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ABSTRACT Citrus canker is among the major plant diseases caused by Xanthomonas citri which affects
the quality and quantity of citrus fruit. This results in the reduction of citrus production which causes a huge
financial loss and livelihood of the farming community. Thus, it is critically important to build a robust,
accurate, and time-efficient detectionmethod for real-time identification of the disease. Due to their powerful
learning capabilities and improved feature extraction, deep learning approaches havemade it feasible to carry
out a number of tasks related to the identification of citrus canker in citrus leaves. Previous research has
primarily focused on detecting citrus canker on fruits, early detection on leaves can facilitate the adoption of
preventive measures before the disease reaches a critical stage. This paper proposes a novel deep learning-
based approach for determining the growth rate of citrus canker by classifying it into six distinct stages:
water soaking, yellow chlorosis/initiation, chlorosis, blister formation, canker development start, canker
infection (50% of the inoculated area), and canker infection (100% of the inoculated area). The proposed
approach involves image conversion, size reduction, image augmentation, and the utilization of DenseNet-
121. Experimental results demonstrate a classification accuracy of 98.97% using the suggested approach.
The Accuracy was 98.97%with macro precision 97%, weighted precision 99%,Macro recall 98%, weighted
recall 98%, macro F1_Score 97% and weighted F1_Score 98%. This study presents a unique technique
for detecting and classifying the growth rate of citrus canker based on six different stages, while also
calculating the temporal change in the affected area of the disease in inoculated citrus leaves. Furthermore,
a mathematical model is proposed to predict the disease’s growth rate at any given time, offering valuable
insights for disease management and prevention.

INDEX TERMS Citrus canker, plant diseases, growth rate prediction, deep learning.

I. INTRODUCTION
Citrus production and quality face significant threats from
diseases, such as citrus canker, insect pests, water availability,
and climate change [1], [2]. Among these issues, citrus
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diseases have emerged as a primary factor contributing to
reduced yield, compromised fruit quality, and shortened tree
lifespan worldwide [3]. As a result, citrus exports to key
global markets, including the European Union (EU) and
American citrus markets, are hindered due to quarantine
measures aimed at controlling fruit diseases like citrus canker
[4]. The bacterium Xanthomonas citri causes citrus canker
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(hereafter referred to as X. citri), and poses a significant
threat to the citrus industry [5]. It is classified as a quarantine
disease, prohibiting the movement of citrus fruits across
markets and countries, thereby imposing severe limitations
on citrus producers. Infected citrus fruits exhibit unsightly
appearances, excessive discoloration, reduced quality, and
premature maturity, rendering them undesirable in the market
[6]. The range of impacts caused by X. citri, ranging from
mild symptoms to complete plantation loss, has devastating
consequences for citrus production and its contribution to the
national economy [5].
Early detection of citrus canker disease at its initial stages

of development is very important as it could be helpful
for designing a plan for control of the disease before it
attains threshold level and severe productivity and financial
loss. Early identification of citrus canker during the initial
growth phase can prevent disease transmission to other plant
parts, particularly fruits, which are a vital economic product,
thereby enabling significant cost savings [11]. Accurate
estimation of citrus fruit production prior to harvest is highly
crucial for the citrus producer community and decision-
makers. However, identifying cankers poses a significant
challenge for plant pathologists, requiring the adoption of
scientific methods, laboratory procedures, and long-term
observations [7]. Previously, in situ disease identification
was not feasible, and farmers had to send infected leaf and
fruit samples to a plant pathology lab, where a pathologist
confirmed the disease and assessed its severity. This process
is labor-intensive and time-consuming [8]. The delay caused
by laboratory procedures impeded timely responses, leading
to reduced crop productivity [9]. Therefore, the automation
of disease detection systems is crucial for rapid identification
and assessment of disease severity [10].

Computer vision has become a novel technology for the
detection and diagnosis of image-based diseases in a variety
of uses, including medicine, security, and agriculture [12].
It includes image processing, image analysis, and image
classification [13]. Modern image processing and pattern
recognition tools have been found to help farmers and
agricultural specialists in identifying plant diseases. It is
possible to automatically assess the quality of agricultural
goods using images and different artificial intelligence-based
approaches [15]. Images of the various plant parts can be
taken in order to develop a system for detecting plant diseases.
The leaves of plants are the part where plant diseases are most
frequently seen at an initial stage.

Despite the fact that image processing techniques are
effective in identifying plant diseases, these systems are prone
to errors in leaf images because of differences in form, color,
texture, and other factors. These imagesmight be used to train
machine learning and deep learning models. The accuracy
of the input data representation is a key component of prior
machine learning techniques employed in the past [14]. Poor
feature extraction from raw data may result in inaccurate data
classification being provided by machine learning algorithms

[16]. In a previous study [17], authors used different machine
learning techniques on their own developed dataset to
diagnose and identify the growth rate of citrus canker.
In their study, they investigate the efficiency of different
classifiers in the classification of different stages of disease
development in citrus cankers. The authors found that the
efficiency of classifiers (NB, NN, and KNN) was low (below
90%). To achieve high accuracy regarding the classification
of different citrus canker stages, they proposed to apply deep
learning techniques.

Recently, the agriculture industry has employed a number
of deep learning models to tackle a variety of challenges,
including insect identification, fruit detection, plant leaf
categorization, and fruit and leaf disease detection [18].
Deep learning techniques can pave the way for overcoming
difficulties regarding feature extraction, classification, and
developing expert systems that could help the agricultural
community in improving the quality and production of
their fruit plants. DenseNet-121, ResNet-50, and MobileNet
are a few popular models that have been used previously
for image detection and classification in the diagnosis and
identification of various plant diseases [19]. ResNet-50
performs better on large-scale datasets [20]. With its ability
to capture deeper and more hierarchical features, ResNet-
50 can excel in scenarios where there is an abundance of
training data. It can effectively learn complex representations
from large datasets and achieve superior classification
accuracy. MobileNet models, on the other hand, used in
the optimization of efficiency, still maintain a good level of
accuracy [21]. However, due to the reduction in parameters
and computations, they may not perform well under certain
conditions especially when the dataset is not fairly big
enough. In contrast, DenseNet-121 tends to perform better
than ResNet-50 on smaller datasets [22]. This is due to the
fact that DenseNet-121, demonstrates a strong performance
in various computer vision tasks and achieves high accuracy
[23]. The dense connectivity pattern allows information
to flow through the network more effectively, enabling
better feature representation [24]. Therefore, DenseNet-121
due to its dense connectivity pattern, parameter efficiency,
and feature reuse makes it a powerful choice for image
classification tasks, especially when resources are limited
[25]. However, the choice between CNNs and DenseNet-
121 ultimately depends on the specific task requirements
and available resources. For diagnosis and identification of
different plant diseases, different image classification models
like CNN, ResNet-50, and MobileNet have been extensively
used but these techniques have never been employed for the
estimation of temporal change in the growth of particular
plant disease which is of utmost importance for guidelines
and adaptation of precautionary measures to farmer’s com-
munity based on disease stage/severity. Hence, it is very
important to find the different disease growth stages of citrus
canker and model them accordingly to identify the crucial
stage of disease severity or the level at which minimum
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economic loss is predicted and indicate the guidelines about
adoptingmeasures against the disease.Moreover, most recent
studies have shown significant difficulties in improving
the classification accuracy rates, especially in the complex
background. Images of plant leaves can be analyzed in a fairly
complicated way to reveal the majority of disease signs. Even
agronomic professionals, citrus growers, and farmers struggle
to detect plant diseases because of the complicated nature
of phytopathological issues and the wide range of crops.
The effectiveness of disease characteristics, their extraction,
and the type of classifiers utilized determines the success
of plant disease detection systems [26]. Instead of real-field
image datasets, the majority of studies used image datasets
that have been developed under laboratory conditions, such
as the PlantVillage dataset. It has been noted that the type
of dataset utilized for training and testing purposes has
a significant impact on the performance of the classifiers
employed. Researchers should thus first develop a significant
number of real-conditioned images for the model’s training
and testing in order to improve classification on real-
conditioned images of diseased plant leaves. Furthermore,
previously, citrus canker datasets were developed in fruits,
leaves, and twigs under controlled laboratory conditions.
However, as described real field conditions are much more
diverse and complicated. Keeping in view the above issues
and challenges and developing a prediction system for a
growth rate of citrus canker with six severity levels in a
natural real field environment with high accuracy the present
study was planned. The primary goal of the proposed study
is to employ the proposed model using DenseNet-121 to
identify and categorize citrus canker disease rate at different
phases of its growth with several fine-tuning layers for
enhanced and precise results. For this purpose, the DenseNet-
121 model was used with additional layers, to enhance the
classification accuracy of the different stages of citrus canker
growth rate for a timely early detection system. For this
purpose, the proposed model uses DenseNet-121, to enhance
the classification accuracy of the different stages of citrus
canker growth rate for a timely early detection system.
The proposed model exhibited macro F1 score as 97% and
weighted F1 score 98% using DenseNet-121 which was
significantly higher than the previously employed DenseNet-
121 models in detection of various plant diseases as F1-score
95% [64] macro F1 score as 85% and weighted F1 score 93%
[65] F1-score 92.83% [66].

A. RESEARCH CONTRIBUTIONS
• A Real-field dataset is created for Citrus canker growth
rate assessment under diverse and complex environmen-
tal conditions.

• Implementation of a hybrid deep learning model to
enhance the efficiency of classifying different stages
of disease development in citrus leaves. Our Dataset is
novel in the sense that it captures disease at different
growth stages.

• Temporal calculation of the affected area of citrus
diseased leaves to determine the growth rate of citrus
canker.

• A mathematical model is also proposed to predict the
percentage of the affected area over a specified time.

The research paper is structured as follows: Section II
provides details on the dataset collection, and Section III
presents the proposed methodology for diagnosing citrus
canker disease in leaves. Section IV analyzes the results
and outcomes discussion obtained from the implemented
approach. Finally, Section V summarizes the research work
and presents the conclusion.

II. DATASET
This section provides a brief overview of the dataset
collection and annotation process carried out by domain
experts. A comprehensive procedure and way of collecting
datasets can also be found in the author’s article [17].

A. SPECIMEN DATASET COLLECTION
Bacterial strains X. citri was obtained from the Crop
Diseases Research Institute (CDRI), National Agricultural
Research Centre (NARC), Pakistan. By means of a monthly
transfer, the culture was kept on yeast- dextrose-calcium
carbonate agar (YDC) slants for regular usage [27] and,
yellow mucoid colonies were included. Cells were grown in
liquid Nutrient Broth Yeast extract NBY and the obtained
log phase suspensions were adjusted to have 108 CFU/ml
in 0.85% saline [28]. Citrus paradisi (Grapefruit) newly
unfolded leaves were infected by gently pushing the aperture
of a syringe without a needle on the abaxial leaf surface
while being maintained by one finger and 1×108 CFU ml
of X. citri strains [29]. Control inoculations were made
with 0.85% saline.The progression of canker symptoms
was recorded over a period of 21 days until the maximum
affected area was observed. Plants were inoculated under
natural field conditions with the culture of already prepared
X. citri strains. Sample images depicting citrus canker
development are presented in Fig. 1. A systematic diagram
illustrating different stages of citrus canker development has
been presented in Fig. 2. Moreover, a detailed description
of various stages of citrus canker development has been
presented in Table 1.

B. EVALUATION OF GROWTH STAGES OF CITRUS CANKER
The dataset used in this study exhibited class imbalance, with
varying numbers of images for each of the six stages of canker
development (Table 2). This imbalance was a result of natural
field conditions and the severity of the disease, impacting leaf
health and growth. The six different stages of disease devel-
opment based on lesion appearance or halo zone appearance
were as follows: water soaking, yellow (chlorosis)/initiation
(pale yellow/pale green), chlorosis, blister formation, canker
development start, and canker infection (50% and 100% of
the inoculated area) [30]. Water soaking manifests as a moist,
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FIGURE 1. Sample images of citrus canker levels/growth rate.

dark, and typically sunken and/or transparent appearance
on plants or lesions [31]. The presence of a yellow halo
characterizes yellow (chlorosis) symptoms [32]. Chlorosis,
which affects chlorophyll, leads to the yellowing of typically
green leaves. Severe disease attacks result in the formation
of brown elevated areas, often referred to as craters, pustules,
or blisters, surrounded by a yellow halo. Within 12 days of
inoculation, small, slightly elevated blister-like lesions appear
on leaves under optimal conditions [33]. Round to irregular,
swollen, flattened, cracked, discolored, or dead patches on
the leaves are the early warning indications of canker growth.
The training set and validation set had 1004 and 253 images,
respectively.

III. METHODOLOGY
The framework for the detection and classification of the
Citrus canker growth rate has been shown in Fig. 3.
In preprocessing, the first reduction in image size was done
and then converted into Grayscale. Image augmentation was

employed in the proposed technique to enhance the size
of the dataset using various approaches including vertical
flip and horizontal flip because deep learning techniques
demand a significant quantity of data. DenseNet-121 was
later employed for feature extraction and classification of
levels and growth rates of citrus canker disease.

A. PROPOSED APPROACH
Preprocessing of input image data with a size (h, w, c) of
250, 250, 3 that had been carried out in a series of procedures
was the initial stage. In preprocessing, reduce the size of the
image and convert it into greyscale. To avoid the issue of
overfitting, deep learning models rely on a large quantity of
data. Agriculture is one of several industries where access to
massive data is challenging and it was a special case as we
were required data to find the growth rate of citrus canker on
a daily basis. In the present study, the authors captured images
of citrus canker-diseased leaves at various growth phases.
Using the Image Data Generator method, the dataset was
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FIGURE 2. Stages of citrus canker development.

TABLE 1. Description of different stages in the growth of citrus canker.

TABLE 2. Imbalanced citrus canker training and validation dataset.

generated which comprised images of diseased citrus leaves.
Since deep learning algorithms often require a lot of data,
image augmentation was performed to increase the quantity
of the dataset. This issue of insufficient data was resolved
by image augmentation [34]. In order to provide datasets for
deep learning models with enhanced accuracy, a variety of
strategies are used in image augmentation [35]. This kind
of augmentation can involve both horizontal and vertical

axis flipping. Vertical and horizontal flipping has been used
as shown in Fig. 4. Among generated images 80% dataset
was used for training and 20% for testing/validation. There
was a total of 06 classes in the dataset. Feature Extraction
was performed by using the DenseNet-121 Model. The
generalized systematic architecture of the proposed model
using DenseNet-121 is shown in Fig. 5. Hyperparameters,
namely optimizer like Adam, batch size like 50, a learning
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FIGURE 3. Framework for detection and classification of Citrus canker levels/growth rate.

rate of about 0.002, and dropout at 0.5 applied during training
the model as shown in Table 3.

DenseNet-121 is a convolutional neural network (CNN)
architecture widely used for tasks like image classification
[36]. It is based on the concept of densely connected layers,
where each layer is connected to every other layer in a block.

First, the input layer receives the input image and
passes it to the subsequent layers for processing. DenseNet-
121 consists of several convolutional layers that perform
feature extraction [37]. These layers use filters to scan the
input image and detect various patterns and features. The
dense blocks in Dense-121 are a distinctive feature. Dense
Block 1 contains multiple densely connected convolutional
layers. Each layer receives inputs from all preceding layers
within the block, enabling feature reuse and promoting
gradient flow. After each dense block, a transition layer
is included to down-sample the feature maps. It performs
spatial compression by using techniques like average pooling
or convolution with stride to reduce the dimensionality of
the feature maps. Similar to Dense Block 1, Dense Block
2 continues the pattern of densely connected convolutional
layers. These layers further extract features from the down-
sampled featuremaps. Another transition layer followsDense
Block 2 to further downsample the feature maps. Dense
Block 3 continues the densely connected layers and feature
extraction process. The last transition layer further reduces
the spatial dimensions of the feature maps. After the last
transition layer, a global average pooling layer is applied
to convert the 2D feature maps into a 1D vector. This

TABLE 3. Deep learning model parameters.

operation calculates the average value for each feature map,
reducing the spatial information to a fixed-length vector.
DenseNet121 ends with a set of fully connected layers.
These layers take the global average pooled vector as input
and perform classification. Batch normalization helps to
speed up the training process, dropout is a regularization
approach that prevents overfitting. Softmax is an activation
function that is used for a multi-classification model. The
output layer using the softmax activation function produces
the desired output, such as the predicted class probabilities
for image classification into six classes based on lesions
appearance/severity of the disease i.e. Water Soaking, Yellow
(Chlorosis)/initiation (Pale Yellow/Pale Green), Chlorosis,
Blister formation, Canker Development Start, Canker Infec-
tion (50% of Inoculated area) and Canker Infection (100%
of Inoculated area). The proposed deep learning model using
DenseNet121 layers is shown in Table 4.

IV. RESULTS AND DISCUSSION
The leaves images after inoculation of X. citri over a specified
time interval were taken. The diseased/infected leaves images
were categorized into six stages based on the lesions’
appearance or hallo zones on the surface of the citrus leaves
surface. These levels describe the various stages of disease
development. These six different disease development stages
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FIGURE 4. Different scenarios of image augmentation.

TABLE 4. Proposed deep learning model using DenseNet-121.

were then modeled and the stage initiation was predicted
using the proposed model.

A. PERFORMANCE MEASURE
Accuracy, precision, recall, F1_Score, and Support measures
were used to assess the performance of the classification
model. A combination of precession Eq.(1) and recall Eq.(2)
is the F1 score that is generally applied for imbalanced
datasets.

Precision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
(2)

where
TP = True Positives
FP = False Positives
FN = False Negatives

B. EXPERIMENTAL RESULTS
The Accuracy was 98% with macro precision 97%, weighted
precision 99%, Macro recall 98% weighted recall 98%,
macro F1_Score 97% and weighted F1_Score 98% at hyper

TABLE 5. Classification results of proposed method using validation data.

parameters batch size 50, learning rate 0.002, the dropout
rate was 0.5 and number of epochs were 100 for getting
these optimal results to train the DenseNet-121 model. The
classification report of the proposed model using DenseNet-
121 is shown in Table 5. The proposed model using
DenseNet-121 training accuracy, validation accuracies, and
training loss, validation loss, respectively has been also
depicted in Figures 6 and 7.

From Fig. 6, while epochs were increasing, accuracy
also increased for training the proposed model using the
DenseNet-121 model for 100 epochs and reached a training
accuracy of about 100% and validation accuracy of about
98.97%.

From the confusion matrix, as shown in Fig. 8, the
water soaking was correctly predicted for 12 samples out
of 12 samples. Yellow (Chlorosis) was perfectly predicted
for 22 samples out of 22 samples. The Chlorosis was
predicted for 16 samples out of 17 samples. The Blister
formation and the inoculated area) was correctly predicted
for 40 samples out of 40 samples. The Canker infection
(50% of the inoculated area) was predicted for 45 samples
out of 46 samples. The Canker infection (100% of the
inoculated area) was correctly predicted for 56 samples out
of 56 samples.

C. CLASSIFICATION ACCURACY
The classification accuracy of different models indicates
that the proposed technique achieved the highest accuracy
(98.97%) compared to other employed models like N.N, NB,
KNN, SVM, ResNet-50, and MobileNet (Table 6). This is
due to the fact that DenseNet-121 is more parameter-efficient
compared to ResNet-50 [40]. DenseNet achieves parameter
efficiency through its dense connectivity pattern, where
feature maps from previous layers are directly connected
to subsequent layers. This allows for efficient feature
reuse, resulting in a smaller number of parameters required
compared to ResNet-50. Similar to this, MobileNet is a
lightweight network that uses depth-wise separable convo-
lution to deepen the network while minimizing parameters
and computation [41]. The lightweight model MobileNets
strives to strike a compromise between model accuracy and
compression [42]. Similar to this, Support Vector Machine
(SVM) classifications the data by employing hyperplanes
that serve as decision boundaries between various classes
[43]. According to Mammone et al. [44], SVM seeks for
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FIGURE 5. Proposed approach using DenseNet-121 architecture.

FIGURE 6. Training and validation accuracy.

TABLE 6. Classification accuracy achieved by employed various classifiers.

the best and most ideal hyperplane that maximizes the
margin from each Support Vector. However, SVM has a

number of drawbacks, including the difficulty in selecting
the right Kernel function (to handle the non-linear data)
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FIGURE 7. Training and validation loss.

TABLE 7. Comparative analysis of proposed technique with previously employed approaches in detecting citrus canker.

[45]. The accuracy of other employed classifier KNN
was also observed low (90%) compared to the proposed
approach. This is due to the nature of the KNN as the KNN
algorithm is one of the simplest classification algorithms [46].
A supervised machine learning method called Naive Bayes
was utilized for classification tasks [47] which also exhibited
low efficiency (84%) while the Neural network only showed
82% classification accuracy. The proposed model accuracy
was also compared with the previous studies and findings are
summarized in Table 7.
The higher accuracy is due to the technique proposed

using DenseNet-121. The higher efficiency of DenseNet-121
has been reported in several previous studies. Shireesha and
Reddy [50], proposed aDenseNet-121model, for comparison
of detection and classification of healthy leaves with those
infected with citrus canker. The results demonstrated that the
model does well on a number of different metrics. Using the
ImageNet pre-trained DenseNet-121 model, they achieved

96% accuracy in 50 epochs and five classes. Kukreja et al.
[55], who used deep learning technology for effective and
precise detection of citrus canker disease, obtained some
similar outcomes. On a dataset of six citrus canker severity
levels, ranging from healthy to seriously diseased, their
suggested model was trained. The proposed model’s total
accuracy on the testing set was 94.03%.

D. MEASUREMENT OF CITRUS CANKER AFFECTED AREA
Citrus canker is harder to identify from images taken in real
field conditions than it is from images taken in labs for a
number of reasons, one of which is that the background can
occasionally resemble a particular area of a canker lesion
[4]. To deal with this problem, the proposed approach was
used which includes image conversion, size reduction, image
augmentation, and DenseNet-121. In the present study, the
affected area with each passing day was also calculated and
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FIGURE 8. Confusion matrix of DenseNet121 on validation data.

FIGURE 9. Temporal change in diseased affected area of citrus leaves.

is shown in Fig. 9 which indicates that in the first two
days, the affected area was 0%. This could be due to the
fact that the disease in the initial days started to proliferate
and its symptoms appeared after a few days. A similar
observation was also made by Lins et al. [59] who described
that on the initial day, canker development under natural
field conditions was not visible significantly. From day 3, the
disease symptoms started to appear and the affected leaf area
recorded was 1%. Gottig et al. [60] also illustrated a similar
phenomenon and visible symptoms in the development of
citrus canker by Xanthomonas axonopodis pv. citri. From
day 3 onward, the affected area continuously increased with
each passing day and reached its maximum value at 21 days
(35%). Thus it was observed that the minimum affected area
appeared on day 3 while the maximum affected area was

TABLE 8. Comparison of mathematical model with observed data.

TABLE 9. Percentage of affected area as predicted by the mathematical
model.

observed on day 21. Thus we can observe that 35% area was
affected by the disease in 21 days.

However, from the proposed model it was calculated that
complete damage of the leaf (100%) would have occurred at
39 days. The affected area was calculated daily by the given
formula as described by Zainab et al. [17].

AffectedArea =
A1
A2

× 100 (3)

A1 = Diseased Area
A2 = Healthy Area

E. PROPOSED MATHEMATICAL MODEL
A mathematical model of second order polynomial is
proposed to predict the percentage of affected area (A) as
Eq.(4):

A = −1.43626 + 0.71741 T + 0.04953 T 2 (4)

A = % affected area
T = number of days

The error in the percentage of affected area observed and
predicted by the mathematical model is shown in Table 9.
Maximum error was less than 1.5%. A comparison of
proposed mathematical model with observed data of affected
area by citrus canker has been presented in Fig. 10.

Using this mathematical model, the affected area is also
tabulated up to 100% effect, as shown in Table 9.
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FIGURE 10. Comparison of proposed mathematical model and observed data of affected area.

Based on the prediction of the model, a similar generalized
mathematical model can be developed Eq. (5) for any other
study of disease effects by collecting three days’ data and
simultaneously solving the following mathematical model to
evaluate the unknown constants (C1, C2, C3).

A = C1 + C2T + C3T 2 (5)

Early plant disease detection has been a field of interest
in many aspects as it provides an early sign of controlling
disease and minimizing economic loss. Several studies illus-
trate the importance of the reorganization model. By using
the Involution Bottleneck module in the network topologies
of YOLOv5, Wu et al. [61] developed a new YOLOv5-B
model. According to their findings, the YOLOv5- model
outperformed the YOLOv5 and PP-YOLOv2 models for
multi-target identification of bananas, with a mean average
position (mAP) of 93.2% overall. Wu et al. [62] used a
deep learning-based edge detection technique to identify the
overall cluster of banana fruits. According to their findings,

the final bunch detection accuracy rate was 86%, the mean
pixel precision was 0.936, and the target segmentation MIoU
was 0.878 during the debudding phase. A bunch counting
accuracy rate of 93.2% and a bunch detection accuracy
rate of 76% were also attained. In-depth illustrations of
the techniques for enhancing fruit detection in complicated
contexts were also provided by Tang et al. [63].

V. CONCLUSION
Deep learning-based approaches have shown promising
results in plant disease detection. The detection of citrus
canker can be determined by observing the structure defor-
mation of citrus leaf images. A deep learning-based approach
was suggested in this paper to detect and classify the different
stages of citrus canker disease development, and to find
the temporal change in citrus canker growth rate. As our
classes in the Dataset were imbalanced, we used different pre-
processing methods and data augmentation for image gener-
ation because of this, the performance of the model increased
significantly and achieved 98.97% accuracy for identifying
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six different levels of Citrus canker as the growth rate of
disease. The proposed method accurately detects six citrus
canker stages: water soaking, yellow chlorosis/initiation,
chlorosis, blister formation, canker development start, canker
infection (50% of the inoculated area), and canker infection
(100% of the inoculated area). with an overall classification
accuracy of 98.97%. The proposed approach involves image
conversion, size reduction, image augmentation, and the
utilization of DenseNet-121. The Accuracy was 98.97%
with macro precision 97%, weighted precision 99%, Macro
recall 98%, weighted recall 98%, macro F1_Score 97%
and weighted F1_Score 98%. A maximum disease-affected
area was observed from day 1 to day 21 which was later
mathematical modeled and predicted as 100% damage at
35 days. It finds disease severity from low to high. Previously,
mostly image processing, computer vision, and machine
learning techniques have been extensively applied for the
identification and classification of different plant diseases
on fruits and stem surfaces rather than leaf surfaces that in
fact delayed the time process for adaptation of precautionary
measures. The present study is novel in the sense that it
proposes a deep learning technique for the early detection
and classification of different levels of citrus canker to
find the growth rate of disease through leaves and also
calculate the affected area of the leaf with each passing
day. A mathematical model of second-order polynomials is
also proposed to predict the percentage of the affected area.
Additionally, the findings of our experiment demonstrate
that the proposed strategy is superior to the already used
methods. The present approach findings will be helpful in
the early detection and classification level of citrus canker
disease identification and adaptation of preventive measures
to control the disease before approaching the threshold level.
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