graph. The model’s training accuracy reached
above 98%, indicating that the model could learn the patterns
in the training data very well. However, the model can overfit
the training data, leading to poor performance on new data.
To avoid overfitting, the validation loss and accuracy were
monitored during training. The model’s validation accuracy

FIGURE 11. Training and validation accuracy performance.

reached around 95%, indicating its capability to generalize
well to new data without overfitting the training data.

The performance of the Siamese-Shot model’s training and
validation losses is shown in Figure 12. Monitoring the loss
function is essential since it gives information on the gener-
alization and convergence abilities of the model. In Fig. 12,
the training and validation loss both exhibit a declining trend,
demonstrating that the model’s weights are being efficiently
adjusted and that the model is picking up new information
from the data. The model successfully minimises the binary
cross-entropy loss on the training data, as seen by the decreas-
ing training loss, which also shows how well the model fits
the training data. As the model generalizes to the validation
data, the validation loss likewise declines, supporting this.

FIGURE 12. Training and validation loss performance.

C. MODEL ANALYSIS
Using Siamese one-shot learning, our work offers a unique
method for identifying Android malware. On the Drebin
dataset, the suggested model has an accuracy of 98.9%,
outperforming modern methods. Our strategy is based on
the idea of Siamese networks, where two identical neural
networks are trained to learn a similarity metric between
pairs of data. When there is a lack of accessible data, as is

VOLUME 11, 2023 127709



F. A. Almarshad et al.: Detection of Android Malware

frequently the situation when detecting malware, this method
is quite helpful.

The Siamese one-shot learning method simultaneously
trains two neural networks, each handling a separate input
sample. The input samples are first encoded by the shared
layers of the two networks into a fixed-size feature represen-
tation, which is then utilized to calculate a similarity score
between the two samples. If the samples are members of the
same class or not, the network’s final layer generates a binary
output to show this.

One advantage of our technique is that it can adequately
categorize fresh samples even if it has only seen a single
example of each class during training. Since the Siamese
network is trained to acquire a general feature representation,
any two inputs, regardless of their unique properties, may be
compared using this.

The Siamese network is depicted as follows:
Let x1 and x2 be two input vectors of size n.
The feature representation of x1 is given by f(x1), and x2

is given by f(x2).
The distance between the two feature representations is

given by:

d(f (x1), f (x2)) (1)

The output of the final dense layer is given by:

y = σ (Wd ∗ d + b) (2)

where σ is the sigmoid activation function, Wd is the weight
matrix of the dense layer, and b is the bias vector.

With positive results in identifying Android malware, our
Siamese one-shot learning method can be used in other fields
where one-shot learning is advantageous.

In contrast to current models, our method has some bene-
fits. The first benefit is that it takes fewer data for training,
which is crucial in malware detection because gathering vast
amounts of labeled data can be difficult. As a result of
the Siamese network’s capacity to learn a strong similarity
score, our technique can generalize well to fresh, previously
undiscovered malware samples. Hence, the computational
efficiency of our method makes it appropriate for usage on
portable devices.

The Euclidean distance between the encoded feature rep-
resentations of two input samples:

distance = sqrt(sum((encoded_left − encoded_right) ∧ 2))

(3)

The contrastive loss function used during training encourages
the network to learn a good similarity metric:

L = (1 − Y ) ∗ 0.5 ∗ D ∧ 2 + Y ∗ 0.5 ∗ max(0,m− D) ∧ 2

(4)

Y is the binary label (1 for a positive pair, 0 for a negative
pair), D is the distance between the encoded feature repre-
sentations of the two input samples, and m is the margin
hyperparameter.

The sigmoid activation function is used in the final layer of
the network to produce a binary output:

output = 1/(1 + exp(−z)) (5)

where z is the output of the previous layer.
Siamese one-shot learning is used in our work to pro-

pose a unique method for identifying Android malware. The
proposed model outperforms current models on the Drebin
dataset and comes with several benefits, such as the capacity
to acquire a reliable similarity metric with fewer data and
generalization to new, undiscovered malware samples.

V. RESULTS
The n-way k-shot accuracy approach is used to assess the
Siamese network. This method tests the model on n-way
classification tasks using k-shot examples per class. Using
a dataset with examples from n distinct classes, the model
is trained before being tested to determine how well it can
classify fresh instances from those n classes using k-shot
examples for each class.

In a 5-way 1-shot task, the model is evaluated on its
capacity to properly categorize a new sample into one of five
classes, given just one example of each of those five classes
as input.

A machine-learning model’s performance on a test dataset
is evaluated through a procedure known as model evaluation.
Model assessment measures the model’s ability to generalize
results to new data and to assess whether it performs well
enough for practical applications.

Metrics like recall, precision, F1 score, and confusion
matrix may also be used to assess the model’s performance.
The fraction of true positive cases that are accurately marked
as positive is the recall, which estimates how well the model
can detect true positive cases.

Precision (i.e., the percentage of positive predicted positive
cases) reflects the model’s ability to identify genuine posi-
tives out of all anticipated positives correctly. An accurate
evaluation of the model’s performance is provided by the
F1 score, which is a harmonic mean of recall and accuracy.
Table 5 below displays the suggested model’s assessment
metrics.

TABLE 5. Evaluation metrics of the proposed model.

The number of n ways is [5, 10, 15]
The number of k shots is [1, 5]

127710 VOLUME 11, 2023



F. A. Almarshad et al.: Detection of Android Malware

The accuracy of n-ways and k-shots is as follows:

-way -shot accuracy: 0.995130086724483

-way -shot accuracy: 0.989601956860129

-way -shot accuracy: 0.9941205247943073

-way -shot accuracy: 0.9833311096286413

-way -shot accuracy: 0.9923015343562375

-way -shot accuracy: 0.9769179452968646

The true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) in the predictions are depicted
in Fig. 13 mentioned above. The actual class labels are repre-
sented in the rows, and the predicted class labels are displayed
in the columns. The ROC (Receiver Operating Characteristic)
curve is another helpful indicator for assessing the model’s
effectiveness.

FIGURE 13. Confusion matrix based on test data.

FIGURE 14. ROC curve based on test-data.

The true positive rate (TPR) vs. the false positive rate
(FPR) at various threshold settings is displayed on the ROC
curve plot in Fig. 14. An indicator of how well a model

performs by correctly classifying both positive and negative
cases, is the AUC (Area Under the Curve) on the ROC
curve. A greater AUC indicates better performance. When
describing the effectiveness of a classifier, the area under
the ROC curve (AUC) is frequently employed as a summary
statistic. An AUC of 0.5 means the classifier has no pre-
dictive power, whereas an AUC of 1.0 indicates a flawless
classifier. The performance of a classifier is often more
significant when the AUC is larger. Given that our model has
an Area under the Curve of 1, it will likely produce accurate
predictions.

A. MODEL COMPARISON ANALYSIS
Numerous strategies, including LSTM [9], random for-
est classifier [26], and SVM [27], have been investigated
in malware identification. The accuracy of research on
malware detection in 2023 that used deep learning and
correlation-based feature selection was 94.59%. On the
Drebin dataset, a better binary owl feature selection technique
in 2022 that utilized a random forest classifier had an accu-
racy of 98.84%. On the same dataset, another research from
the same year employed SVM and reached an accuracy of
80.71%. The accuracy of our method, which used a Siamese
one-shot learning methodology, on the Drebin dataset was
98.9% (as shown in Table 6). Our technique outperformed
earlier studies, and various issues may have played a role in
this accomplishment.

TABLE 6. Proposed model comparison with related work.

First, the Siamese one-shot learning approach works well
in various settings, including image recognition and natural
language processing. It is an innovative strategy, as it’s the
first time this technology has been used to identify malware.

In addition, our method only needs a small amount of
labeled data, which is frequently a bottleneck in malware
identification. Also, it uses a one-shot learning approach,
which trains the model to detect a new malware sample

VOLUME 11, 2023 127711



F. A. Almarshad et al.: Detection of Android Malware

using just one instance of each malware family. By using
this method, data labeling costs and turnaround times may
be drastically decreased.

Using a distance-based metric learning algorithm, our
method assesses the similarity between two malware sam-
ples. In contrast to previous methods, this one can more
accurately capture how similar malware samples are, while
also assisting the model in distinguishing between related
malware families.

Furthermore, overfitting or underfitting was successfully
avoided with the employedmethod, which can be challenging
with deep-learning models. Despite this, the model achieved
excellent accuracy. Additionally, various measures were uti-
lized to evaluate the model’s performance, including recall,
F1 score, accuracy, confusion matrix, and ROC curve.

Our method of applying the Siamese one-shot learning
methodology is unique, effective, and efficient in detecting
malware that beats earlier efforts in terms of accuracy and
necessitates less labeled data.

VI. DISCUSSION
The adoption of smartphones with new capabilities and
related Android applications has grown with the rapid
advancement of technology. The increasing complexity and
security flaws in Android applications can be exploited easily
by hackers. This further leads to the creation of difficulties in
terms of securitymeasures, for the researchers and developers
of these applications.

To prevent security gaps from arising inside this network,
machine and deep learning methods are utilized to moni-
tor the detection of harmful attempts made against Android
applications. The current research contributes to cyberse-
curity by finding abnormalities in signature databases and
enabling the system to identify unknown threats using the
Siamese one-shot learning approach.

For this purpose, over 120,000 Android applications are
included in one of the most extensive freely available
databases. Researchers utilized this dataset with parame-
ters extracted from each Android application to create and
test machine-learning algorithms for malware detection on
Android smartphones. With a 98.9% accuracy rate for recog-
nizing Android malware on the Drebin dataset, Siamese one-
shot learning proves to be a novel technique that outperforms
all existing models. It involves training two neural networks
concurrently, each analyzing a separate input sample. Also,
the n-way k-shot accuracy approach may assess the Siamese
network by training it with a dataset of n-shot samples for
each class and then identifying fresh instances from those
classes.

Furthermore, numerous methods, including LSTM [9],
random forest classifier [26], and SVM [27], are being
researched in the challenging field of malware identifi-
cation. For example, Deep learning and correlation-based
feature selection were used in a 2023 study on malware
detection, and the accuracy was 94.59%. On the Drebin
dataset in 2022, an improved binary owl feature selection

strategy with a random forest classifier was successful at
98.84%, while another study used SVM at 80.71% using
a Siamese one-shot learning method. Several reasons why
all three strategies fared better than the earlier studies. Our
Siamese one-shot learning technique fared better on the
Drebin dataset than in previous work, with an accuracy
of 98.9%. Additionally, this one-shot learning approach by
the Siamese is a state-of-the-art malware detection tech-
nique that can detect new malware samples by training on
only one instance of each malware family, without requir-
ing large amounts of labeling data. A distance-based metric
learning strategy that achieved high accuracy without over-
fitting or underfitting was used to determine how similar
the two malware samples were. Our model’s effectiveness
was evaluated using various metrics, including recall, F1
score, accuracy, confusion matrix, and ROC curve. There-
fore, the Siamese one-shot learning methodology, a novel
and promising technique, may be used instead of traditional
classification algorithms to detect Android malware. Other
sectors where similarity-based learning is needed but labeled
data is rare may use this method to improve their systems.

VII. CONCLUSION
Siamese networks, which have excelled at one-shot learning
tasks even when working with non-image data, are leveraged
by the model architecture used in this study. The model is
specifically made to process pairs of data points, each of
which contains a tuple with 40 values. The learning pro-
cess is aided by the use of shared neural network layers,
and the model can capture intricate non-linear relationships
in the input data by utilizing ReLU and sigmoid activation
functions. Importantly, the model architecture exhibits strong
generalization abilities and avoids overfitting, as shown by
the training and validation accuracy and loss performance
metrics. By using pairs of data points as input, the Siamese
network is trained to determine whether two data points
belong to the same class. This training procedure uses a
generator function to generate pairs of data points over the
course of 100 epochs and an 8-person batch size. In the study,
class weights and stratified sampling are used during model
optimization to address issues with class imbalance that are
frequently present in malware detection. The effectiveness of
the model is thoroughly assessed, accounting for both testing
and training accuracy.

Siamese one-shot learning emerges as a potent and suc-
cessful method for Android malware detection, according to
the model analysis. Notably, the model outperforms earlier
techniques like LSTM, random forest classifier, and SVM,
achieving an impressive accuracy rate of 98.9% on the Drebin
dataset. It is highlighted how the Siamese network can build
a strong similarity metric even with sparse labeled data and
how well it generalizes to malware samples that haven’t been
seen before. The performance of the model is fully analyzed
using a set of evaluation metrics, including recall, precision,
F1 score, and confusion matrix. The model is also effective at
differentiating between positive and negative cases, as shown

127712 VOLUME 11, 2023



F. A. Almarshad et al.: Detection of Android Malware

by the ROC curve and AUC, with an AUC of 1 indicating
exceptional predictive abilities. Through comparison with
earlier models, the model’s superiority is confirmed, reiterat-
ing its status as a cutting-edge method for Android malware
detection. In this study, we introduce a novel and effective
Siamese one-shot learning-based methodology for Android
malware detection. In addition to achieving remarkable accu-
racy, the model also addresses important issues like a lack
of labeled data and class imbalance. It offers a promising
solution for practical malware detection applications, offering
improved security and reliability by outperforming current
approaches.

Future research will concentrate on increasing accuracy
with a higher N-way value and investigating Siamese net-
work developments. To find the best implementation for
early-stage malware prevention, a comparison evaluation of
the various approaches used in the one-shot malware catego-
rization procedure can also be done.

ACKNOWLEDGMENT
This project is funded by Princess Nourah bint Abdul-
rahman University Researchers Supporting Project number
(PNURSP2023R319), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.

REFERENCES
[1] M. Kim, D. Kim, C. Hwang, S. Cho, S. Han, and M. Park, ‘‘Machine-

learning-based Android malware family classification using built-in and
custom permissions,’’ Appl. Sci., vol. 11, no. 21, p. 10244, Nov. 2021.

[2] İ. Atacak, ‘‘An ensemble approach based on fuzzy logic using machine
learning classifiers for Android malware detection,’’ Appl. Sci., vol. 13,
no. 3, p. 1484, Jan. 2023.

[3] S. A. Nikale and S. Purohit, ‘‘Comparative analysis of Android application
dissection and analysis tools for identifying malware attributes,’’ in Big
Data Analytics and Intelligent Systems for Cyber Threat Intelligence.
Denmark: River Publishers, 2023, pp. 87–103.

[4] H. Gao, S. Cheng, and W. Zhang, ‘‘GDroid: Android malware detection
and classification with graph convolutional network,’’ Comput. Secur.,
vol. 106, Jul. 2021, Art. no. 102264.

[5] J. Senanayake, H. Kalutarage, and M. O. Al-Kadri, ‘‘Android mobile mal-
ware detection using machine learning: A systematic review,’’ Electronics,
vol. 10, no. 13, p. 1606, Jul. 2021.

[6] K. Shaukat, S. Luo, and V. Varadharajan, ‘‘A novel deep learning-based
approach for malware detection,’’ Eng. Appl. Artif. Intell., vol. 122,
Jun. 2023, Art. no. 106030.

[7] A. Taha and O. Barukab, ‘‘Android malware classification using optimized
ensemble learning based on genetic algorithms,’’ Sustainability, vol. 14,
no. 21, p. 14406, Nov. 2022.

[8] S. C. Sethuraman, ‘‘A comprehensive survey on deep learning based
malware detection techniques,’’ Comput. Sci. Rev., vol. 47, Feb. 2023,
Art. no. 100529.

[9] E. S. Alomari, R. R. Nuiaa, Z. A. A. Alyasseri, H. J. Mohammed,
N. S. Sani, M. I. Esa, and B. A. Musawi, ‘‘Malware detection using deep
learning and correlation-based feature selection,’’ Symmetry, vol. 15, no. 1,
p. 123, Jan. 2023.

[10] J. Zhu, J. Jang-Jaccard, A. Singh, P. A. Watters, and S. Camtepe, ‘‘Task-
aware meta learning-based Siamese neural network for classifying obfus-
cated malware,’’ 2021, arXiv:2110.13409.

[11] F. Alswaina and K. Elleithy, ‘‘Android malware family classification and
analysis: Current status and future directions,’’ Electronics, vol. 9, no. 6,
p. 942, Jun. 2020.

[12] W. Wang, M. Zhao, Z. Gao, G. Xu, H. Xian, Y. Li, and X. Zhang, ‘‘Con-
structing features for detecting Android malicious applications: Issues,
taxonomy and directions,’’ IEEE Access, vol. 7, pp. 67602–67631, 2019.

[13] V. J. Raymond and R. J. R. Raj, ‘‘Investigation of Android malware using
deep learning approach,’’ Intell. Autom. Soft Comput., vol. 35, no. 2,
pp. 2413–2429, 2023.

[14] N. Xie, Z. Qin, and X. Di, ‘‘GA-StackingMD: Android malware detection
method based on genetic algorithm optimized stacking,’’Appl. Sci., vol. 13,
no. 4, p. 2629, Feb. 2023.

[15] D. Smith, S. Khorsandroo, and K. Roy, ‘‘Supervised and unsupervised
learning techniques utilizing malware datasets,’’ in Proc. IEEE 2nd Int.
Conf. AI Cybersecur. (ICAIC), Feb. 2023, pp. 1–7.

[16] B. A. Mantoo and S. S. Khurana, ‘‘Static, dynamic and intrinsic fea-
tures based Android malware detection using machine learning,’’ in Proc.
ICRIC, Recent Innov. Comput., 2020, pp. 31–45.

[17] S. Yen, M. Moh, and T.-S. Moh, ‘‘Detecting compromised social network
accounts using deep learning for behavior and text analyses,’’ Int. J. Cloud
Appl. Comput., vol. 11, no. 2, pp. 97–109, Apr. 2021.

[18] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, ‘‘A review of Android
malware detection approaches based on machine learning,’’ IEEE Access,
vol. 8, pp. 124579–124607, 2020.

[19] P. Bhat and K. Dutta, ‘‘A survey on various threats and current state
of security in Android platform,’’ ACM Comput. Surv., vol. 52, no. 1,
pp. 1–35, Jan. 2020.

[20] T. Sharma and D. Rattan, ‘‘Malicious application detection in Android—A
systematic literature review,’’ Comput. Sci. Rev., vol. 40, May 2021,
Art. no. 100373.

[21] M. A. Azad, F. Riaz, A. Aftab, S. K. J. Rizvi, J. Arshad, and H. F. Atlam,
‘‘DEEPSEL: A novel feature selection for early identification of malware
in mobile applications,’’ Future Gener. Comput. Syst., vol. 129, pp. 54–63,
Apr. 2022.

[22] V. Kouliaridis and G. Kambourakis, ‘‘A comprehensive survey on machine
learning techniques for Android malware detection,’’ Information, vol. 12,
no. 5, p. 185, Apr. 2021.

[23] L. Cai, Y. Li, and Z. Xiong, ‘‘JOWMDroid: Android malware detec-
tion based on feature weighting with joint optimization of weight-
mapping and classifier parameters,’’ Comput. Secur., vol. 100, Jan. 2021,
Art. no. 102086.

[24] R. Thangaveloo, W. W. Jing, C. K. Leng, and J. Abdullah, ‘‘DATDroid:
Dynamic analysis technique in Android malware detection,’’ Int. J. Adv.
Sci., Eng. Inf. Technol., vol. 10, no. 2, p. 536, Mar. 2020.

[25] M. Amin, T. A. Tanveer, M. Tehseen, M. Khan, F. A. Khan, and S. Anwar,
‘‘Static malware detection and attribution in Android byte-code through
an end-to-end deep system,’’ Future Gener. Comput. Syst., vol. 102,
pp. 112–126, Jan. 2020.

[26] H. Alazzam, A. Al-Adwan, O. Abualghanam, E. Alhenawi, and
A. Alsmady, ‘‘An improved binary owl feature selection in the context
of Android malware detection,’’ Computers, vol. 11, no. 12, p. 173,
Nov. 2022.

[27] H. Alkahtani and T. H. H. Aldhyani, ‘‘Artificial intelligence algorithms for
malware detection in Android-operated mobile devices,’’ Sensors, vol. 22,
no. 6, p. 2268, Mar. 2022.

[28] L. N. Vu and S. Jung, ‘‘AdMat: A CNN-on-matrix approach to
Android malware detection and classification,’’ IEEE Access, vol. 9,
pp. 39680–39694, 2021.

[29] S. Millar, N. McLaughlin, J. M. del Rincon, and P. Miller, ‘‘Multi-view
deep learning for zero-day Android malware detection,’’ J. Inf. Secur.
Appl., vol. 58, May 2021, Art. no. 102718.

[30] A. Vishnoi, P. Mishra, C. Negi, and S. K. Peddoju, ‘‘Android malware
detection techniques in traditional and cloud computing platforms: A state-
of-the-art survey,’’ Int. J. Cloud Appl. Comput., vol. 11, no. 4, pp. 113–135,
Oct. 2021.

[31] O. A. Alzubi, J. A. Alzubi, A. M. Al-Zoubi, M. A. Hassonah, and
U. Kose, ‘‘An efficient malware detection approach with feature weighting
based on Harris hawks optimization,’’ Cluster Comput., vol. 25, no. 4,
pp. 2369–2387, Aug. 2022, doi: 10.1007/s10586-021-03459-1.

[32] J. Kim, Y. Ban, E. Ko, H. Cho, and J. H. Yi, ‘‘MAPAS: A practical deep
learning-based Android malware detection system,’’ Int. J. Inf. Secur.,
vol. 21, no. 4, pp. 725–738, Aug. 2022, doi: 10.1007/s10207-022-00579-6.

[33] P. Yadav, N. Menon, V. Ravi, S. Vishvanathan, and T. D. Pham,
‘‘A two-stage deep learning framework for image-based Android mal-
ware detection and variant classification,’’ Comput. Intell., vol. 38, no. 5,
pp. 1748–1771, Oct. 2022, doi: 10.1111/coin.12532.

[34] E. C. Bayazit, O. K. Sahingoz, and B. Dogan, ‘‘A deep learning based
Android malware detection system with static analysis,’’ in Proc. 4th Int.
Congr. Hum.-Comput. Interact. Optim. Robot. Appl., 2022, pp. 1–6, doi:
10.1109/HORA55278.2022.9800057.

VOLUME 11, 2023 127713

http://dx.doi.org/10.1007/s10586-021-03459-1
http://dx.doi.org/10.1007/s10207-022-00579-6
http://dx.doi.org/10.1111/coin.12532
http://dx.doi.org/10.1109/HORA55278.2022.9800057


F. A. Almarshad et al.: Detection of Android Malware

[35] Y. Wu, M. Li, Q. Zeng, T. Yang, J. Wang, Z. Fang, and L. Cheng,
‘‘DroidRL: Feature selection for Android malware detection with rein-
forcement learning,’’Comput. Secur., vol. 128,May 2023, Art. no. 103126,
doi: 10.1016/j.cose.2023.103126.

[36] S. Fallah and A. J. Bidgoly, ‘‘Android malware detection using network
traffic based on sequential deep learning models,’’ Softw., Pract. Exper.,
vol. 52, no. 9, pp. 1987–2004, Sep. 2022, doi: 10.1002/spe.3112.

[37] The Drebin Dataset. Accessed: Oct. 2012. [Online]. Available:
https://www.sec.cs.tu-bs.de/~danarp/drebin/

[38] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, ‘‘DREBIN: Effective and explainable detection of Android
malware in your pocket,’’ in Proc. NDSS, vol. 14, 2014, pp. 23–26.

[39] C. Liu, J. Lu, W. Feng, E. Du, L. Di, and Z. Song, ‘‘MobiPCR: Efficient,
accurate, and strict ML-based mobile malware detection,’’ Future Gener.
Comput. Syst., vol. 144, pp. 140–150, Jul. 2023.

[40] N. Peppes, T. Alexakis, E. Adamopoulou, and K. Demestichas,
‘‘The effectiveness of zero-day attacks data samples generated via GANs
on deep learning classifiers,’’ Sensors, vol. 23, no. 2, p. 900, Jan. 2023.

[41] Y. Sharma and A. Arora, ‘‘Ipanalyzer: A novel Android malware detection
system using ranked intents and permissions,’’ Delhi Technol. Univ., India,
Tech. Rep., 2023.

[42] H. Babbar, S. Rani, D. K. Sah, S. A. AlQahtani, and A. K. Bashir, ‘‘Detec-
tion of Android malware in the Internet of Things through the K-nearest
neighbor algorithm,’’ Sensors, vol. 23, no. 16, p. 7256, Aug. 2023.

[43] V. J. Raymond and R. J. R. Raj, ‘‘Investigation of Android malware with
machine learning classifiers using enhanced PCA algorithm,’’ Comput.
Syst. Sci. Eng., vol. 44, no. 3, pp. 2147–2163, 2023.

[44] S. Aurangzeb and M. Aleem, ‘‘Evaluation and classification of obfuscated
Android malware through deep learning using ensemble voting mecha-
nism,’’ Sci. Rep., vol. 13, no. 1, p. 3093, Feb. 2023.

[45] H. H. R. Manzil and S. M. Naik, ‘‘Android malware category detection
using a novel feature vector-based machine learning model,’’ Cybersecu-
rity, vol. 6, no. 1, p. 6, Mar. 2023.

[46] P. Liu, W. Wang, S. Zhang, and H. Song, ‘‘ImageDroid: Using deep learn-
ing to efficiently detect Android malware and automatically mark mali-
cious features,’’ Secur. Commun. Netw., vol. 2023, pp. 1–11, Apr. 2023.

[47] A. Albakri, F. Alhayan, N. Alturki, S. Ahamed, and S. Shamsudheen,
‘‘Metaheuristics with deep learning model for cybersecurity and Android
malware detection and classification,’’ Appl. Sci., vol. 13, no. 4, p. 2172,
Feb. 2023.

[48] R. Yumlembam, B. Issac, S. M. Jacob, and L. Yang, ‘‘IoT-based Android
malware detection using graph neural network with adversarial defense,’’
IEEE Internet Things J., vol. 10, no. 10, pp. 8432–8444, May 2023.

FAHDAH A. ALMARSHAD is currently a Pro-
fessor (an Assistant Professor) with Prince Sattam
bin Abdulaziz University, Saudi Arabia. Her cur-
rent research interests include computer science,
machine learning, cyber security standards, infor-
mation assurance, security risks, security poli-
cies, security culture, and the Internet of Things
security.

MOHAMMED ZAKARIAH (Member, IEEE) received the bachelor’s, mas-
ter’s, and Ph.D. degrees in computer science. He is currently a Senior
Researcher with the College of Computer and Information Sciences, King
SaudUniversity. He has published 50 articles in reputed ISI-indexed journals.
His current research interests include image processing, speech processing,
signal processing, cybersecurity, and healthcare.

GHADA ABDALAZIZ GASHGARI received the
master’s degree in internet security and forensics
from Curtin University, Australia, and the Ph.D.
degree in computer science from the University of
Southampton, U.K. She is currently an Assistant
Professor with the Department of Cybersecurity,
College of Computer Science and Engineering,
University of Jeddah, Saudi Arabia. Her current
research interests include cybersecurity, cyberse-
curity governance, information assurance, spam,

malware, and phishing detection systems.

EMAN ABDULLAH ALDAKHEEL received the
B.Sc. degree in computer science from Imam
Abdulrahman Bin Faisal University, the M.Sc.
degree from Bowling Green State University, and
the Ph.D. degree in computer science from the
University of Illinois at Chicago. She is cur-
rently an Assistant Professor and the Program
Leader with the Department of Computer Sci-
ences, Princess Nourah bint AbdulRahman Uni-
versity, Riyadh, Saudi Arabia. She has published

her work in computer science in research publications, including the Inter-
national Conference on Software Engineering (ICSE), the IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW),
and the Journal of Management Information and Decision Sciences. Her
current research interests include high-performance computing, automatic
parallelization, cloud computing, concurrent and parallel software, and AI.

ABDULLAH I. A. ALZAHRANI received the B.S.
degree in computer science from Taif University,
in 2009, the M.S. degree in information secu-
rity and assurance from Middle Tennessee State
University, in 2016, and the Ph.D. degree in com-
puter science from the University of Southampton,
in 2020. He is an Assistant Professor with the
Computer ScienceDepartment, College of Science
and Humanities, Shaqra University, Alqwai’iyah,
Saudi Arabia, and the Vice Dean for Educational

Affairs with the College of Science and Humanities, Shaqra University. His
research interests include information security, data science, and the Internet
of Things (IoT).

127714 VOLUME 11, 2023

http://dx.doi.org/10.1016/j.cose.2023.103126
http://dx.doi.org/10.1002/spe.3112

