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ABSTRACT Solutions to practical optimal control problems (OCPs) may consist of control profiles that
switch between control limits or assume values interior to their admissible set, either due to activation of
inequality state path constraints or existence of singular control arcs. Abrupt switches in the control (i.e.,
bang-bang control) jeopardizes the numerical solution of OCPs unless care is taken to isolate precise time
transition points where sharp switches occur (excluding the chattering phenomenon). We propose a novel
control regularization method, called Bang-Bang Singular Regularization (BBSR), based on L2 norm-based
regularization. We present an analysis on the L2 norm-based regularization at two levels: 1) its connection to
trigonometric regularization and 2) its ability to approximate regular and singular control arcs. The utility of
the method is demonstrated in solving three classes of trajectory optimization problems: 1) space minimum-
fuel low-thrust trajectories with bang-bang thrust profiles, 2) the Goddard rocket problem with its known
bang-singular-bang control structure, and 3) minimum-time spacecraft reorientation with both bang-bang
and second-order singular arcs. The results demonstrate the utility of the BBSR method in approximating
extremal control profiles that may consist of pure regular and/or mixed regular and singular control arcs.

INDEX TERMS Optimal control, trajectory optimization, indirect method, singular arcs, regularization.

I. INTRODUCTION
Solutions to trajectory design and optimal control problems
(OCPs) can be achieved using either direct or indirect
optimization methods [1], [2]. The solution procedure
consists of a number of well-known computational hurdles,
which when overcome, can have a significant positive impact
on mission operation and vehicle design. Different OCPs can
be solved using a number of software packages that have
been developed to automate the solution process and enable
researchers to solve practical OCPs [3], [4], [5], [6], [7].

Indirect methods have been shown to be of great
importance as a fundamental formulation of optimal control
necessary conditions, for example, to optimize spacecraft
low-thrust trajectories [8]. Specifically, utilization of calculus
of variations combinedwith Pontryagin’sMinimumPrinciple
(PMP) leads to two- or multi-point boundary-value problems
(TPBVPs/MPBVPs). Analytic solutions to the resulting
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boundary-value problems exist only for a limited number
of applications and under simplifying assumptions [9].
In practice, TPBVPs are solved through a variety of numerical
methods [2]. For nonlinear OCPs, all known methods must
come to terms, in a given application, with the issue of
whether a particular extremal satisfying the local necessary
conditions is, in fact, the global extremal [10], [11]. Another
major difficulty frequently encountered during the solution
procedure is associated with the structure of the extremal
controls that introduces non-smoothness into the underlying
dynamics. Therefore, numerical propagation of the dynamics
is plagued by the presence of control non-smoothness, which
reduces the domain of convergence of the Hamiltonian
boundary-value problems [12].

It is possible to overcome and/or attenuate the afore-
mentioned difficulties due to discontinuous controls by
regularizing and smoothing the control (usually with neg-
ligible loss of optimality), and therefore, the time history
of the acceleration is smoothed along the trajectories either
by introducing smoothing functions at the level of the
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cost functional [12] or by introducing control smoothing
approximation along with error control and error-control
parameters in the equations of motion [13], [14]. Most often,
these changes in the formulation of the OCP are achieved
with a one- or multiple-parameter embedding that contains
the original OCP as a limiting case reached by sweeping one
or multiple embedding parameters. These techniques have
been applied successfully to a number of trajectory design
problems to ameliorate the above-mentioned issues [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37],
[38]. Inspired by recent control regularization and homotopy
techniques used within indirect methods [23], [28], [39],
control regularization is also used for solving challenging
OCPs using convex optimization methods [40].
Despite the fact that physical systems are inherently non-

linear, in practice, a significant number of systems have
control-affine dynamics. Depending on the form of the
performance index, their Hamiltonian, H , may turn out to
be affine in control. The mere existence of an affine control
structure in the Hamiltonian does not mean that the optimal
control definitely contains singular arcs [41]. The strong
optimality conditions, ∂H/∂u = 0 and ∂2H/∂u2 > 0,
give no information on the control for the cases that the
Hamiltonian is linear in the controls, whereas the weak form
of the optimality conditions (i.e., PMP), in most applications,
determines the control without ambiguity. These typical and
ideal cases correspond to problems where ∂H/∂u = 0 never
occurs during one or multiple finite time intervals.

A particular difficulty arises if the extremal trajectory
entails singular arcs on finite time intervals where the
so-called control switch function vanishes and when the PMP
is not sufficient for characterizing an extremal control. These
cases correspond to situations where the PMP necessary
conditions for optimality fail to define the ‘‘optimal’’ control.
The presence of singular arcs creates numerical issues for
indirect solvers because the PMP, without auxiliary logic,
does not provide a unique solution [42], [43]. For these
cases, a necessary, but not sufficient condition for existence
of a singular arc is the vanishing of the switching function
over a finite time interval. Without further utilization of
higher-order optimality conditions a chattering phenomenon
in some circumstances, is observed in the control profile
[44]. OCPs with mixed regular and singular control arcs
are typically treated by dividing the entire trajectory into
distinct phases of regular (i.e., non-singular) and singular
arcs. Several approaches have been developed for solving
singular OCPs, using both indirect [45], [46], [47], [48], [49],
[50] and direct methods [51], [52], [53].
In general, there appears to be no justification for ignoring

the possibility of the existence of singular control arcs.
It cannot be stated a priori that a singular control sub-arc (even
when a feasible singular control exists) will always be part
of the optimal solution [54]. In fact, there are examples in
which a singular control is not optimal even though it is a

feasible control for some choices of system parameters and
boundary conditions. However, there are many examples in
which singular control does appear in the optimal solution,
and for this reason, the possibility of singular arcs should be
considered along with the Necessary Conditions (NCs) for
optimality, when we deal with a control-affine Hamiltonian.
Modern optimization problems are often of the control-affine
Hamiltonian type and when singular control arcs exist, they
can be found for many of these problems using existing
approaches as well as the methods we discuss herein. The
Goddard rocket problem [55], periodic optimal flight [56],
[57], and energy extraction of wave-energy converters [58],
[59] are a few example OCPs to name.

Aside from resolving the ambiguity in the optimality of
singular arcs and their appearance in the optimal trajectory,
it is important to develop a strategy to detect the presence of
singular arcs. A common practice is to perform continuation
over a strictly convex (modified) Hamiltonian. A majority
of these methods typically employ various regularization
approaches to solve for the singular control [60], [61].
A regularization method transforms the singular control
problem into a series of nonsingular problems by minimizing
the sum of the original objective and a regularization term,
where the regularization term is typically a quadratic function
of the control. This artistic approach has demonstrated
capability of revealing the presence of singular arcs [62].
Construction of a convex Hamiltonian can be achieved,
for instance, by modifying the Lagrangian term (running
cost) of standard cost functionals via the introduction of
a quadratic term. This quadratic term is multiplied by a
scalar continuation parameter, throughwhich the contribution
of the convex quadratic penalty term will be reduced to
approach zero. This is usually achieved through a sequence
of neighboring discrete choices over the admissible values of
the continuation parameter. This continuation is performed
specifically to gain sufficient information regarding the struc-
ture of the control, and possible existence of singular arcs,
which will be used to initialize a shooting method tailored
for handling singular arcs. Hybrid direct/indirect methods are
also developed [63]. Recently, inspired by the concept of error
controls introduced in [13], the Epsilon-Trig regularization
method is devised that modifies the dynamics and uses
trigonometry to approximate controls; this method has been
shown capable of capturing (to a high accuracy) optimal
‘‘bang-singular-bang’’ discontinuous control structures [14],
[64]. A recent improvement over the Epsilon-Trig method is
the unified trigonometric method (UTM) [65] proposed by
Mall and Taheri [65]. The UTM alleviates some of the main
implementation difficulties associated with the Epsilon-Trig
method and makes it possible to solve a variety of OCPs with
regular and singular control arcs, state-only inequality and
mixed state-control inequality path constraints [66], [67].
The main contributions of the paper are as follows. First,

we present an easy-to-implement control regularization to
facilitate the numerical solution of OCPs with extremal
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controls that may consist of both regular (i.e., non-singular)
and singular arcs or any combination of them. A prominent
advantage of the proposed control regularization method is
its ability to approximate both regular and singular control
arcs using one unified algebraic form. The OCP NCs are
fundamental as usual and the proposed method embeds the
optimal control NCs into a one-parameter family that can be
swept arbitrarily close to the OCP NCs. Second, the method
is easy to implement in the sense that one does not need
to modify the cost functional or system dynamics and the
method acts as a filter that is applied directly to the control.
This simplicity makes the proposed method to be on par
with the hyperbolic tangent smoothing (HTS) method, which
is an easy-to-implement control regularization method [39].
However, the proposed BBSRmethod can accurately approx-
imate a larger class of mixed regular/singular control arcs.
We have shown that with our proposed control regularization
method, standard boundary-value solvers (e.g., MATLAB’s
bpv4c) can be used for solving challenging OCPs. This
makes the BBSR method accessible to practitioners from
academia and industry. Third, the proposed method embeds
complex MPBVPs into a neighboring family of smooth
TPBVPs. This embedding is achieved through the so-called
control switching function and introduction of a smoothing
parameter. In essence, the complex control, which may
consist of regular and singular control arcs, is embedded into
a one-parameter family of smooth curves. By performing
a standard continuation over the smoothing parameter,
structures of control are approximated and matched to within
a high accuracy, which represents an important advantage.
Fourth, three important classes of trajectory optimization
problems are solved from space flight to atmospheric flight
domains to demonstrate the broad applicability of the method
in accurate approximation of complex extremal control
structures. The numerical results are compared and validated
against the solutions in the literature.

The paper is organized as follows. First, a brief review
of formulation of OCPs with control-affine Hamiltonian
is given in Section II. This is followed by a review of
the UTM method along with the PMP that characterizes
the optimal control expression. A comparison between the
control expressions of the UTM and the L2 norm-based
regularization is presented. Section III presents an analysis
on what L2 norm-based regularization achieves and its ability
in approximating both bang-bang and singular control arcs.
A comparison between the HTS-based and the proposed
L2 norm-based regularization methods is also presented.
Section IV presents the details of forming one-parameter
TPBVPs associated with the three OCPs. Numerical results
of the considered test problems are presented in Section V.
Finally, concluding remarks are given in Section VI.

II. PROBLEM FORMULATION
The BBSR method is motivated by a key observation on
the control expressions obtained with the UTM method.
In this section, we first consider a simple OCP and briefly

demonstrate the application of the UTM for solving OCPs
with a control-affine Hamiltonian. Then, we establish a con-
nection between the proposed L2 norm-based regularization
and its practical implications.

Consider a general Bolza-form OCP written as

min
u

φ(x(tf ), tf ) +

∫ tf

t0
L(x(t), u(t), t) dt,

s.t., ẋ = f0(x(t)) + f1(x(t))u(t), (1)

where φ and L denote terminal and running costs, respec-
tively, and f0 and f1 denote the drift and control-influence
parts of a control-affine dynamical system, respectively.
We assume that the running cost L depends affinely on u,
i.e., L can be written as L(x(t), u(t), t) = L0(x(t), t) +

L1(x(t), t)u(t). We also assume that the control u is bounded
(i.e., without loss of generality, we can write |u(t)| ≤ 1).

We proceed to analyze the Hamiltonian and extremal
control expressions and drop the arguments of L0, L1, f0 and
f1 for making the resulting algebraic equations more concise.
Let λ(t) denote the costate associatedwith the state x(t). Since
the Hamiltonian has a control-affine form, we have

H = L0 + λf0 + (L1 + λf1)u(t) = H0 + Su(t), (2)

where H0 = L0 + λf0 denotes the collection of terms that do
not depend on control and S = L1+λf1 is the so-called control
switching function. The extremal (superscript ‘*’) control can
be derived according to PMP as,

u∗(S) =


−1, if S > 0,
∈ [−1, 1], if S = 0,
1, if S < 0.

(3)

A. REVIEW OF THE UTM
The key step, in the UTM [65], is to use trigonometry and
to reparameterize the control, u(t) in Eq. (1), in terms of
two new orthogonal control inputs collectively denoted as
utrig(t) = [u1(t) = sin(θ(t)), u2(t) = cos(θ(t))]⊤. Then, the
idea is to set u(t) = u1(t) = sin(θ (t)) while minimizing the
second component of the new control, cos(θ(t)), which serves
as an ‘‘error-control’’ term along the solution. Thus, the OCP
defined in Eq. (1) can be written as,

min
θ

φtrig +

∫ tf

t0
Ltrig dt,

s.t., ẋ = f0(x(t)) + f1(x(t))u1(t), (4)

where φtrig = φ(x(tf ), tf ) and Ltrig = L(x(t), u1(t), t) +

ρ cos(θ(t)). Note that a penalization factor, ρ, is multiplied
to the orthogonal control term, cos(θ(t)).

B. APPLICATION OF THE INDIRECT METHOD
We proceed by applying the standard indirect method to the
OCP in Eq. (4). Let λ(t) denote the costate associated with
the state x(t). The explicit dependence of θ on t is dropped.
Since the Hamiltonian has a control-affine form, we have

H = L0 + λf0 + ρ cos(θ ) + (L1 + λf1) sin(θ), (5)
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where the new control is θ . Since control is smooth and
unbounded, we can use Weierstrass optimality condition and
determine the extremal control [9]. An alternative approach is
to use the idea of Hamiltonian vectorization proposed in [68].
Let S = L1 + λf1 denote the coefficient of sin(θ ), the
Hamiltonian in Eq. (5) can be written as,

H = H0 + [ρ, S]
[
cos(θ)
sin(θ)

]
. (6)

Minimization of the Hamiltonian is achieved automatically
upon using the following expressions [68],

sin(θ∗) = −
S√

S2 + ρ2
, cos(θ∗) = −

ρ√
S2 + ρ2

. (7)

Remark: While the original control, u, is parameterized
in terms of the two new orthogonal controls, after the
derivation of the new extremal controls is completed and
the set of NCs of optimality are established, we only use
the regularized control, i.e., u = sin(θ ), which means that
u∗(S) is replaced with u(S; ρ) = −S/

√
S2 + ρ2. Thus,

one could have directly used u(S; ρ) = −S/
√
S2 + ρ2

for the control in the formulation of the OCP. However,
the steps outlined under the UTM section clarify that the
L2 norm-based regularization actually tries to minimize the
orthogonal (error) component of the control when control
trigonometrization is used. However, the equivalence of the
extremal control is established between the two approaches
in this section. In other words, one could simply consider
the L2 norm-based regularization to be used as a filter that
directly applies to the control of the original indirect method,
given in Eq. (3). Direct application of the L2 norm-based
regularization to the control makes it similar to the HTS
method [39] in that it only regularizes the control without
affecting the standard steps taken to derive the NCs. However,
as will be shown, the L2 norm-based regularization is capable
of approximating both bang-bang and singular control arcs,
which offers a significant advantage over the HTS method
while retaining its appealing ease-of-implementation feature.

III. BANG-BANG AND SINGULAR CONTROL ARCS
Analyzing the Hamiltonian for OCPs associated with the
standard indirect method (Eq. (2)) and UTM (Eq. (6)), we are
able to perform additional analysis on the control expression,
u1 = sin(θ ) that approximates the optimal control as,

u∗(S) ≈ u(S; ρ) = −
S√

S2 + ρ2
, (8)

where ρ ∈ (0, ∞) is a smoothing parameter. Equation (8)
approximates the optimal control in Eq. (3) because

u(S; ρ) =


−

S√
S2 + ρ2

≈ −
S
|S|

= −1 if S ≫ ρ,

∈ [−1, 1] if S ≈ ρ,

−
S√

S2 + ρ2
≈ −

S
|S|

= 1 if S ≪ −ρ.

(9)

The Taylor series expansion of u(S; ρ) about ρ = 0 yields

u(S; ρ) = u(S; 0) + u′(S; 0)ρ +
1
2
u′′(S; 0)ρ2

+ O(ρ3)

= −
S

√
S2

+
[
S(S2 + ρ2)−

3
2 ρ

]
ρ=0ρ

+
1
2

[
− 3S(S2 + ρ2)−

5
2 ρ2

+ S(S2 + ρ2)−
3
2
]
ρ=0ρ

2

+ O(ρ3)

= −
S
|S|

+ 0 +
1
2

S
|S|3

ρ2
+ O(ρ3)

= −
S
|S|

(
1 −

1
2

(ρ

S

)2)
+ O(ρ3), (10)

where (·)′ =
d
dρ

, and O(ρ3) denotes the collection of higher-
order terms. From Eq. (10) it is clear that when ρ is small and
|S| is significantly greater than ρ, then, u(S; ρ) approximately
equals −

S
|S|
, which corresponds to the regular arcs of the

optimal control u∗(S) in Eq. (3). When ρ is small and |S|

has the same order of magnitude as ρ and satisfies |S| ≥
ρ
2 ,

then, u(S; ρ) takes a value in [−1, 1], which corresponds to
the singular arc of the optimal control u∗ in Eq. (3).
Therefore, it can be seen that on regular (bang-bang) arcs,

u(S; ρ) converges to u∗(S) as ρ decreases to 0. On singular
arcs, if they exist, we expect that u(S; ρ) also converges to an
optimal control, namely, to have the following condition

|u(S; ρ) − u∗
| =

∣∣∣∣ S√
S2 + ρ2

+ u∗

∣∣∣∣ → 0 as ρ → 0,

(11)

in which u∗
= u∗(x, λ, t) denotes the singular control.

We have observed this convergence on singular arcs in our
extensive numerical experiments, as is reported in Section V.
Suppose after repeatedly differentiating the control switching
function, ∂H

∂u = S, with respect to time t for k times, the
control u explicitly appears (i.e., a finite-order singular arc),

dk

dtk
S = S(k)(x, λ, t, u). (12)

On a singular arc, S and all its time derivatives must be 0,
i.e.,

S(t) = Ṡ(t) = S̈(t) = · · · = S(k)(x, λ, t, u) = 0. (13)

Now suppose we are able to solve S(k)(x, λ, t, u) = 0 and
obtain an expression for u on a singular arc as a function of
x, λ, and t , denoted as,

u∗
= u∗(x, λ, t). (14)

Under the assumption that the generalized Legendre-
Clebsch second-order condition (a.k.a. the Kelley condition)
is satisfied, we can substitute Eq. (14) into Eq. (11) and have∣∣∣∣ S(x, λ, t)√

S(x, λ, t)2 + ρ2
+ u∗(x, λ, t)

∣∣∣∣ → 0. (15)
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FIGURE 1. Comparison of L2 norm-based and HTS-based regularized
control versus S ∈ [−1,1] for different values of ρ.

Based on Eq. (15), in a numerical smoothing procedure,
we may treat

ε(ρ) = max
t∈Tsing

∣∣∣∣ S(x, λ, t)√
S(x, λ, t)2 + ρ2

+ u∗(x, λ, t)

∣∣∣∣ (16)

as a residual and monitor ε(ρ) as ρ → 0. In Eq. (16), Tsing
denotes the time interval corresponding to a singular arc, i.e.,
the residual ε(ρ) measures the maximum difference between
u(S; ρ) = −

S√
S2+ρ2

and u∗(x, λ, t) on a singular arc. If the

residual ε(ρ) converges to 0 as ρ → 0, then the converged
control should indeed be an optimal control on both regular
and singular arcs. Because Tsing is typically not known a
priori, in implementation of Eq. (16), Tsing may be replaced
with a conservative estimate of the singular arc time interval,
T̃sing, such that T̃sing ⊆ Tsing. Such an estimate T̃sing may be
obtained numerically based on S ≈ 0 (because on an exact
singular arc S = 0) or based on |u(S; ρ)| ≪ 1 (because
on exact regular arcs, optimal control u∗ is bang-bang, i.e.,
u∗

= ±1).
Figure 1 depicts a comparison between the L2 norm-

based regularized control, u(S; ρ) = −S/
√
S2 + ρ2, and the

HTS-based regularized control [39], u(S; ρ) = − tanh(S/ρ),
over a range of S ∈ [−1, 1] for three discrete values of the
smoothing parameter, ρ ∈ {1.0, 0.1, 0.01}. In the vicinity
of S = 0, the two regularization methods are close, but for
large values of S their values deviate from each other. Both
approximations are smooth (i.e., infinitely differentiable).
With the control logic given in Eq. (3), and for any bounded
control input (i.e., ul ≤ u ≤ uu), we have

u =
1
2

[
(ul + uu) + (ul − uu)

S√
S2 + ρ2

]
. (17)

IV. FORMULATION OF BOUNDARY-VALUE PROBLEMS
In this section, formulations of the boundary-value problems
(BVPs) associated with three OCPs are presented when the
proposed BBSR method is used for solving them.

A. LOW-THRUST TRAJECTORY OPTIMIZATION
Formulation of a minimum-fuel low-thrust trajectory opti-
mization problem is given. The spacecraft motion dynamics
are expressed in terms of modified equinoctial orbital
elements (MEEs) [69] defined as x = [p, f , g, h, k,L]⊤.
MEEs are chosen due to their superior numerical stability
and enhanced convergence performance in solving TPBVPs
[17], [24]. The state-space representation of the system is
expressed as,

x =

[
xMEE
m

]
, ẋ =

[Tmax
m Aα̂δT + b
−
Tmax
c δT

]
, (18)

where m is the spacecraft mass, α̂ is the thrust steering unit
vector (i.e., ||α̂|| = 1), δT ∈ [0, 1] is the engine throttle
input, Tmax is the maximum available thrust, and c = Ispg0
is the engine exhaust velocity with Isp denoting the constant
specific impulse value. The matrix mapping the control input
to the states A(xMEE) ∈ R6×3 and the vector representing
the unperturbed motion b(xMEE) ∈ R6×1 (each nonlinearly
dependent on the MEEs) are given as,

A
√
p/µ

=



0 2p
w 0

sL 1
w [(w+ 1)cL + f ] −

g
w [hsL − kcL]

−cL 1
w [(w+ 1)sL + g] f

w [hsL − kcL]

0 0 s2cL
2w

0 0 s2sL
2w

0 0 1
w [hsL − kcL]


,

b
√

µp
= [0, 0, 0, 0, 0,

(
w
p

)2

]⊤, (19)

where sL = sin(L), cL = cos(L), s2 = 1 + h2 + k2, and
w = 1 + fcL + gsL . Also, arguments of A and b are dropped
for brevity in the remainder of the paper.

We consider fixed-time, rendezvous-type, minimum-fuel
trajectories. The cost functional is written in Mayer form as

minimize
||α̂||=1 & δT∈[0,1]

J = −m(tf ). (20)

The (optimal control) Hamiltonian can be formed as

HMF = λ⊤ẋ = λ⊤

MEE

(
Aα̂δT

Tmax

m
+ b

)
− λm

Tmax

c
δT

= H0 +
Tmax

c
STδT, (21)

where λ =
[
λ⊤

MEE, λm
]⊤

= [λp, λf , λg, λh, λk , λL , λm]⊤ is
the costate vector. To solve for the optimal controls α̂∗ and δ∗

T,
one has to use Pontryagin’s minimum principle. In addition,
following Lawden’s primer vector theory, the optimal thrust
steering unit vector, α̂∗, and optimal thrust throttle input, δ∗

T,
can be derived [17] as,

α̂
∗

= −
A⊤λMEE

∥A⊤λMEE∥
, δ∗

T =


1, ST < 0,
∈ [0, 1], ST = 0,
0, ST > 0,

ST = −

(
c∥A⊤λMEE∥

m
+ λm

)
, (22)
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where ST denotes the thrust switching function that governs
the thrust throttle value δ∗

T. Note that there exists a possibility
for singular control arcs (i.e., when ST = 0 for one or multiple
non-zero finite time intervals), however, singular control
arcs are rare in space flights [65]. Because of the bounded
discontinuous behavior of 0 ≤ δ∗

T ≤ 1, we will employ the
BBSR method (Eq. (17)) to smoothly embed the non-smooth
throttle control into the continuous-time dynamics as,

δ∗

T (ST; ρ) =
1
2

1 −
ST√

S2T + ρ2

 , (23)

where the smoothing parameter, ρ ∈ (0, ∞), is introduced
whose value determines the ‘‘smoothness’’ of the throttle
profile. Equation (23) can simply be substituted into the
Hamiltonian. The costate dynamics can be derived using the
Euler-Lagrange equation as,

λ̇ = − [∂HMF/∂x]⊤ , (24)

with HMF defined in Eq. (21). The algebraic relations of
the costates differential equations are not presented for
conciseness, but we used MATLAB’s symbolic tool to derive
costate equations. The initial and final position vectors, initial
and final velocity vectors, and initial mass are all known, but
final mass is unknown. Thus, a condition on the final mass
costate can be derived through the transversality condition.
The seven initial costates, λ(t0), are still unknown and must
be determined to satisfy the final constraints,

ψ(λ(t0); ρ) =

[[
xMEE(tf ) − xMEET

]⊤
, λm(tf ) + 1

]⊤

= 0,

(25)

where xMEET denotes the target MEEs. In summary, the
TPBVP consists of state dynamics given in Eq. (18), costate
equations, Eq. (24), the steering α∗ given in Eq. (22),
smooth throttle in Eq. (23), and final constraints given
in Eq. (25). There are various numerical methods (e.g.,
single- or multiple-shooting schemes) to solve the resulting
one-parameter family of TPBVPs. In a single-shooting
scheme and for a relatively large initial value of the smoothing
parameter, ρ, the unknown vector, λ(t0), has to be determined
that obeys the NCs. Then, the converged solution is used in
a recursive manner to solve another TPBVP with a smaller
value of ρ. A numerical continuation on the value of ρ can be
performed to reduce its value to ρ ≈ 1.0 × 10−5. It is shown
that difference in the value of the cost functional of the exact
solution and the regularized solutions with small values of ρ

is insignificant for engineering applications [39].

B. GODDARD ROCKET PROBLEM
Consider the vertical ascent of a variable-mass rocket under
the inverse-square gravitational acceleration. Let x(t) =

[h, v, m]⊤, where h, v andm denote the altitude, velocity, and
mass, respectively. The non-dimensional equations of motion

can be expressed as [70]:

ḣ = f1 = v, v̇ = f2 =
T (u) − D(x)

m
−

1
h2

,

ṁ = f3 = −
T (u)
Ve

, (26)

where Ve is a constant exhaust velocity, and T (u) is thrust of
the rocket, D(x) is drag, and q(x) is dynamic pressure with
their relations given as,

T (u) =
Tmax

2
(1 + u), D(x) = q(x)

CDA
m0g0

,

q(x) =
1
2
ρ0v2e

(
β
h0−h
h0

)
, (27)

where Tmax denotes the maximum thrust value and u ∈

[−1, 1], which corresponds to T ∈ [0,Tmax]. Drag force,
D(x), is a function of the drag coefficient, CD, reference
area, A, and dynamic pressure, q(x); all normalized by the
maximum gravitational force expressed in terms of the initial
mass of the rocket, m0, and acceleration due to sea-level
gravity constant, g0. An exponential atmospheric model is
used to model the dynamic pressure, q(x), with the change
in h and v, with respect to the air density at sea level, ρ0, and
initial height, h0, from the Earth’s surface. The air density
drop with altitude is given as a decay rate, β. The dynamical
model and values were adopted from the work of Graichen
and Petit [71], originally given by Seywald and Cliff [70].
The scaling of parameters can be performed according to
Ref. [72]. For the sake of comparison, the following values
have been used in this work: β = 500, Ve = 0.5, ρ0CDA

m0g0
=

620, ρ0 = 1.2522 × 104.
The Goddard rocket problem is a free-final-time OCP, with

a fixed initial state vector, x(0) = [h0, v0, m0]⊤, fixed
initial time, t0 = 0, and fixed final mass, mf = 0.6 (all
parameters, including time, are non-dimensional). The OCP
cost functional can be stated in Mayer form as,

minimize
−1≤u≤1 & tf

J = −h(tf ) s.t.: ẋ = f (x, u), (28)

where f = [f1, f2, f3]⊤. The state and time boundary
conditions are given as: t0 = 0, h(t0) = 1, v(t0) = 0,
m(t0) = m0 = 1, tf = free, m(tf ) = mf = 0.6. Let
λ⊤

= [λh, λv, λm] denote the costate vector. The (optimal
control) Hamiltonian can be formed as,

HG = λh v−
Tmax λm

2Ve
−
Tmax λm u

2Ve
−

λv

h2
+
Tmax λv

2m

+
Tmax λv u

2m
−
ACD λv ρ0 v2

2 g0mm0
e

(
β
h0−h
h0

)
. (29)

The costate dynamics can be obtained by using the Euler-
Lagrange equation, λ̇ = −[∂HG/∂x]⊤. The Hamiltonian and
the control switching function can be written as,

HG = H0 + SGu, SG =
Tmax λv

2m
−
Tmax λm

2Ve
. (30)
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Thus, the extremal control is characterized as,

u∗(SG) =


1 if SG < 0,
∈ [−1, 1] if SG = 0,
−1 if SG > 0.

(31)

The extremal control can be directly approximated as,

u∗ (SG; ρ) = −
SG√

S2G + ρ2
. (32)

Since the Hamiltonian does not explicitly depend on time
and the final time, tf , is free, the Hamiltonian value has to
remain zero along any extremal solution. Since h(tf ) and v(tf )
are free, we obtain that λh(tf ) = −1 and λv(tf ) = 0 due
to transversality conditions. The TPBVP consists of the state
dynamics, Eq. (26), costate dynamics, λ̇ = −[∂HG/∂x]⊤, the
smooth approximation of the extremal control, Eq. (32), the
condition on the final value of the Hamiltonian, HG(tf ) = 0,
and the set of final conditions written as,

ψ(λ(t0), tf ; ρ) =


λh(tf ) + 1

λv(tf )
m(tf ) − 0.6
HG(tf )

 = 0, (33)

which can be solved using a single-shooting or collocation-
based methods. For a single-shooting scheme, a ‘‘good’’
estimate for the missing initial costates, λ(t0), and final time,
tf , have to be provided to the solver. These solvers iterate over
the unknown values, using Newton- or Quasi-Newton based
methods, to satisfy the residual vector in Eq. (33) to within a
specified user-defined tolerance.

C. MINIMUM-TIME REORIENTATION OF SPACECRAFT
Motivated by the ongoing interest in the optimal control
of rigid bodies [73], [74], we revisit the minimum-time
reorientation of an axisymmetric rigid spacecraft under
the influence of three control torques. We consider an
axisymmetric rigid-body nonrest-to-rest maneuver, which
can have complex regular and singular control profiles.

Let uI = [u1, u2, u3]⊤ denote the control vector and let
xI = [x1, x2, ω1, ω2, ω3]⊤ denote the state vector. Time rate
of change of the states can be written as,

ẋ1 = f1 = ω3x2 + ω2x1x2 +
1
2
ω1(1 + x21 − x22 ),

ẋ2 = f2 = −ω3x1 + ω1x1x2 +
1
2
ω2(1 + x22 − x21 ),

ω̇1 = f3 = aω3ω2 + u1,

ω̇2 = f4 = −aω3ω1 + u2,

ω̇3 = f5 = u3, (34)

where f I = [f1, f2, f3, f4, f5]⊤ and ω = [ω1, ω2, ω3]⊤

denotes the angular velocity vector. Here, x1 and x2 are used
for determining the relative position of the inertially fixed
‘‘3’’-axis as viewed by an observer fixed in the body frame of
the spacecraft [75], [76]. In Eq. (34), a = (I2 − I3)/I1 where

(I1, I2, I3) are the principal-axis moments of inertia (with
a = 0.5). The derivation details are given in [74].
The OCP that corresponds to the minimum-time reorienta-

tion of an axisymmetric rigid spacecraft can be written as,

minimize
uI∈U & tf

J = tf , s.t.: ẋI = f I (xI ,uI ), (35)

where U = {uI | |ui| ≤ 1, for i ∈ {1, 2, 3}} denotes
the admissible control set. The boundary conditions are
summarized as: t0 = 0, x1(t0) = 0.1, x2(t0) = −0.1,
ω1(t0) = −0.45, ω2(t0) = −1.1, ω3(t0) = 0, x1(tf ) =

x2(tf ) = ω1(tf ) = ω2(tf ) = ω3(tf ) = 0, and tf is free.
We will consider two cases. In Case I, we include ω3 and

u3, but don’t enforce ω3(t) = 0 constraint for t ∈ [t0, tf ].
In Case II, we enforce ω3(t) = 0 (corresponding to
u3(t) = 0). This corresponds to removing ω̇3 from the
set of differential equations and its boundary conditions.
The TPBVPs associated with both cases are presented and
numerical results for both cases are given in Section V.
Case I (ω3(t) ̸= 0): Let λI = [λx1 , λx2 , λω1 , λω2 , λω3 ]

⊤

denote the costate vector. Upon forming the Hamiltonian,
HI = λ⊤

I f I , the costate dynamics can be obtained by
using the Euler-Lagrange equation, λ̇I = −[∂HI/∂xI ]⊤. The
extremal controls, ui for i ∈ {1, 2, 3}, are characterized as,

u∗
i (Si) =


1 if Si < 0,
∈ [−1, 1] if Si = 0,
−1 if Si > 0,

Si = λωi . (36)

The non-smooth controls are approximated using the
BBSR method as,

u∗
i (Si; ρ) = −

Si√
S2i + ρ2

, for i ∈ {1, 2, 3}. (37)

Since the Hamiltonian does not explicitly depend on time
and the final time, tf , is free, we can obtain a condition on the
final value of the Hamiltonian as HI (tf ) = −1. The TPBVP
consists of the state dynamics, Eq. (34), costate dynamics,
λ̇I = −[∂HI/∂xI ]⊤, the extremal control, Eq. (37), the
condition on the final value of the Hamiltonian,HI (tf ) = −1,
and the set of final conditions written as,

ψ I (λI (t0), tf ; ρ) =


x1(tf )
x2(tf )
ω1(tf )
ω2(tf )
ω3(tf )

HI (tf ) + 1

 = 0. (38)

Case II (ω3(t) = 0): Let uII = [u1, u2]⊤ denote the control
vector and let xII = [x1, x2, ω1, ω2]⊤ denote the state vector.
The time rate of change of the states can be written as,

ẋ1 = f1 = ω2x1x2 +
1
2
ω1(1 + x21 − x22 ),

ẋ2 = f2 = ω1x1x2 +
1
2
ω2(1 + x22 − x21 ),

ω̇1 = f3 = u1,

ω̇2 = f4 = u2, (39)
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FIGURE 2. E2D problem: minimum-fuel trajectory with ρ = 1.0 × 10−5.

where ω = [ω1, ω2]⊤ denotes the angular velocity vector.
Let λII = [λx1 , λx2 , λω1 , λω2 ]

⊤ denote the costate vector.
The Hamiltonian can be formed as HII = λ⊤

II f II , where
f II = [f1, f2, f3, f4]⊤. The boundary conditions are similar
to Case I except for the removal of the conditions on ω3.
The non-smooth controls are approximated using the BBSR
method (with Si defined in Eq. (36)) as,

u∗
i (Si; ρ) = −

Si√
S2i + ρ2

, for i ∈ {1, 2}. (40)

The TPBVP consists of the state dynamics, Eq. (39),
costate dynamics, λ̇II = −[∂HII/∂xII ]⊤, the extremal
control, Eq. (40), the condition on the final value of the
Hamiltonian, HII (tf ) = −1, and the set of final conditions
written as,

ψ II (λII (t0), tf ; ρ) =


x1(tf )
x2(tf )
ω1(tf )
ω2(tf )

HII (tf ) + 1

 = 0. (41)

V. NUMERICAL RESULTS
The numerical results for the three test problems are pre-
sented in this section. All problems are solved in MATLAB
running on aWindows 10 Enterprise OS with 32 GB of RAM
and Interl(R) Xeon(R) Gold CPU@ 2.3GHz.

A. MINIMUM-FUEL LOW-THRUST TRAJECTORY
We consider a benchmark minimum-fuel low-thrust tra-
jectory optimization from the Earth to asteroid Dionysus
(referred to as the E2D problem) [17]. This asteroid has high
eccentricity and inclination values of 0.542 and 13.54 deg,
respectively. The boundary conditions and parameters are
chosen to compare the results with those reported in [17]. The

FIGURE 3. E2D problem: engine throttle versus time with ρ = 1.0 × 10−5.

spacecraft departs from the Earth on December 23, 2012, and
the desired mission takes 3534 days; the states of the Earth
and Dionysus are expressed in heliocentric ecliptic J2000.
In the numerical simulations, the gravitational parameter of
the Sun is set to µ = 132, 712, 440, 018 km3/s2 and g0 =

9.8065 m/s2. We used MATLAB’s fsolve function and a
MEX version of MATLAB’s built-in ode45 for propagating
the set of state-costate differential equations numerically
with absolute and relative tolerances set to 1.0 × 10−10.
The MaxFunEvals, MaxIter, and TolFun fields in
options of the fsolve are set to 1000, 200 and 1.0 ×

10−9, respectively. The initial value of λ(t0) was randomly
generated in the range of [0,1]. AU stands for astronomical
unit.

Figure 2 shows the three-dimensional minimum-fuel
trajectory. Figure 3 shows the time histories of the engine
throttle and thrust switching function with ρ = 1.0 ×

10−5. The optimal throttle profile consists of 12 switches,
with late-departure and early-arrival coast arcs. The final
mass is m(tf ) = 2718.32 kg, which is the global
optimal solution for this benchmark problem [39]. We per-
formed 50 simulations with random initial set of costates,
λ(t0) ∈ [0, 1]. In each simulation, 5 TPBVPs associated
with the discrete set of the smoothing parameter, ρ ∈

{0.1, 0.01, 0.001, 0.0001, 0.00001} are solved. On average,
it takes 1.1 seconds to solve each simulation. When the set
of MEEs was converted in Cartesian position and velocity
coordinates, the Euclidean error values in position and
velocity vectors are 1r = ||r(tf ) − rD|| = 5.0 × 10−10 km,
and 1v = ||v(tf ) − vD|| = 1.1 × 10−2 km/s, respectively.
Here, r(tf ) and v(tf ) denote the position and velocity at the
end of the low-thrust trajectory and rD and vD denote the
position and velocity vectors of Dionysus [24]. The results
are consistent with the solutions obtained and reported in the
literature using the HTSmethod, in which the only difference
is in the problem formulation for throttle regularization,
which can be written as δ∗

T =
1
2 [1 − tanh(ST/ρ)] [39].
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FIGURE 4. Goddard rocket problem: states and thrust versus time for
Tmax ∈ {1.5,2.5,3.5,4.5} with ρ ≈ 1.0 × 10−4.

FIGURE 5. Goddard rocket problem: SG vs. time for
Tmax ∈ {1.5,2.5,3.5,4.5} with ρ ≈ 1.0 × 10−4.

B. THE GODDARD ROCKET PROBLEM
The TPBVPs associated with the Goddard rocket problem
are solved in MATLAB using its built-in boundary-value
problem solver, bvp4c. The RelTol and AbsTol fields in
options are set to 1.0 × 10−4, respectively. The bvp4c is
initialized with all costate values set to 0 and the guess for tf
is 0.5. The initial value of the smoothing parameter is 1.0 and
its value is decreased by multiplying it with a 0.85 factor.
The continuation is performed until ρ ≤ 1.0 × 10−4. Thus,
a set of 57 TPBVPs are solved. To improve the accuracy of
the solution, the last solution of the bvp4c is resolved using
bvp5c with RelTol and AbsTol fields in options are
set to 1.0 × 10−7. It takes nearly 3 seconds to obtain the
solutions. To demonstrate the ability of the BBSR method in
approximating regular and singular control arcs, a finite set
of Tmax ∈ {1.5, 2.5, 3.5, 4.5} is considered.
Figure 4 depicts the time histories of the states and control.

Figure 5 shows the time histories of the switching function

FIGURE 6. Goddard rocket problem: time histories of T , SG for
Tmax = 4.5 with ρ ≈ 1.0 × 10−4.

FIGURE 7. Goddard rocket problem: plot of ϵ (see Eq. (16)) versus ρ.

for each Tmax value. As it is known, the control profile will
change and for different values of Tmax, it is possible that
a singular control arc becomes part of the extremal control.
For the chosen problem parameters, and for Tmax ≥ 2.2,
singular control becomes part of the extremal control. Also,
as the value of Tmax increases beyond the critical Tmax =

2.2, the duration of the singular control arc increases. The
results illustrate the ability of the proposed BBSR method in
approximating regular and singular control arcs using the L2
norm-based control regularization given in Eq. (32). Table 1
summarizes the values of tf and h(tf ) for different Tmax
values. For the case of Tmax = 3.5, the results are consistent
with those reported in [71] for the same thrust value. As the
value of Tmax increases, the flight time gets shorter while the
maximum altitude value increases.

In order to verify Eq. (16), we derived the expression for
the singular control arc for the Goddard rocket problem.
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TABLE 1. Summary of results for the Goddard rocket problem.

FIGURE 8. Case I: spacecraft reorientation problem: time histories of the
states with ρ ≈ 9.66 × 10−7.

FIGURE 9. Case I: spacecraft reorientation problem: time histories of the
controls and switching functions for ρ ≈ 9.66 × 10−7.

It is known that Goddard rocket problem has a finite-order
singular arc. The order of the singular control is q =

1, i.e., d2q

dt2q
SG(t) = 0 is an explicit function of control,

which we denote as using. The algebraic expression of the
singular control is lengthy, but we have evaluated it along the
solution that is obtained using the BBSR method. Figure 6
shows the time histories of T , SG and Tmaxusing for t ∈

[0, 0.1]. It is clear that during the time that SG(t) = 0,
the control lies on the singular control arc. Figure 7 shows
the profile of the control error (defined in Eq. (16)) versus
ρ values. As the value of ρ decreases, the error becomes
smaller.

FIGURE 10. Case I: spacecraft reorientation problem: HI versus time with
ρ ≈ 9.66 × 10−7.

FIGURE 11. Case II: spacecraft reorientation problem: time histories of
the states with ρ ≈ 9.66 × 10−6.

C. MINIMUM-TIME REORIENTATION OF SPACECRAFT
Case I: The resulting TPBVPs are solved in MATLAB using
its built-in boundary-value problem solver, bvp4c. The
RelTol andAbsTolfields in theoptions are set to 1.0×

10−2, respectively. The bvp4c is initialized with random
values for all costate in range of [0,1] and the guess for tf
is 5. The initial value of the smoothing parameter is 1.0 and
its value is decreased by multiplying it with a 0.95 factor.
The continuation is performed until ρ ≤ 1.0 × 10−6. Thus,
a set of 270 TPBVPs are solved. To improve the accuracy of
the solution, the last solution of the bvp4c is resolved using
bvp5c with RelTol and AbsTol fields in the options
set to 1.0× 10−12. It takes approximately 6 seconds to obtain
the solutions. The shortest maneuver time is tf = 2.479.
Figure 8 shows the time histories of the states. Figure 9 shows
the time histories of the three controls and their corresponding
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FIGURE 12. Case II: spacecraft reorientation problem: time histories of
the controls and switching functions with ρ ≈ 9.66 × 10−6.

FIGURE 13. Case II: spacecraft reorientation problem: time histories of
u1 and S1 with ρ ≈ 9.56 × 10−9.

switching functions. The extremal solution consists of regular
control arcs with two control switches in u1, one control
switch in u2 and two control switches in u3. Figure 10 shows
the time history of the Hamiltonian, which verifies the that
the solution is an extremal solution. The spikes in the plot
correspond to the control switches that affect the value of the
Hamiltonian in the sixth significant digit.
Case II: We adopted a solution strategy similar to Case I.

However, it is theoretically proven that the solution to Case II
(i.e., when ω3(t) = 0) will consist of a singular control arc
for u∗

1 while u∗

2 will have a regular control profile. We will
present the results for two small values of the smoothing
parameter. Figure 11 shows the time histories of the states.
Figure 12 shows the time histories of the two controls
and their corresponding switching functions. The extremal
solution consists of mixed regular and singular control arcs

FIGURE 14. Case II: spacecraft reorientation problem: time histories of
u1 and S1 with ρ ≈ 9.73 × 10−15.

in u1 and regular control arcs in u2 with one switch. The
minimum maneuver time is tf = 2.883892.
Figures 13 and 14 show the time histories of u1 and S1 for

ρ = 9.56 × 10−9 and ρ = 9.73 × 10−15, respectively. The
numerical value of the maneuver time is still the same for
both of the smoothing values, tf = 2.883892. However, the
transition from a regular control into a second-order singular
arc is known to lead to control chattering [2]. In particular,
compared to the u1 profile in Figure 12, the control has
two more control switches when u2 becomes -1 prior to the
singular control. However, Figure 14 and its enlarged subplot
exhibit the control chattering when the value of ρ is reduced
even further.

VI. CONCLUSION
A method is proposed for a novel unified control regular-
ization of regular (i.e., bang-bang) and singular control arcs
that arise in solving optimal control problems. The proposed
method called, Bang-Bang Singular Regularization (BBSR),
is based on a key observation in the structure of the control
when the original control is parameterized in terms of two
orthogonal trigonometric-based components. An equivalence
is established between the trigonometric-based regularization
and the L2 norm-based regularization. Leveraging the
existing equivalence, the easy-to-implement BBSR control
regularization is applied directly to the control of the original
non-smooth optimal control problem. In other words, using
the algebraic expression for the control switching function,
an L2 norm-based control regularization is used to construct
a one-parameter family of smooth controls that approximate
both regular and singular control arcs in a compact unified
manner.

Application of the BBSR method is demonstrated suc-
cessfully by solving three important classes of optimal
control problems: 1) low-thrust trajectory design, 2) the
Goddard rocket problem with a known ‘‘bang-singular-
bang’’ control structure, and 3) minimum-time nonrest-to-
rest attitude reorientation. Numerical results demonstrated
the flexibility of the method in generating extremal control
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structures that consist of mixed regular (i.e., bang-bang) and
singular control arcs.
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