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ABSTRACT Traffic sign detection is a critical task in the autonomous driving. Ordinary networks cannot
obtain satisfactory results in traffic sign detection because the size distribution of traffic signs are extremely
unbalanced. To overcome this challenge, this paper proposed an improved YOLOv7-Tiny object detection
model. Firstly, a path connection strategy was proposed to enhance small-scale feature representation.
Compared to the original FPN connection strategy, it adds a path that leads out of the backbone and connects
into the Feature Pyramid Network(FPN). Secondly, we proposed a new down-sampling module—-Slice-
Sample. By slicing, the size of the feature map is reduced and subsequently, the weights of the sliced
feature map channels are assigned using the channel attention mechanism. It can reduce the loss of feature
information. Additionally, a module for detecting attention was proposed to address the aliasing effect found
in the fusion of different scales. This channel attention mechanism not only focuses on the correlation of
neighboring channels, but also employs two branches to increase the model’s ability to extract information
from the feature map. Experiments on the German Traffic Sign Detection Benchmark (GTSDB) showed
that the improved model can achieve more remarkable performance than yolov7-tiny. Our method achieved
93.47% mean average precision (mAP) surpassing the yolov7-tiny’s 7.48%, and the frames per second (FPS)
value is maintained at 67.5. Besides, our method is superior to other lightweight models on the GTSDB.
To demonstrate the generalizability of our approach, we tested it on the Tsinghua-Tencent 100K dataset
(TT100K) without tuning and obtained 66.29% mAp surpassing the yolov7-tiny’s 7.59%. In addition, the
number of parameters of improved YOLOv7-Tiny is about 23.29 M.

INDEX TERMS Traffic sign detection, feature pyramid network, down-sampling, attention mechanism.

I. INTRODUCTION

Traffic sign detection is a widely studied area of research,
focusing on identifying and classifying traffic signs in
real-world scenarios. However, the detection process is sus-
ceptible to various factors that can affect the accuracy and
processing time, resulting in unstable performance [1].

In general, the detection methods for traffic signs can
be divided into two categories: the conventional method,
which relies on manual design features, and the deep learning
method, which is based on Convolutional Neural Network
(CNN). The manual design features have limitations in
effectively representing diverse objectives, which leads to
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poor generalization ability in complex scenarios. In contrast,
CNN models have the ability to learn features from a large
number of samples and can represent complex object fea-
tures through a rich convolution hierarchy. Consequently,
many scholars currently employ CNN models for object
detection.

Detection methods, which rely on the CNN, can be catego-
rized into two types: single-stage and two-stage algorithms.
The single-stage algorithms, unlike the two-stage algorithms,
don’t produce candidate regions. Some well-known examples
of the single-stage algorithms include the YOLO [2], [3], [4],
[5], [6], [7] and the SSD [8], [9], [10] series. Conversely, the
two-stage algorithms necessitate the generation of candidate
regions. An exemplary representative of the two-stage algo-
rithms is the R-CNN [11], [12], [13] series.
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The above generalized methods are not very effective in
traffic sign detection. Therefore, some scholars have designed
models for traffic sign detection. Tabernik and Skocaj [14]
used Masked R-CNN to handle the entire process of detec-
tion and recognition. They solved the problem of detecting
and recognizing a large number of traffic sign categories
by performing end-to-end automatic learning. Furthermore,
they expanded their traffic sign detector by incorporating data
augmentation and Online Hard-Example Mining (OHEM)
[15] to further enhance its performance. Ruta et al. [16] opted
for a simple yet resilient image representation constructed
atop the Colour Distance Transform(CDT). Building on this
representation, they introduced an algorithm for selecting
features that capture a varying-size collection of local image
regions, ensuring maximum dissimilarity between each spe-
cific sign and all other signs. In contrast, Ren et al. [17] opted
to replace a selective search algorithm with a Region Proposal
Networks (RPN) technique, allowing for the extraction of
region suggestions and facilitating end-to-end computation
for object detection. This modification significantly boosts
the overall efficiency of the detection process by leveraging
shared convolutional layers. Together these studies provide
important insights into the collection of image regions of dif-
ferent sizes. However, they all choose two-stage algorithms
for improvement, so the accuracy of detection is high but the
real-time performance of the network is poor.

Some other scholars have improved the detection accuracy
by increasing the complexity of the network. Li et al. [18]
introduced the Perceptual Generative Adversarial Network
(Perceptual GAN) model, which aims to minimize the dis-
similarity in representation between small and large objects.
Their model exhibited excellent performance when evalu-
ated using the TT100K dataset. Rehman et al. [19] devised
a novel and effective approach utilizing discriminating
patches (d-patches). They put forth a method that enhances
the d-patches through the integration of vocabulary learn-
ing characteristics, enhancing their ability to handle robust
occlusions. Zhu et al. [20] utilized a fully convolutional
network (FCN) [21] to identify potential regions of traffic
signs. Subsequently, a CNN was employed to classify the
detected regions. While this approach yielded satisfactory
results, the computational cost was high due to the utilization
of FCN. These studies have made important contributions
to improving the accuracy of traffic sign detection, but their
methods lead to overly complex models with a large number
of parameters.

In order for the model to have excellent real-time perfor-
mance, some scholars have streamlined the network model.
Zhang et al. [22] introduced two innovative, lightweight net-
works that can achieve higher precision in detection while
maintaining fewer trainable parameters in the model. Another
approach proposed by Lu et al. [23] involved the use of
two sub-networks for traffic sign detection. The Attention
Proposal Modeler (APM) was used to identify regions likely
to contain traffic signs, followed by the Accurate Locator
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and Recognizer (ALR) to localize and classify the signs in
these regions. Their approach through knowledge distillation
reduces the number of parameters of the model, but the
accuracy of the model for traffic sign detection is reduced.

Some scholars have focused on the single-stage algorithm
while keeping the number of parameters of the model low
as well as the detection speed high. Cai et al. [24] pro-
posesd a one-stage object detection framework for improv-
ing the detection accuracy based on the YOLOv4. They
adopted the CSPDarknet53_dcn(P) as the backbone network.
Chen et al. [25] devised a module placed on the model’s neck
that captures contextual information from the feature maps,
known as a sensing domain module. Tian et al. [26] developed
a multi-scale recurrent attention network, encompassing both
a multi-scale attention module and a recurrent attention mod-
ule. Yuan and his team [27], designed the implementation of a
network merging convolution and de-convolution layers, aim-
ing to enhance the feature maps and simultaneously extract
higher-level semantic features. Liu et al. [28] used LPFA-
Conv module to enhance the sensory field of the detection
head based on Yolov5. In addition, they replaced the original
loss function by utilizing the Wasserstein Distance(NWD) to
enhance the detection ability of the model for small objects.
These studies have inspired us by improving the single-
stage network’s ability to detect traffic signs by replacing
the lightweight backbone, adding the attention mechanism,
replacing the downsampling module, and improving the loss
function. However, their methods do not have enough feature
extraction for small objects.

The detection of small traffic signs in real scenes is a
challenging task, as ordinary networks struggle to achieve
satisfactory results due to the unbalanced size distribution of
traffic signs. To address this issue, we propose a new detection
model based on YOLOv7-Tiny, which aims to improve the
efficiency of detecting small signs. Our main contributions
can be summarized as follows:

(1)In order to effectively utilize the precise location infor-
mation at the bottom of the backbone network, we design an
enhancement path that enhances the feature pyramid struc-
ture from the bottom up. Compared with the original FPN
connection strategy, it adds a path leading from the backbone
bottom layer and connecting to the FPN, which allows the
small object information in the bottom layer of the backbone
to be fused into the FPN. This approach aims to improve
the accuracy of locating small objects in high-resolution
images.

(2)Inspired by the residual structure and the feature
slicing, we proposed a down-sampling module(named Slice-
Sample)to reduce information loss during downsampling.
It reduces the size of the feature map by slicing, and then
assigns the channels of the sliced feature map through the
channel attention mechanism. This approach does not need
to increase the number of neurons in the neural network
compared to convolution and avoids the loss of information
compared to pooling.
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FIGURE 1. The structure of improved YOLOv7-tiny.

(3)The B2 (two-branch) channel attention mechanism was
proposed for better integration of information in downsam-
pling module. This channel attention mechanism not only
focuses on the correlation of neighboring channels, but also
employs two branches to increase the model’s ability to
extract information from the feature map. Therefore, it is
not only used as a part of Slice-sample, but also has a
performance improvement over the original backbone when
combined with the backbone in the network.

(4)To improve the real-time performance of the network,
the EIOU loss function was introduced to reduce the opti-
mization error of the network.

Experiments showed that our methods can effectively
improve the detection speed and accuracy on GTSDB and
TT100K.

The remainder of this paper is organized as follows:
We discuss the detection framework in Sectionll. SectionIII
presents the experimental results, and SectionIV concludes
the paper.

Il. THE IMPROVEMENT OF YOLOv7-TINY MODEL

The YOLOvV7-tiny is a small model of the yolov7 [29]
family, with a parameter count of only 6.2 M. The stan-
dard yolov7-tiny model’s structure consists of four main
parts:

(1)Input module: the primary function of the input mod-
ule is to resize the input image to a predetermined size,
fulfilling the size criteria of the backbone. The images are
pre-processed via several operations such as data augmenta-
tion within this module.
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(2)Backbone: the backbone of yolov7-tiny consists of
CBS(Conv+Bn+Silu) layer, MP(Max Pooling) layer.

(3)Feature Pyramid Network: YOLOvV7-tiny is the same
as YOLOVS network and also adopts the traditional Path
Aggregation Feature Pyramid Network(PAFPN).

(4)Detection head: in the detection head part, YOLOv7-
tiny chooses the IDetect detection head that indicates 3 object
sizes: large, medium and small.

In order to improve the real-time detection of traffic
signs and enhance the detection capability of YOLOV7-
tiny for small objects, this research paper presented a novel
algorithm that focuses on detecting small traffic signs in a
realistic environment. The algorithm, as shown in Figure 1,
exploited an augmented path from the bottom to the top
on FPN to effectively utilize the fine-grained features of
the lower convolutional layer. Furthermore, the integration
of rich local region features was achieved through a down-
sampling module we proposed. It greatly enhanceed the
accuracy of detecting small targets. To effectively integrate
multiscale local region features within the downsampling
module, we proposed the B2 channel attention mechanism.
Finally, we introduced the EIOU loss function to minimize
the optimization error of the network. Figure 1 illustrates
the architectural components of the algorithm, where Conv
represents a convolutional layer and SiLu denotes the activa-
tion function. BN corresponds to Batch Normalization, while
MP represents a max pooling structure. E-ELAN refers to a
structure consisting of convolutional layers, and E-SPP is a
structure comprised of max pooling and convolutional layers.
The detailed explanations of Slice-Sample and B2 can be
found in the subsequent sections.
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A. IMPROVED YOLOv7-TINY FPN

There are semantic differences between the features in dif-
ferent layers of the feature pyramid. The shallow layer has a
small number of feature channels and a large feature scale,
but it contains less semantic information and only some
edge information. On the other hand, the deep layer has a
large number of feature channels and contains more semantic
information.

When fusing two adjacent scales for features, the
high-level feature map is downscaled by 1 x 1 convolution
to make the number of channels the same as that of the
lower feature map, and then up-sampled by a factor of two
to make the scale consistent; while the bottom feature map is
downsampled to scale down to the same as that of the upper
feature map, and then downscaled by 1 x 1 convolution to
make the number of channels consistent.

The feature maps obtained by a series of downsampling
in the yolov7-tiny backbone network are {C2,C3,C4,C5}.
We argued that the downsampling of the model by con-
volution would lead to the disappearance of small object
information in the process of feature fusion. Due to the C2
layer has the least number of downsampling, which contains
the most information about small objects, so we improve the
original FPN by downsampling the C2 layer and splicing it
with C5 and C4 layers, so that more identifiable small object
features could be incorporated into the training and detection.
The FPN structure of the original model and the improved
FPN structure are shown in Figure 2.

Conv4 C
(oot 3—+f c1§ ,0
St

Slice-Sample

(2) Improved FPN structure

C
e

(1) Original FPN structure

FIGURE 2. Original FPN structure and improved FPN structure. Compared
to the original FPN, we have allowed the bottom layer to merge with the
top layer.

To optimize the extraction of information from the C2 fea-
ture map and reduce the number of parameters, we employed
three downsampling methods. The first method was convo-
lution. The second method was max pooling. However, the
first method had the drawback of potentially causing the dis-
appearance of small object features. The second method was
not suitable for effective network learning due to the reduced
parameter count. Consequently, neither of these approaches
was suitable for our model. The schematic of convolution and
max pooling are shown in Figure 3.

The third method we use is Slice-sample, as shown in
Figure. 4. Fora C x W x H (W = H) feature map, we divided
it into C W x H feature maps according to the number of
channels, and each W xH feature map is partitioned into 4
W/2 x H/2 subgraphs according to the pixel-by-pixel taking
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k=3, s=2

s=2, =2

FIGURE 3. Schematic of convolution and max pooling. The above one is
that we use convolution with k=3 and s=2. The another one is that we
pool by s=2 and f=2.

form. Then, we loaded each subgraph into four different sets
in order, so that there are C subgraphs size of Wx H in each
set. After that, each subgraph is taken out step by step in the
order of the sets, and they are stitched together to form a
feature map size of 4C x W/2 x H/2. This completed the scale
reduction. We then used the channel attention mechanism to
assign weights to the generated feature maps to get the final
feature map. Finally we reduced the number of channels by
1 x 1 convolution to allow the feature map to be spliced
with other feature maps. In addition, since the pixels of small
object feature occupy less of the whole map feature map.
After the feature are separated and merged, the information
between the channels is highly correlated, so we propose the
B2 channel attention mechanism to enable the network to
capture these correlations. The B2 channel attention mech-
anism is better suited for Slice-sample than the other channel
attention mechanisms. We will discuss this in subsection B.

The advantage of this method was to ensure that the
information of C2 feature map wasn’t lost. We don’t use
convolution or average pooling to fuse the information of
the features, nor do we use maximum pooling to select
the information of the feature maps. This is inconsistent
with the downsampling method proposed by many schol-
ars. To explore the superior performance of Slice-sample,
we compare it with some excellent downsampling methods
such as Atrous Conv [42], Depthwise Separable Conv [43] in
the experimental section.

In the FPN of YOLOv7-tiny network, the downsampling
process from C5 to C4 and from C4 to C3 is achieved by
applying convolution with kernel size (k) of 3 and stride (s)
of 2. When we replaced this process with the Slice-Sample,
we observed an increase in accuracy along with a decrease in
the number of parameters.

B. B2 (TWO BRANCH) CHANNEL ATTENTION
MECHANISM

In the field of neural networks, it is common to incorporate an
attention mechanism, which is an additional neural network
that can effectively select specific segments or assign varying
weights to different parts of the input. The purpose of this
attention mechanism is to extract and prioritize significant
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FIGURE 4. Schematic of slice-sample.

information from a vast quantity of data. Specifically, the
channel attention mechanism operates by employing auto-
matic learning within the channel dimension. It accomplishes
this by leveraging a additional neural network that evalu-
ates the importance of each channel in the feature map.
Consequently, the resulting importance values are utilized to
assign weight values to each feature, thereby enabling the
neural network to concentrate on particular feature channels.
By boosting the channels of the feature map that are pertinent
to the given task and suppressing those that are less relevant,
the network can optimize its performance.

The SE [30] channel attention is a classical channel atten-
tion module that follows a specific procedure. It begins with
global averaging pooling of the input feature map,as shown in
formula(1). Then, it goes through downscaling using a fully
connected layer with the ReLU activation function. After that,
it goes through upscaling using another fully connected layer
with the sigmoid activation function. This process adjusts
the channel weights to select more valuable channel feature
information,as shown in formula(2).

{ H W
gc = Asq(Fc) = TxW Z zxc(llj) (H
i=1 j=1

Zc = p(8(gc)) 2

where X.(i,j) denotes the value of the ¢ channel at position
c(i,j); Agq is the global average pooling function; F repre-
sents the input feature map with a size of WxHxC, while
g. refers to the attention matrix after global average pooling,
with a size of 1 x 1xC.The sigmoid activation function is
denoted by p, and the ReLU activation function is denoted
by 8. The final output is given by formula (3).

Fcl =Zc- Xc 3

The use of a fully connected layer to obtain a global percep-
tual field does not allow the model to focus on the correlation
between adjacent channels. Additionally, the fact that a fully
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connected layer increases the number of parameters in the
network contradicts the construction of a small model.

Inspired by the ECA [31] attention mechanism, we pro-
posed the B2 channel attention mechanism. First, the input
feature map is pooled globally on average and globally on
maximum, the formulas are shown in formula (4) and for-
mula (5). Then, the feature channels are computed using a
one-dimensional convolution with a convolution kernel size
of 3. Finally, the output feature map is formed by multiplying
the input feature map with the corresponding normalized
weights on a channel-by-channel basis. The output feature
map can be acquired using formula (6).

1 H W
gc = Asq(Fc) = TxW Z Zxc(llj) 4)
i=1 j=1
H W
hc = Amax(Fc) = max Z Z)cc(i,j) ®)
i=1 j=1

Fc2 = o(Conv(gc)) - Fc 4+ o (Conv(hce)) - Fc 6)

where, o is the ReLLU activation function, F. is the input
feature map, g. is the attention matrix after global average
pooling, h. is the attention matrix after global maximum
pooling, and we chose a one-dimensional convolution with
a convolution kernel of 3 to correlate between adjacent chan-
nels. The weights obtained, which have been normalized, are
subsequently applied to the features of each channel. Figure 5
displays the structure of the B2 attention mechanism as well
as the SE attention mechanism.

Compared to the SE channel attention mechanism, we use
two branches to obtain the information of the input fea-
ture map, which allows more information to be extracted.
The method using small convolution reduces the number
of parameters of the model than the method using fully
connected layers. More importantly, we can conclude from
Figure 4 that the information of the feature map after slicing
is dispersed among the neighboring subgraphs. Therefore, the
B2 attention mechanism using small convolution can capture
the correlation between neighboring channels well. As part of
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FIGURE 5. Compare with SE, B2 channel attention module has two branches that allow for more comprehensive
information about small objects, while we use convolution to obtain the information between the channel can make the

number of model parameters smaller.

the sliced sample, it is more suitable for subgraphs for feature
enhancement.

From the experiment we can find that the B2 module has
good performance not only combined with the Slice-Sample
module, but also combined with the E-spp module at the
backbone.

C. LOSS FUNCTION IMPROVEMENT

The loss function in YOLOV7-tiny is the CloU [32] loss
function with the following formula(7), formula(8) and for-
mula(9). Where w, h, b, by, denote the width and height of the
prediction box and the real box. b and by, denote the centroids
of the prediction bounding box and the real bounding box. o
denotes the Euclidean distance of b and bg,. w. and h. denote
the width and height of the smallest outer rectangle of the
prediction box and the true box, and IoU [33] denotes the
intersection and merging ratio.

Leioy =1 —10U + —'Oz(b’ b av 7
(Wc)Z + (hc)Z
Among them:
v
0=—— ®)
(1 —-10U)+v
4 ws! W, 9
v = ?(arctan o arctan Z) )

Although CIoU increased the aspect ratios of the predic-
tor and GT boxs, there were still the following problems:
in the regression. When the aspect ratios of the two boxs
were linear, the penalty term loses its original function. Con-
sequently, w and & values in the gradient of the predictor
frame didn’t work. It didn’t effectively describe the regression
objective and might lead to slow convergence and inaccurate
regression.

To address this issue, Zhang et al. proposed a method called
EloU [34]. This method preserves the overlap loss and center
distance loss of CloU, but modifies the width-height loss and
penalizes the prediction results of w and h directly during the
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penalty process. This adjustment allows for a better response
to the width-height difference between the prediction frame
and the object frame, resulting in faster network convergence
and improved regression accuracy. The equation for the EloU
function is shown in formula (10).

Leiou = Liov + L — dis + Lggp

2 t 2 t
p=(b, b%") p=(w, weh)
=1-1
ouU + (Wc)z + (hc)Z (Wc)z
2(h, h$'

where, Li,u, Lyis, Lasp espectively denote the loss, distance
loss and width-height loss. w, h, wg, he, Tespectively denote
the width and height of the prediction box and the true box.
b and by respectively denote the centroids of the predic-
tion bounding box and the true bounding box, p denote the
Euclidean distance between b and by, The dimensions of the
prediction box and the real box are represented by w, and
h., which respectively refer to the width and height of the
smallest outer rectangle. IoU denotes the intersection and
merging ratio.

In order to explore the loss function that is more suit-
able for our model, we also compared it with GloU [45]
and DIoU [44]. The results are shown in the experimental
section.

Ill. EXPERIMENTAL RESULTS AND ANALYSIS
Experimental conditions: processor is AMDEPYC770264-
CoreProcessor, memory is 50G, and graphics card is
NVIDIAA100, 40GB. The programming environment of this
paper is Python3 9, Torch1.12.1. The training parameters are
shown in the table 1.

A. DATASET
This paper utilizes two commonly used datasets in the field of

traffic sign detection. The first dataset is the German Traffic
Sign Detection Benchmark (GTSDB) [35], which consists of
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TABLE 1. The model training parameters.

Parameters Parameter Value
Learning Rate 0.01

Batch size 8

Image size/pixels 640x640
Training volume 300

Number of warm-ups 3

600 training images and 300 test images. These images have
aresolution of 1360 x 800 and encompass traffic signs under
different lighting conditions. It is a foreign publicly available
dataset that has been widely used by many research teams
over the years. The GTSDB dataset has a balanced number
of samples per category and contains a large number of small
objects.

Since GTSDB categorizes traffic signs into three groups
(mandatory, danger, and prohibited signs), a detection scheme
that performs perfectly on GTSDB may not necessarily
perform well in multi-category scenario. Therefore, the
Tsinghua-Tencent 100K (TT100K) dataset [36] has been
introduced. This dataset serves as a benchmark for Chinese
traffic sign data and includes a large number of Chinese
traffic sign images. Each image in TT100K has a resolution
of 2048 x 2048 and covers traffic signs under diverse lighting
conditions. The TT100K training set consists of 6105 images,
while the test set contains 3071 images. The dataset consists
of 221 categories, however, the distribution of samples across
these categories is highly imbalanced. Some categories have
a large number of samples while others have very few or even
zero samples. To address this issue, we have chosen to focus
on the 45 categories that have more than 50 samples for our
experiments.

Overall, we chose GTSDB as the primary dataset for our
experiment because it has a balanced number of samples per
category and contains a large number of small objects. Many
scholars have experimented on it. In addition, we conducted a
supplementary experiment using the categories from TT100K
that had a sample size greater than 50. This allowed us to
evaluate the performance of our model in a multi-category
scenario.

B. EVALUATION INDIATORS

In this paper, the differences in detection of several types
of images by the improved network model before and after
comparing the same experimental environment to assess the
leakage and false detection, mainly by selecting the accuracy-
recall (P-R) curve and the average accuracy (AP) and average
precision mean (mAP), the size of model, where the formulae
are as follows:

Trp

P=—""" % 100% (11)
Trp + Frp
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T — TP
- 100% (12)
Trp + Frn
1
AAP = / P(R)R (13)
0

where: Ttp denotes correct prediction; Frp denotes wrong
prediction, which includes the cases of putting false detection
and missing detection; Fpy denotes the case of mistakenly
detecting traffic sign objects as other categories; P is the
accuracy rate, as shown in formula (11). R is the recall rate,
as shown in formula (12). In the P-R curve, the area enclosed
by the P-R curve and the coordinate axis is equal to the value
of AP, as shown in formula (13). The mAP can be obtained
by averaging the AP values of all categories. In general, the
mAP was used to evaluate the detection performance of the
object detection model.

C. EXPERIMENTAL RESULTS

In the improved FPN, we added a path from the bottom of
the backbone to the FPN. In order to better integrate the
small target information in the feature map of the underlying
backbone into the FPN, we use three downsampling methods
in the path. The performance of these three downsampling
methods is shown in Table 2.

According to Table 2, we can see that pooling has lower
performance than the original network although it does not
increase the parameters compared to convolution. Downsam-
pling in the form of convolution improves the performance of

TABLE 2. Performance of different sampling method.

Network

Map0.5 Model
Model(on Map0. 5 . :
GTSDB) 1 0.95 Size (MB)
Original FPN 0.8599 0.6706 22.97
Our FPN +
Conv 0.8679 0.954 23.87
Our
FPN+Max 0.8318 0.6379 21.68
Pooling
Our FPN +
Slice-sample 0.9039 0.7186 22.13
Our FPN +
Atrous Conv[42] 0.863 0.6532 22.69
Ou}r1 FPN +
Depthwise
Separable 0.8392 0.6402 23.17
Conv[43]
TABLE 3. The effect of slice-sample in four different cases.
Network Map0.5 :
Model(on GTSDB) Map0. 5 0.95
Model 1 0.861 0.6718
Model 2 0.9039 0.7122
Model 3 0.9189 0.7346
Model 4 0.873 0.6532
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TABLE 4. Performance of B2 attention mechanisms and se attention mechanisms.

Convl Conv2 Conv3 Conv4 Conv5 Map0. 5 Map0. 5 : 0.95
+B2 0.8712 0.6816
+B2 0.8732 0.6795
+B2 0.8781 0.6824
+B2 0.8698 0.671
+B2 0.8866 0.705
+SE 0.8534 0.6692
+SE 0.8434 0.6695
+SE 0.8672 0.6713
+SE 0.8231 0.6991
+SE 0.8712 0.6556

TABLE 5. Comparison of the original yolov7 family of algorithms with the
yolov7 family of algorithms after adding all our methods.

mAp0. Model
Model mAp0.5 5.0 95 Size (MB)
Yolov7-tiny 0.8599 0.6706 22.97
Yolov7-tiny + 0.9347 0.7492 23.29
all our methods
Yolov7 0.9355 0.7657 141.96
Yolov7+all our 0.9539 0.8092 143.94
methods
Yolov7-E6 0.936 0.778 206.01
Yolov7-E6 +all 0.941 0.797 208.88
our methods
Yolovx 0.9516 0.8276 27021
Yolov7x +all 0.9572 0.8302 273.98

our methods

box_loss on GTSDB

FIGURE 6. Visualization of box loss on GTSDB.

the network, but the number of parameters is also increased.
Using the Slice-sample downsampling method not only
reduces the number of parameters but also improves network
performance. Furthermore, we conducted a comparison with
other forms of convolution for downsampling, and the results
demonstrate that Slice-sample outperforms them.

In order to investigate where the Slice-Sample module is
best placed, we conducted the following experiments.
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Visualization of ablation experiments on GTSDB

mAPO.5

100 15( 200 )50
1 15 20 25

FIGURE 7. Visualization of ablation experiments on GTSDB.

Visualization of ablation experiments onTT100K

mAPO.5

100 15( 20( 250

FIGURE 8. Visualization of ablation experiments on TT100K.

(1)Add Slice-Sample module in backbone(Model 1)

(2)Add Slice-Sample module in FPN(Model 2)

(3)Add Slice-Sample module in our proposed FPN
(Model 3)

(4)Add Slice-ample module in all down-sampling modules
in the network(Model 4)

According to Table 3, the inclusion of the Slice-Sample
module in our proposed FPN yields better results and
provides more valid information compared to the original net-
work. This indicates that the improved FPN enables the model
to learn more about the underlying small targets. Since adding
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TABLE 6. Reslut of each module on GTSDB dataset.

Ours-FPN+

Baseline(GTSDB) , ﬁgcﬁﬁ‘s‘i"nal E-IOU mApO. 5 mAp0.5:0.95  Model Size (MB)
Slice-Sample
N 0.8599 0.6706 2297
N \/ 0.9189 0.7346 232

\/ \/ 0.8866 0.705 23.07

\/ N 0.8941 0.693 22.97

\/ N N \/ 0.9347 0.7492 2329
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FIGURE 9. Performance of different networks on each category of the GTSDB.

the Slice-Sample module to the backbone network did not
yield satisfactory results, we suggest that the downsampling
module in the backbone network should use convolution and
pooling for feature fusion.

In order to investigate the performance of the B2 attention
mechanism and the SE attention mechanism, and determine
the ideal layer in the backbone where they work best, we con-
ducted a series of experiments (refer to Table 4). The results
from the table indicate that both B2 attention mechanisms
exhibit superior performance when combined with the back-
bone network compared to the SE attention mechanism.
Furthermore, the B2 attention mechanism demonstrates opti-
mal performance when integrated with the last layer of the
backbone network.

In order to explore the effect of the loss function on the
model, we compare the original loss function—-CloU with
EloU, GIoU [45], and DIOU [44], as shown in Figure 6.
According to the experimental results, EIoU can allow the
model to locate the object box faster. Before 50 steps, the
box loss of EloU is lower than that of CloU, which means
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that the model using EloU learns the location information
faster than the model using CloU. After 150 steps, the model
with EIoU and the model with CloU gradually leveled off
in terms of box loss, with the former having a slightly lower
box loss than the latter. In terms of box loss during the whole
training process, EIoU performs better than the other three
loss functions. CloU has higher box loss than GIloU before
50 steps, but after 50 steps, CloU performs better. DIoU
performs lower than the other three loss functions throughout
the training process.

Yolov7-tiny is one of the Yolov7 family of algorithms.
In order to verify the generality of our method, we per-
formed a comparison on the GTSDB dataset. According
to the table 5, we can conclude that our proposed method
improves among all the algorithms in the Yolov7 family. And
the yolov7-tiny has the most performance improvement after
adding our improvement methods.

Ablation experiments were conducted using YOLO7-
tiny as the baseline model to demonstrate the contribu-
tions of each improvement in this paper to the model’s
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TABLE 7. Result of each module on TT100K dataset.

Ours-FPN+

Bzz)sgll(lr)le(TTl See Sample h]igcﬁ;eirsl:;onal E-IOU mAp0. 5 mAgp;O 5:0. 1\(/11\(/31%6)1 Size
v 0.587 0.4135 234
V v 0.6534 0.411 23.65
v V 0.638 0.4596 235
V y 0.6342 0.4525 234
V v V 3 0.6629 0.4729 23.68
TABLE 8. Performance of different models on GTSDB dataset.
Models Input Size mAp0. 5 mAp0. 5 : 0.95 Model Size (MB) FPS
Faster-RCNN 640%640 0.703 0.5653 44 -
Pyramid Transformer[37] 640%640 0.778 -- 74 --
Yolov3 640x640 0.8456 0.6529 - 37.59
MSA._Yolov3[38] 640%640 0.86 - - 23.81
Yolov5-s[3] 640X 640 0.8289 0.6477 279 529
Yolox-s[46] 640%640 0.893 0.7169 36.2 73
Yolox-tiny[46] 640x640 0.8302 0.6523 24.27 59.3
Yolox-nano[46] 640x640 0.819 0.648 22.19 57.4
Yolov7-tiny 640x640 0.8599 0.6706 22.97 60.2
Yolov8-s 640x640 0.8826 0.7019 32.95 74.1
Yolov8-nano 640x640 0.7325 0.6297 12.6 46.91
YOLO-SG[39] 640X 640 0.796 - 4.0 131.6
FSADDI[40] 640X 640 - 0.739 - -
MTSDet[41] 640X 640 0.923 - 48.8 -
Ours-yolov7-tiny 640%640 0.9347 0.7492 23.29 67.5

performance. The evaluation was based on the parameters of
the model and mAP. Tables 6 and 7 show that each module
of the model improvement resulted in performance improve-
ment on both the TT100K dataset and the GTSDB dataset.
We used the TT100K dataset for additional experiments
to validate the generalization of our methods. According
to the Table 6, the addition of the Slice-sample downsam-
pling module to our improved FPN led to a 5.9%(mAPO0.5)
improvement compared to the original model, highlighting
the excellent performance of our downsampling module.
Furthermore, the B2 attentional mechanism, in combina-
tion with the backbone, increased the mAP(0.5) by 2.67%
compared to the original model, demonstrating its impor-
tant role as a Slice-sample module and its effectiveness
when used alone. Additionally, replacing the CIOU loss
function with the EIOU loss function also improved the
model’s accuracy. When all the improved modules were
combined, the model’s performance significantly improved,
resulting in a 7.48%(mAP 0.5) higher than the original
model.
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According to the Table 6, the improved model has an
increase of 0.32MB size compared to the original model,
which is attributed to the addition of the B2 attention mech-
anism. Although the B2 attention mechanism increases the
size of model by a small amount, it provides a much improve-
ment in model performance. The visualization of the ablation
experiment on the GTSDB dataset is shown in Figure 7.
The visualization of the ablation experiment on the TT100K
dataset is shown in Figure 8.

In order to verify the effectiveness of the improved
YOLOvV7-tiny on GTSDB data, we conducted experiments
comparing it with other network models. The size of model
for most of the selected models is roughly similar to yolov7-
tiny. These experiments were conducted under the same
configuration environment and initial training parameters.
The results, as shown in Table 8, demonstrate that our
improved model outperforms other models of the same mag-
nitude. The performance of the selected networks on each
category of the GTSDB dataset is shown in Figure 9. All the
networks perform best on the category of PROHIBITORY
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FIGURE 11. Comparison of detection results in a dim environment.

and poorly on the category of MANDATORY. Our improved
yolov7-tiny achieves 99% detection accuracy on the cate-
gory of PROHIBITORY, which is much better than the other
networks.

D. ALIDATION OF PREDICTION EFFECT

In the GTSDB dataset, we selected images for detection in
three cases. The first case is shown in Figure 10: in the
very small object image with two traffic signs, the original
model can only detect one of them, and its accuracy is
only 56%, and the improved model can detect all the traffic
signs, and its accuracy is 90%. The improved model is more
capable of identifying small objects and has a larger accuracy
improvement.

VOLUME 11, 2023

The second case is shown in Figure 11: there are two
traffic signs under dim conditions, and the original model can
detect both signs with an accuracy of 56% and 95%, respec-
tively. The improved model can detect all the traffic signs
and achieve 87% and 96% accuracy. The improved model
has improved accuracy and is more capable of identifying
dimmer objects.

The third case is shown in the figure 12: there are four
traffic signs under the multi-object environment and the orig-
inal model can detect all of them with the accuracy of 97%,
98%, 97% and 93%, respectively. The improved model can
detect all the traffic signs with 98%, 94%, 97% and 99%
accuracy. In the case of multiple objects and clear objects,
the accuracy of the improved model is comparable to that of
the Pre-improvement model.
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FIGURE 12. Comparison of detection results in a multi-object environment.

IV. CONCLUSION

In the traffic environment, we proposed an improved
yolov7-tiny detection model for the difficulty of small
object detection and the real-time of traffic signs. Based
on the distribution of convolutional neural network fea-
tures, a new FPN is proposed to integrate features rich
in small object information into other features; through
the idea of feature separation and merging, a Slice-
Sample module is proposed for small object detection,
and an B2 attention mechanism module is added. In addi-
tion, we propose a Slice-Sample module for small object
detection, and incorporate the AMC attention mechanism
module.

Through our experiments we found that the Slice-sample
downsampling module works best when combined with our
improved FPN. the B2 attention mechanism, which is part
of the Slice-sample module, also performs well when com-
bined with the backbone network alone. The EIOU loss
function we introduced also performs well compared to
the original loss function. Overall, the improved network
shows good improvement over yolov7-tiny on both GTSDB
and TT100K datasets. The improved yolov7-tiny is also the
best compared to other models with comparable number of
parameters.

The experiment has currently been conducted and vali-
dated on the GTSDB and TT100K datasets. Other aspects
of detectors in traffic scenarios will be considered in the
future. In addition, Our future focus will be on evaluating
the performance of traffic sign detection at night and in bad
weather conditions.
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