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ABSTRACT Research on the interaction between users and their environment has been conducted in various
fields, including human activity recognition (HAR), human-scene interaction (HSI), computer graphics
(CG), and virtual reality (VR). Typically, the interaction process commences with a human body part’s
movement and involves contact with a target object or the environment. The choice of the body part to
make contact depends on the interaction’s purpose and affordance, making contact a fundamental aspect of
interaction. However, detecting the specific body parts in contact, especially in the context of 3D motion
and complex environments, poses computational challenges. To address this challenge, this study proposes
a method for contact detection using motion data. The motion data utilized in this study are limited to actions
feasible in an office environment. Since contact states of different body parts are independent, the proposed
method comprises two distinct models: a feature model generating common features for each body part and
a part model recognizing the contact state of each body part. The feature model employs a bidirectional
long-short term memory(Bi-LSTM) structure to capture the sequential nature of motion data, ensuring
the incorporation of continuous data characteristics. In contrast, the part model employs separate weights
optimized for each body part within the deep neural network. Experimental results demonstrate the proposed
method’s high accuracy, recall, and precision, with values of 0.99, 0.97, and 0.95, respectively.

INDEX TERMS Affordance, contact detection, human activity recognition, human-scene interaction, human
motion.

I. INTRODUCTION
Human activities in our daily lives involve various physical
interactions with the surrounding objects and environments,
such as walking on the street, grabbing a door handle to open
it, and sitting on a chair. Such interactions are initiated by the
movements of the actor’s body parts and are associated with
physical contact between the body parts and target objects(or
environments) [1]. Owing to the inevitability and necessity of
physical contact with objects in human activities, detecting
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and analyzing contacts/touches in real-time during activities
is crucial for designing context-appropriate, intelligent, and
effective systems.

Despite their importance and potential benefits, identifying
the locations of physical contacts and their moments in 3D
environments remains a challenging problem that requires
complex contextual data and advanced processing method
such as wearable sensors and computer vision algorithms.
Unsurprisingly, various methods for body-contact analysis
have been proposed and evaluated in the fields of human
activity recognition (HAR) and human-scene interaction
(HSI) [2], [3], [4], [5], [6], [7]. These methods often
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consider the physical affordances of a target object and 3D
data to identify the interaction between the actor’s body
part and the object while utilizing or developing novel
sensing and processing approaches, such as depth cameras,
infrared (IR) cameras, inertial measurement units (IMUs),
and light detection and ranging (LiDAR) sensors. 3D human
behavioral motion data and environmental data have been
collected and analyzed to understand the contact status of
each part of the actor’s body.

However, previous research has typically followed separate
path for human motion capture [8], [9], [10], [11] and
3D scene reconstruction [12], [13], [14], [15] due to the
high complexity of the motion data and the computational
cost of processing algorithms. This separation results in
a lack of mutual complementation between motion and
environmental data, making comprehensive body contact
analysis challenging. Furthermore, heterogeneous equipment
and data involved in human activity analysis make the
analysis even more difficult (or impossible). For instance,
motion data may be represented as a body skeleton,
excluding human surface/skin information, and IMU-sensor-
based equipment cannot capture environmental information.
In previous works, detecting contact with the environment
or an object in 3D space required environmental data [16]
or physical information [17]. Furthermore, as the complexity
of the environment and the complexity of motion increase,
detecting contact becomes evenmore challenging. To address
these issues, there is a need for methods that can detect
contact status using only motion data without the need for
additional information.

To resolve this problem, we propose a method to detect
contacted parts among segmented body parts (e.g., hands,
feet, back, upper leg, and lower arm) using only motion data,
without 3D environment data. The proposed method consists
of two models: a feature model and a part model. The feature
model creates a common feature to be used as the input of
the part model. Given the continuous nature of time-series
body movement data, the feature model is created based on
the recursive neural network (RNN) structure, and the part
model recognizes the contact state of each body part using
the previous feature vector. All parts have the same structural
model; however, each part has its own weight because the
contact state of each part can be independent. The model
for each part is based on a deep neural network (DNN)
structure. Our main contribution is that the proposed method
detects the contacted parts among human bodies by using
only a motion data without the environment information and
physical features such as weight and height of a human.

For the learning and experimentation of the pro-
posed method, we collected basic body movements and
actions that could occur in an office environment with
context-appropriate objects such as telephones, water cups,
cabinets, and chairs. Additionally, we manually mark the
contact status in each frame of the collected motion data.
Because of the dominant hand and walking motions in the

office environment, most actions are associated with contact
with the hands and feet; however, in some other cases, such
as sitting on a chair, a complex contact state can be involved
depending on the chair form and location.

The remainder of this paper is organized as follows.
Section II describes research trends in interaction analy-
sis and contact detection. Section III describes the data
collection, feature configuration, and learning machine
construction. Section IV describes the proposed method in
detail. Section V evaluates its performance and explains the
experimental results. Finally, Section VI concludes the paper
with a discussion of its limitations and future studies.

II. RELATED WORK
A. CONTACT DETECTION BASED ON BODY MOTION DATA
Various studies have been conducted regarding contact. Foot-
contact information increases the accuracy of motion capture
by providing physical constraints. Ma et al. [17] conducted a
study on foot contact detection methods. The proposed detec-
tion method includes both motion data and the actor’s weight
information because motion data alone are insufficient. Lee
and Lee [16] suggested an iterative method for detecting body
parts that contact with a complex environment. This method
can deal with a highly dynamic motion by considering the
physical properties, but the 3D environment informationmust
be given. Narasimhaswamy et al. [18] proposed a method
for detecting hand contact states in complex environments.
The proposed method accurately identifies the positions
of the contacting hands from input images using masked
region-based convolutional neural network(R-CNN) [22]
and an attentional pooling module [23], even in highly
complex situations with multiple contacted hands. However,
the proposed method operates on static images and lacks
continuous contact information and the ability to distinguish
between the left and right hands. Kang and Lee [24] allocated
contactable candidate points on a character’s surface and
conducted research to generate appropriate poses to maintain
stable postures in a given environment. Although it can
generate various poses based on the user’s input position and
orientation, it differs from the proposed research in that the
contact points are found in the environment. Several studies
have been conducted on foot-contact detection. Kim and Lee
[19] used physical sensors, whereas Ma et al. [17] utilized
dynamic information and required both motion data and actor
weight information. Most of these studies required additional
information or devices for contact detection. Recent studies
have explored finding environmental contacts using 3D mesh
pose data. Hassan et al. [20] aimed to probabilistically
visualize mesh data, showing the contact for each body part
given 3D poses. This study shares a goal similar to ours
of finding contacts from 3D data. They represented specific
contact regions at the mesh level compared to our goal.
However, they used static data as input data, whereas we
found contacted parts from motion data, which is a strength
of our study. Huang et al. [21] proposed a method for
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TABLE 1. Comparison of studies on contact detection for human interaction.

FIGURE 1. Segmented parts of the human body and contact colors.

estimating the 3D contact information on the human body
from a single 2D image. Their method estimated the contact
information on the vertex level without 3D reconstruction,
making it a promising approach. However, contrary to our
objective, these studies targeted static poses. Table 1 shows
the comparison of studies on contact detection for human
interaction.

B. CONTACT DETECTION WITH 3D ENVIRONMENTAL
INFORMATION
To analyze interactive actions within the environment, both
user poses and environmental information are required.
However, acquiring such information in the environment
is challenging owing to occlusion from interacting objects,
which prevents complete information retrieval. To address
this problem, Hassan et al. [25] proposed a method for
estimating suitable poses using 3D geometric information
from incompletely captured human pose data in an interactive
environment. This method can accurately detect contact
information between adjusted poses and the environment;
however, it relies only on static pose information and has
the limitation of requiring accompanying environmental data.
Research related to the spatial representation in areas where
interactions occur has also been conducted. Savva et al.
[26] represented probabilistic interaction information in the
environment using action maps reconstructed by 3D depth
maps and proposed a method for finding feasible spaces for
given actions. The most crucial information in the interaction
is contact information, and representation through depth
maps does not sufficiently reflect this contact information.

TABLE 2. Types and details of the collected behavioral data.

To address this issue, Gupta et al. [27] proposed a method for
clearly representing person-scene contact relationships in 3D
scene data. Although this has the advantage of representing
the relationships between actions as a graph, it differs from
this study in that it uses 2D images instead of 3D data.

III. DATA COLLECTION
The equipment used to collect motion data can be broadly
categorized into vision-based devices (such as optical and
depth cameras) and devices that use IMU sensors. In our
study, we utilize Perception Neuron, an IMU sensor-based
device capable of capturing human motions effectively, even
in the presence of occlusion caused by object movement [28].
Table 2 lists the types of motion data collected and their
detailed descriptions. The walking motion, as the most
common basic motion performed by humans, was captured
in seven detailed actions, including straight walking and 90◦

turns (left and right). The ‘‘Sitting’’ motion involves various
changes in contact states and encompasses a significant
amount of contact occurrences depending on the type and
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FIGURE 2. An overview of our method.

method of chairs. We used three types of chairs: desk chair,
armchair, and stool. The detailed action of the armchair
involves using the backrest and armrests while sitting,
whereas the desk chair involves sitting using the knees.
Finally, for the stool, the action involved pulling the desk with
the hands and sitting down. The ‘‘Opening and Entering a
Door’’ motion involves a hinged door, where the door handle
is turned to open and enter. Cabinet-related motions included
opening the cabinet with both hands, finding documents
inside, and closing the cabinet again with both hands. The
motions of ‘‘Drinking Water’’ and ‘‘Answering a Phone’’
involve moving to a target location and drinking water from
a cup or answering a phone call. After completing the
motion, the subject returns to the initial position.We collected
22 motion data for the same subject by repeating motion
capture 22 times.

To facilitate training, both collected motion data and
contact state data are required. To create contact-state
data, the human body was divided into multiple parts, and
11 specific parts were chosen for contact-state recognition.
The parts used for recognizing the contact states include the
left (right) hand, left (right) foot, hips, back, upper left (right)
leg, and lower left (right) arm. Figure 1 shows the segmented
parts of the human body and the parts used for recognizing
contact states. The parts for contact-state recognition are
chosen arbitrarily based on their significance during office-
related movements. The upper and lower legs are excluded
because they are not involved in actual contact during office
movements. Additionally, although the spine consists of three
distinct segments (spine 1, spine 2, and spine 3) in the motion
data, it is treated as a single entity for recognizing the contact
states. The contact state for each frame in the motion data is
manually labeled as 0 (non-contact) or 1 (contact).

IV. PROPOSED METHOD
Figure 2 shows an overview of the proposed method. The
purpose of our method is to generate the contact-labeled
motion data from the original motion data. The input motion
data are represented in the form of a .bvh file that captures
the angles between the bones forming the skeleton at specific
time points. Through the data processing by using the motion
data, a feature vector is created to encompass spatial-temporal

FIGURE 3. Straight distance and geodesic distance for RDR.

features such as joint distances, distance ratios, and angles
between non-neighboring but significant bones. This feature
vector is referred to as a low-level feature (LLF). Each LLF
represents the features of every frame derived from the raw
motion data. Subsequently, a two-dimensional (2D) vector
is formed by incorporating continuous data from a specific
sequence, which is then transformed into a high-level feature
(HLF) through a feature model that determines the contact
state in each part of the model. The feature model has a
structure consisting of a stacked Bi-LSTM and an attention
layer. While the feature model processes the data, the 2D
LLF is converted into a 1D HLF and the 1D HLF is used
as common features to determine the contact state of each
part. Because we use deep a learning model, we need the
contact data of each motion frame for the model training,
which generally takes the form of discrete binaries. The data
is transformed into a continuous form tominimize loss during
the training process. Finally, the part model employs HLF
to recognize the contact state of each part, with independent
part model weights assigned to each part during the training
process. The contact-labeled data was generated using the
trained models.

A. DATA PROCESSING
The data consists of motion and contact data. The motion
data represents the angles of the joints in the skeleton, and
we create the LLF through data processing process. The LLF
includes the following four values.

• Absolute distance (AD): The distance of each segment
from the root.
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FIGURE 4. An example of PA: A represents the angle between the
shoulder-to-wrist and shoulder-to-elbow vectors, whereas B represents
the angle between the hip-to-spine and hip-to-ankle vectors.

• Relative distance rate (RDR): The ratio of the geodesic
distance to the straight-line distance of each part from
the root in (1).

RDR =
Distancestraight
Distancegeodesic

(1)

• Angular velocity (AV): Angular velocity for each part
• Pair angle (PA): Angle of a pair of parts
Figure 3 shows an example of geodesic distance measure-

ment. If we measure the geodesic distance from the root to
the left hand, we calculate the distance along the skeletal
structure, following the path: Root -> A -> B -> Left Hand.

Except for the pair angle (PA), the remaining values
are obtained from the other 12 parts, excluding the head,
as shown in Figure 1. Variations in the head during office
movements are not specifically relevant, except for eye
movements; therefore, they are excluded. AD and RDR each
have a size of 12 ×1, while AV has a size of 36 ×1, as it
calculates the angular velocities for each of the three axes.
The PA includes the angles between the wrist and forearm,
forearm and upper arm, knee and lower leg, and ankle and
foot, as shown in Figure 4, resulting in a size of 12 ×1,
incorporating the shoulder-to-hand, hip-to-thigh, and knee-
to-ankle angles.

By concatenating these four values, the LLF has a vector
of size 72 ×1 in (2).

LLF = concat(fAD, fRDR, fAV , fPA) (2)

During data processing, binary contact states represented
by 0s and 1s are transformed into continuous states.
In general, the contact states are represented as 0s and 1s.
However, the values output by algorithms usually appear as
decimal numbers between 0 and 1, and are rounded to achieve
binarization. Specifically, values equal to or greater than 0.5,
are considered as contact, while values less than 0.5 are
considered as non-contact (release). In the sequence models

FIGURE 5. General contact graph and the contact graph applied for
sigmoid function.

FIGURE 6. Feature model.

used for continuous data, rapid changes in the estimated
output values create unstable contact-state graphs. To address
this issue, we apply the sigmoid function to six frames,
consisting of three frames before and after the point of contact
change, based on the reference point of the contact transition.
This process transforms the contact states into continuous
contact state. In the contact state graph, when the contact state
transitions from (0, 1) or (1, 0), (3) (left) and (3) (right) are
used to create continuous contact state graphs. For the case of
(1, 0), which represents the transition from 1 to 0, an inverted
sigmoid formula is applied.

Figure 5 shows the discrete contact graph, which is
represented by 0 and 1, and the continuous contact graph
obtained by applying the sigmoid function. The transition of
the contact state occurs at time points ti and tj, and a sigmoid
function is applied to the ±3 frames around each time point
to create a continuous contact state.

1
1 + ej

,
1

1 + e−j
(3)
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FIGURE 7. Part model to recognize the contact state for each part.

FIGURE 8. The graphs of training loss for RNN, LSTM, GRU, and Bi-LSTM.

B. MODEL DESIGN
The proposed method is divided into two components: a
feature model that generates the HLF and a part model that
recognizes the contact state of each part. The feature model
has a recurrent neural network structure because the input
LLF has a continuous value variation. In this case, Bi-LSTM
structure [29] is employed, where both forward and backward
learning of the motion data are utilized to incorporate the
results into the HLF generation. To address the reduction
in the size of the feature vector during HLF generation
and mitigate information loss and the vanishing gradient
problem, we add an attention layer [30]. The attention layer
employs dot attention and calculates attention scores. The
concatenation of the forward and backward hidden state
values of the Bi-LSTM is multiplied by the input value of
the layer through the dot product, and the SoftMax function is
applied to determine the attention weights, ensuring that their
sum is equal to 1. Finally, element-wise multiplication of the
input value and attention weights is subjected to a reduced
sum, resulting in an output size of 64 × 1. Figure 6 shows
the structure of the feature model. The Bi-LSTM consists of
four layers with an input size of 32 × 72 and an output size
of 64 × 1.
The part model is designed to recognize the contact state

of each part independently as each model has unique weights
during a training process. And The model utilizes the HLF
generated from the feature model to recognize the contact
state for each part. It has a fully-connected layer (FCL)
structure to ensure that suitable weights are computed for
each feature vector element. The Part Model is composed of

FIGURE 9. The graphs of training loss according to learning rate.

FIGURE 10. The graphs of training loss according to the size of batch.

five layers, and each layer has an output size of 8 × 1. The
final layer applies the sigmoid activation function, resulting in
a single output value ranging from 0 to 1. The loss function
is the mean squared error, and the Adam optimizer [31] is
employed for optimization. Figure 7 shows the structure of
the part model.

Figure 8 shows the graphs of training loss for RNN, LSTM,
gated recurrent unit(GRU), and Bi-LSTM. Most graphs have
a similar pattern graph. But the Bi-LSTM has the least loss
comparing with others. And we conducted an experiment to
find the optimal learning rate and batch size. Figure 9 and
Figure 10 respectively show the results according to learning
rate and batch size. The proposed model has the lowest loss
when the learning rate is set to 0.001 and the batch size to 32.
Figure 11 shows the experimental results for the number of
Bi-LSTM layers being 3, 4, 5, and 6. We found that when the
number of Bi-LSTMs was 4, the loss was minimum. Table 3
displays our model’s details and settings for training.We have
also configured the hyperparameters for training the proposed
model, setting the sequence length of the training data to
32 and the number of epochs to 15.

V. EXPERIMENTS
We performed the experiments for contact detection using
the trained model. Figure 12 shows the loss change when the
binary and continuous contact states were applied separately.
It can be observed that the loss is consistently lower for the
continuous contact states at all intervals. Figure 13 shows the
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FIGURE 11. The graphs of training loss according to the number of
Bi-LSTM layers.

TABLE 3. Model details and settings.

TABLE 4. Configuration of the confusion matrix for experiments.

changes in the loss of each part during the training process.
In the last 15 epochs, the loss for each part was all < 0.01,
which is a very low value.

To evaluate the performance of the model, we present the
recognition results in a confusion matrix, as shown in Table 4.
In the confusion matrix, ‘‘contact’’ and ‘‘non-contact’’ are
denoted as ‘‘C’’ and ‘‘U’’ respectively. The numbers in the
confusion matrix represent the number of frames in each state
and recognized state of the results. Based on the values in
the confusion matrix, we calculated the accuracy, recall, and
precision using (4), (5), and (6), respectively.

accuracy =
CC + NN

CC + NC + CN + NN
(4)

recall =
CC

CC + NN
(5)

precision =
CC

CC + NC
(6)

FIGURE 12. The graphs of training loss for the discrete contact state and
continuous contact state.

FIGURE 13. The graphs of training loss for each part.

Table 5 shows the confusion matrix, accuracy, recall, and
precision for each part based on the recognized contact
results. In the confusion matrix, all parts except for the
foot start in the non-contact state, and the frequency of
the non-contact state was relatively high because the actual
interaction time was short. The total number of frames in
all motion data used in the experiment was approximately
130K, with a contact proportion of approximately 24%
(31,629 frames) and a non-contact proportion of 76% (98,761
frames). Table 6 shows the proportion of contact states
for each part compared with the total contact states (32K).
Because all data involved movements on the ground, the
proportions of the Left Foot and the Right Foot accounted
for over half of the total, and their proportions are similar.
In addition, LeftLowArm and RightLowArm have lower
proportions because contact occurs only when obtaining
support from the armrest of a chair. The average accuracy of
each part model was 0.99, and even for parts with a small
difference between contact and non-contact, an accuracy of
approximately 0.98 was obtained. The recall and precision
showed a high performance (over 0.90 for most parts). How-
ever, the recall for the back part was lower at 0.85 compared to
the othermetrics and parts. This is because in the actual sitting
posture (training data), contact occurs when the backrest
starts touching, but in the recognition system, contact is
recognized when the backrest is fully touched. Determination
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TABLE 5. Confusion matrix for each part.

TABLE 6. Ratio of contact states for each part compared to the total
contact state.

FIGURE 14. The results of applying contact recognition to motions and
visualizing them: From the top to bottom, the contact recognition results
for M0-M3 motions are shown.

of the contact status based solely on motion data when the
person is sitting with their backs upright, rather than leaning
against the backrest of the chair, is challenging.

Figure 14 shows a visualization of the contact parts
extracted from the motion(M0-M3). When contact occurs
in each part, the colors shown in Figure 1 appear. M0 is a

FIGURE 15. The results of applying contact recognition to motions and
visualizing them: From the top to bottom, the contact recognition results
for M4-M7 motions are shown.

walking motion, so it can be observed that contact alternates
between the left and the right feet. M1 is a motion of sitting
down and standing up with the hands on the desk. While
a person in the motion interacts with a chair and a desk,
contact occurs when the hands touch the desk while sitting
and standing up from a chair, followed by the UpperLeg and
Hips. And both feet keep the contact on the floor. M2 is
a sitting motion, and a person in M2 uses a backrest and
his own knees to sit. In cases where there is a backrest on
the chair, but the motion does not fully utilize the backrest,
it can be ambiguous to confirm contact because the person’s
back and thighs are nearly in a vertical posture, and there
is no pressure applied to the backrest. Therefore, to ensure
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TABLE 7. Confusion matrix for each motion.

clarity in contact status, we encourage the complete use of
the backrest. As a person in M3 interacts with a chair with a
backrest and armrests, he uses them to sit comfortably. M3 is
the motion of leaning against the backrest while sitting, and
it can be observed that the chair armrest, seat, and backrest
are sequentially in contact.

Figure 15 shows a visualization of the contact parts for
the motion(M4-M7) using only hands. M4 is a motion that
involves entering an office by opening a door. It can be
observed that the right hand makes contact with the doorknob
while the person opens the door. M5 is a motion that involves

opening a cabinet with both hands and touching a book.
After opening the cabinet, the right hand of a person reaches
into the cabinet to touch a file. During this action, the left
hand maintains contact with the cabinet door until just before
closing it. For M5, the result on second line in Figure 15
shows that the contact occurs in order of interaction with a
cabinet and a file. M6 is a motion involving the interaction
with cups to drink water. The third motion in Figure 15 shows
the contact parts during the drinking action. The contact of the
right hand begins when it grasps the cup and continues until
just before placing the cup back after drinking.M7 is amotion
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FIGURE 16. Contact state graph for the back part of M2.

involving answering a phone. The fourth motion shows the
contact parts for M7. The contact of the right hand starts from
grasping a receiver. And the contact continues during talking
on the phone. As soon as the person places the receiver back,
the contact of a right hand ends.

Table 7 shows the confusion matrices for each type of
motion. Except for BACK in M2 and M3, all values showed
high results at 0.9 or higher. There were no cases in which
non-contact state-only situations were incorrectly recognized
as contact states in all motions and parts. Although most parts
showed high recognition rate, there were differences in the
recognition rate depending on the sitting behavior type of
the back. This is because M1, M2, and M3 all performed
the sitting; however, M1 performed the motion without back
contact, whereasM2 andM3 performed the motion with back
contact. In the case of M2, the start of the back contact was
faster than that in the actual data owing to the influence of
M1, while the end of the contact was faster in the actual data.
Figure 16 shows the recognized contact state of the back part
for the M2 motion and the actual contact state. In the actual
data, it started at frame 243 and ended at 313, but in the
recognized contact state, it started at a shorter frame, 248,
and ended at 308.

VI. CONCLUSION
In this paper, we propose a method for detecting the contacted
parts from 3D human motion data. The proposed method
consists of two models: a feature model and a part model.
The feature model utilizes a Bi-LSTM structure to process
the sequential features of the motion data. The part model
employs a DNN with optimized weights for each body part.
Through experiments, we evaluated the accuracy, recall, and
precision of the proposed method, resulting in values of 0.99,
0.97, and 0.95, respectively.

The limitation of our work is the time-consuming process
of creating labeled motion data with contact tags for
training. We collected the training data by manually tagging
each frame, which is an inefficient method, necessitating
alternative approaches. Additionally, because we rely on
joint angles to recognize contact states, we cannot precisely
determine the contact range for each body part. As a future
research direction, we aim to expand the recognition of
contact states to a wider range of behaviors beyond office
interactions and further investigate methods for user behavior
recognition using continuous contact states. Contact is an
essential element of interaction, andwe anticipate that contact

information can be applied to various topics within the fields
of HAR and HSI.
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