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ABSTRACT The complex spherical fuzzy graph (CSFG), which extends the concept of a spherical fuzzy
graph (SFG), proves to be a more effective means of depicting relationships among diverse objects when
these relationships are subject to uncertainty. In addition, the Dombi operators, featuring an adjustable
operational parameter, offer valuable utility by accommodating distinct values. In this research paper,
we present the concept of a complex spherical dombi fuzzy graph (CSDFG), an extension of a spherical
dombi fuzzy graph (SDFG). Dombi operators are utilized as averaging operators, playing a crucial role
in aggregating data into a single value for efficient decision-making. We implement Dombi operators
on CSFGs. The complement of a CSDFG is defined, and self-complementry in CSDFGs is discussed.
We explore homomorphism, isomorphism, weak isomorphism (W-isomorphism), and co-weak isomorphism
(CW-isomorphism) to establish relationships between CSDFGs. We define regular, arc regular, and totally
arc regular CSDFGs, explain their key properties, and demonstrate an application of CSDFG in decision-
making problems.

INDEX TERMS CSDFG, complement, homomorphism, isomorphism, regular and total regular, application.

I. INTRODUCTION
Dombi operations are used in fuzzy graph theory to handle
contradictory data, reduce uncertainty, visualise intricate
connections, and provide a flexible method for merging and
combining graphs. In situations where conventional clear-cut
graphs are unable to fully capture the subtleties within the
data, they support the adaptability and resilience of fuzzy
graph representations, enabling more accurate decision-
making. Dombi operations combine membership degrees
from various nodes or edges to represent uncertainty. Dombi
operations gracefully handle conflicting information, which
is one of their key functions. Dombi operations can resolve
conflicting information and provide representations of the
fuzzy graph in circumstances where various sources provide
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incongruent information about the existence or strength of
connections within a graph.

The notion of a fuzzy set (FU-S), which expands crisp
set theory, was initially proposed by Zadeh [22] due to the
existence of ambiguous data. A membership function within
a FU-S assigns degrees of truth from the closed range [0, 1].
Fuzzy sets are a strong tool for handling uncertainty and
ambiguity in a variety of applications because they combine
linguistic variables with fuzzy logic.

Kaufman [11] was the first to propose the concept of
fuzzy graphs (FG). The FG is established by expanding
the notion of a standard graph to include FU-Ss and fuzzy
relations. Instead of clear values for arcs, fuzzy graphs use
membership degrees to describe the strength of links between
nodes. The membership degrees can be described using
fuzzy membership functions or fuzzy matrices, providing
a more flexible representation of uncertain and imprecise
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connections in numerous applications. Fuzzy graphs are used
to depict ambiguous and imprecise interactions between
components, making it possible to represent complex systems
and decision-making processes in a way that is more
adaptable and realistic. Fuzzy graphs are very useful in the
fields of pattern recognition, image processing, data analysis,
and artificial intelligence. Later, Rosenfeld [15] investigated
fuzzy relations on FU-Ss. Bhattacharya [4] made a few
comments on FGs. Additionally, Shoaib et al. [17] introduced
novel properties on picture fuzzy graphs. Recently, some
researchers have been making contributions to the field of
fuzzy theory recently [7], [8], [9], [18], [19], [20].

Triangle norms and conorms were first presented by
Menger [13] in the context of probabilistic metric spaces, and
after some time, they were studied by Schweizer and Sklar
[14]. Other academics have offered different T-operators,
[5], [10] as examples; among the most popular operators
are products, [6]. During the selection of T-operators for
specific uses, consider their characteristics, model suitability,
ease of implementation on software and hardware, and
so on.

The dombi FG was first introduced by Ashraf et al. [3].
The idea of CFS, where a range of degrees exists
in the complex plane within the unit disc, was introduced
by Ramot et al. [16]. The complex Pythagorean fuzzy
graphs were studied by Akram and Khan [1] in the
context of problems with decision-making. The complex
picture fuzzy graphs were introduced by Shoaib et al. [21].
Karthick et al. [12] studied a material selection model based
on SDFG.

We have introduced CSDFG, which is based on complex
spherical fuzzy numbers. Complex spherical fuzzy numbers
are used in graph theory to address complex relationships
and uncertainties in network data. These numbers extend
traditional spherical fuzzy numbers to include real and
imaginary parts, allowing for the representation of both
magnitude and phase information. This information is par-
ticularly valuable in directional networks, dynamic systems,
and scenarios with oscillatory behaviors. Complex spherical
fuzzy numbers can be used in complex relationships,
decision-making, and uncertainty handling, enhancing their
suitability for applications such as electrical circuit analysis,
signal processing, and network dynamics.

The purpose of the paper can be summed up as follows:
• A CSDFG is useful in dealing with three-dimensional

phenomena, including imprecise and intuitive knowl-
edge, without losing information due to its phase
term.

• Dombi operators, which cover a variety of widely used
operator attributes, provide larger applications and excellent
decision-making efficiency.

Here are some key points addressed in the paper:
• The idea of CSDFG is introduced.
• The degree of a node and its total degree, both in

terms of amplitude and phase, are thoroughly explained with
examples.

• The isomorphism, homomorphism, complement,
W-Isomorphism, and CW-isomorphism are defined by their
properties.

• The strong CSDFG and a complete CSDFG are
introduced.

• Explanation and study of regular and completely regular
graphs, as well as their key properties.

The paper’s structure is as follows: In Section II, we pro-
vide fundamental definitions essential for understanding the
paper. Section III covers the study of CSDFG, node degree,
total degree, isomorphism, homomorphism, complement,
W-Isomorphism, and CW-Isomorphism, strong CSDFG,
complete CSDFG, and the detailed properties of regular and
totally regular CSDFGs. Section IV explores the application
of CSDFG. Lastly, in Section V, we present the conclusion
and outline future plans.

II. PRELIMINARIES
Definition 1 ([1]): A FU-S on a universe ϒ is an object

I = {< x, ωI (x) > |x ∈ ϒ}, where ωI : ϒ → [0, 1]
represents the membership degree of I.
Definition 2 ([1]): A FU-S on ϒ × ϒ is known as fuzzy

relation on ϒ , represented by J = {< xb, ωJ (xb) > |xb ∈

ϒ × ϒ}, where ωJ : ϒ × ϒ → [0, 1] represents the degree
of membership of J .

Definition 3 ([1]): A FG on a non empty set ϒ is a pair
9 = (I,J ) with I a FU-S on ϒ and J a fuzzy relation on
ϒ such that ωJ (xb) ≤ ωI (x) ∧ ωI (b) for all x, b ∈ ϒ .
Definition 4 ([20]): On a universeϒ , a spherical fuzzy set

(SFS) is defined as I = {< x, ωI (x), τI (x), 0I (x) > |x ∈

ϒ} which satisfies the axiom 0 ≤ ω2
I (x)+τ 2I (x)+02

I (x) ≤ 1,
for all x ∈ ϒ , where ωI , τI , 0I : ϒ → [0, 1] represent the
value of membership, value of non-membership and value of
abstinence of I respectively.
Definition 5 ([20]): A SFS on ϒ × ϒ is said to be

spherical fuzzy relation on ϒ denoted by J = {<

xb, ωJ (xb), τJ (xb), 0J (xb) > |xb ∈ ϒ × ϒ} satisfies
the axiam 0 ≤ ω2

J (xb) + τ 2J (xb) + 02
J (xb) ≤ 1, for all

x, b ∈ ϒ , where ωJ , τJ , 0J : ϒ ×ϒ → [0, 1] represent the
value of membership, value of non-membership and value of
abstinence of J respectively.
Definition 6 ([20]): On a non empty set ϒ , a spherical

fuzzy graph is a pair 9 = (I,J ) with I a SFS on ϒ and
J a spherical fuzzy relation on ϒ such that

ωJ (xb) ≤ ωI (x) ∧ ωI (x),

τJ (xb) ≤ τI (x) ∨ τI (b),

0J (xb) ≤ 0I (x) ∧ 0I (b),

and 0 ≤ ω2
J (xb) + τ 2J (xb) + 02

J (xb) ≤ 1 for all x, b ∈

ϒ , where ωJ , τJ , 0J : ϒ × ϒ → [0, 1] represent the
value of membership, value of non-membership and value of
abstinence of J respectively.
Definition 7 ([1]): A binary functionH : [0, 1]×[0, 1] →

[0, 1] is known as triangular norm (t-norm) if for all x, b, e ∈

[0,1], it follows the given conditions:
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1.H(x, 1) = x. (boundary axiam)
2.H(x, b) = H(b, x). (commutativity)
3.H(x,H(b, e)) = H(H(x, b), e). (associativity)
4.H(x, b) ≤ H(e, f ) if x ≤ r and b ≤ f . (monotonicity)
Replacing 1 by 0 in axiam (1), we obtain the concept of

triangular conorm (t-conorm).
[1] The few popular t-norms are given as follows:
•MN (x, b) = minimum(x, b). (minimum operatorMN )
• PR(x, b) = xb. (product operator PR)
• WL(x, b) = max(x + b − 1, 0). (Lukasiewicz’s t-norm

WL)
• DMB(x, b) =

1
1+[( 1−xx )T +( 1−bb )T ]1/T

: T > 0. (Dombi’s

t-norm DMB)
We derive another T-operator by using T = 1 in dombi’s

t-norm that is T (x, b) =
xb

x+b−xb .
The following are the related t-conorms::
•MX ∗(x, b) = max(x, b). (maximum operatorMX ∗)
• PS∗(x, b) = x + b− xb. (probabilistic sum PS∗)
• WL∗(x, b) = min(x + b, 1). (Lukasiewicz’s t-conorm

WL∗)
• DMB∗(x, b) =

1
1+[( 1−xx )−T +( 1−bb )−T ]1/−T

: T > 0.

(Dombi’s t-conorm DMB∗)
We derive another T-operator by putting T = 1 in Dombi’s

t-norm, which is S(x, b) =
x+b−2xb
1−xb .

Definition 8 ([3]): A Dombi fuzzy graph over an underly-
ing set A consists of an ordered pair 9 = (I,J ), where
I : A → [0, 1] represents a fuzzy subset of A and J :

A×A → [0, 1] is a symmetric fuzzy relation on I such that

ωJ (xb) ≤
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)

∀ x,b∈ A, where ωI and ωJ represents the degree
membership of I and J respectively.
Definition 9 ([12]): A SDFG on a non empty set A is a

pair 9 = (I,J ) with I = (ωI , τI , 0I ) : A → [0, 1] a SFS
in A and J = (ωJ , τJ , 0J ) : A×A → [0, 1] a spherical
fuzzy relation on I such that

ωJ (xb) ≤
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)

τJ (xb) ≤
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)

0J (xb) ≤
0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

and satisfies the axiam 0 ≤ ω2
J (xb) + τ 2J (xb) + 02

J (xb) ≤

1, for all x, b ∈ A, where ωJ , τJ , 0J represent the
value of membership, value of non-membership and value of
abstinence of J respectively.
Definition 10 ([20]): On a universe ϒ , complex spherical

fuzzy set (CSFS) is defined as I = {< x, ωI (x)ei~I (x),
τI (x)eiςI (x), 0I (x)eiδI (x) > |x ∈ ϒ}, i =

√
−1 that

satisfies the axiom 0 ≤ ω2
I (x) + τ 2I (x) + 02

I (x) ≤

1 and ~I (x), ςI (x), δI (x) ∈ [0, 2π ], for all x ∈ ϒ ,
where ωI , τI , 0I : ϒ → [0, 1] represent the value of
standard membership, value of standard non-membership

and value of standard abstinence of I respectively. Note
that ωI (x), τI (x), 0I (x) are called amplitude terms and
~I (x), ςI (x), δI (x) are called phase terms.

III. CSDFG
Definition 11: A CSFS on ϒ × ϒ is said to be complex

spherical fuzzy relation (CSFR) denoted by J = {<

xb, ωJ (xb)ei~J (xb), τJ (xb)eiςJ (xb), 0J (xb)eiδJ (xb) > |xb ∈

ϒ × ϒ}, i =
√

−1 satisfies the axiam 0 ≤ ω2
J (xb) +

τ 2J (xb)+ 02
J (xb) ≤ 1 and ~J (xb), ςJ (xb), δJ (xb) ∈ [0, 2π ],

for all x, b ∈ ϒ , where ωJ , τJ , 0J : ϒ × ϒ →

[0, 1] represent the value of standard membership, value of
standard non-membership and value of standard abstinence
of J respectively. Note that ωJ (xb), τJ (xb), 0J (xb) are
called amplitude terms and ~J (xb), ςJ (xb), δJ (xb) are
called phase terms.
Definition 12: A CSDFG on a universe ϒ is an ordered

pair 9 = (I,J ), where I = (ωIei~I , τIeiςI , 0IeiδI ) :

ϒ → {n : n ∈ C, |N | ≤ 1} is a CSF subset in ϒ and J =

(ωJ ei~J , τJ eiςJ , 0J eiδJ ) : ϒ×ϒ → {n : n ∈ C, |N | ≤ 1}
is a complex spherical fuzzy relation (CSFR) on I such that
for amplitude terms

ωJ (xb) ≤
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)
,

τJ (xb) ≤
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)
,

0J (xb) ≤
0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

,

and for phase terms

~J (xb) ≤
~I (x)~I (b)

~I (x) + ~I (b) − ~I (x)~I (b)
,

ςJ (xb) ≤
ςI (x) + ςI (b) − 2ςI (x)ςI (b)

1 − ςI (x)ςI (b)
,

δJ (xb) ≤
δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

,

for all x,b∈ ϒ , where i =
√

−1, 0 ≤ ω2
J (xb) + τ 2J (xb) +

02
J (xb) ≤ 1 and ~J (xb), ςJ (xb), δJ (xb) ∈ [0, 2π ]. We call
I and J the CSF vertex set and CSF arc set, respectively.
Example 1: Let 9 = (I,J ) be a CSDFG on 9∗

=

(ϒ,Z), where ϒ = {x, b, r, s} and Z = {xb, xr, xs, bs} as
shown in Figure 1. The set of nodes I and set of arcs J of 9
are defined on ϒ and Z , respectively.

I =< (
x

0.5ei2π (0.6)
,

b
0.6ei2π (0.4)

,
r

0.3ei2π (0.7)
,

s
0.4ei2π (0.2)

),

(
x

0.2ei2π (0.3)
,

b
0.3ei2π (0.2)

,
r

0.4ei2π (0.4)
,

s
0.6ei2π (0.4)

),

(
x

0.7ei2π (0.4)
,

b
0.5ei2π (0.6)

,
r

0.6ei2π (0.3)
,

s
0.5ei2π (0.4)

) >

and

J

=< (
xb

0.2ei2π (0.3)
,

xr
0.21ei2π (0.4)

,
xs

0.25ei2π (0.15)
,

bs
0.27ei2π (0.13)

),
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(
xb

0.37ei2π (0.37)
,

xr
0.45ei2π (0.51)

,
xs

0.61ei2π (0.40)
,

bs
0.6ei2π (0.45)

),

(
xb

0.51ei2π (0.55)
,

xr
0.31ei2π (0.61)

,
xs

0.13ei2π (0.25)
,

bs
0.23ei2π (0.41)

)>

FIGURE 1. CSDFG.

x = (0.5ei2π (0.6), 0.2ei2π (0.3), 0.7ei2π (0.4))

b = (0.6ei2π (0.4), 0.3ei2π (0.2), 0.5ei2π (0.6))

r = (0.3ei2π (0.7), 0.4ei2π (0.4), 0.6ei2π (0.3))

s = (0.4ei2π (0.2), 0.6ei2π (0.4), 0.5ei3π (0.4))

xb = (0.2ei2π (0.3), 0.37ei2π (0.37), 0.51ei2π (0.55))

xr = (0.21ei2π (0.4), 0.45ei2π (0.51), 0.31ei2π (0.61))

xs = (0.25ei2π (0.15), 0.61ei2π (0.40), 0.13ei2π (0.25))

bs = (0.27ei2π (0.13), 0.6ei2π (0.45), 0.23ei3π (0.41))

By calculations, one can see that 9 = (I,J ) is a CSDFG.
Definition 13: Let J = {(xb, ωJ (xb)ei~J (xb),

τJ (xb)eiςJ (xb), 0J (xb)eiδJ (xb))
|xb ∈ Z} be a set of arcs in CSDFG 9, then

• The degree of a node x ∈ ϒ for amplitude term is
expressed by D9 (x) = (Dω(x),Dτ (x),D0(x)), where

Dω(x) =

∑
x,b ̸=x∈ϒ

ωJ (xb)

=

∑
x,b ̸=x∈ϒ

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

,

Dτ (x) =

∑
x,b ̸=x∈ϒ

τJ (xb)

=

∑
x,b ̸=x∈ϒ

τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

,

D0(x) =

∑
x,b ̸=x∈ϒ

0J (xb)

=

∑
x,b ̸=x∈ϒ

0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

.

The degree of a node x ∈ ϒ for a phase term is represented
by D9 (x) = (Dei~ (x),Deiς (x),Deiδ (x)), where

Dei~ (x) =

∑
x,b ̸=x∈ϒ

~J (xb)

=

∑
x,b ̸=x∈ϒ

~I (x)~I (b)
~I (x) + ~I (b) − ~I (x)~I (b)

,

Deiς (x) =

∑
x,b ̸=x∈ϒ

ςJ (xb)

=

∑
x,b ̸=x∈ϒ

ςI (x) + ςI (b) − 2ςI (x)ςI (b)
1 − ςI (x)ςI (b)

,

Deiδ (x) =

∑
x,b ̸=x∈ϒ

δJ (xb)

=

∑
x,b ̸=x∈ϒ

δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

.

• The total degree of vertex x ∈ ϒ for amplitude term
is represented by T D9 (x) = (T Dω(x), T Dτ (x), T D0(x)),
where

T Dω(x) =

∑
x,b̸=x∈ϒ

ωJ (xb) + ωI (x)

=

∑
x,b̸=x∈ϒ

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

+ ωI (x),

T Dτ (x) =

∑
x,b̸=x∈ϒ

τJ (xb) + τI (x)

=

∑
x,b̸=x∈ϒ

τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

+ τI (x),

T D0(x) =

∑
x,b̸=x∈ϒ

0J (xb) + 0I (x)

=

∑
x,b ̸=x∈ϒ

0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

+ 0I (x).

The total degree of a vertex x ∈ ϒ for a phase term is
represented by T D9 (x) = (T Dei~ (x), T Deiς (x), T Deiδ (x)),
where
T Dei~ (x) =

∑
x,b ̸=x∈ϒ

~J (xb) + ~I (x)

=
∑

x,b ̸=x∈ϒ

~I (x)~I (b)
~I (x)+~I (b)−~I (x)~I (b)

+ ~I (x),

T Deiς (x) =
∑

x,b ̸=x∈ϒ

ςJ (xb) + ςI (x)

=
∑

x,b̸=x∈ϒ

ςI (x)+ςI (b)−2ςI (x)ςI (b)
1−ςI (x)ςI (b)

+ ςI (x),

T Deiδ (x) =
∑

x,b ̸=x∈ϒ

δJ (xb) + δI (x)

=
∑

x,b̸=x∈ϒ

δI (x)+δI (b)−2δI (x)δI (b)
δI (x)+δI (b)−δI (x)δI (b)

+ δI (x).

Example 2: From Example 1,
• In 9, The degree of all nodes are as follows:

D9 (x) = (0.66ei2π (0.85), 1.43ei2π (1.28), 0.95ei2π (1.41)),

D9 (b) = (0.47ei2π (0.43), 0.97ei2π (0.82), 0.74ei2π (0.96)),

D9 (r) = (0.21ei2π (0.4), 0.45ei2π (0.51), 0.31ei2π (0.61)),

D9 (s) = (0.52ei2π (0.28), 1.21ei2π (0.85), 0.36ei2π (0.66)),

• The total degree of all nodes in 9 are as follows:

T D9 (x) = (1.16ei2π (1.45), 1.63ei2π (1.58), 1.65ei2π (1.81)),

T D9 (b) = (1.07ei2π (0.83), 1.27ei2π (1.02), 1.24ei2π (1.56)),
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T D9 (r) = (0.51ei2π (1.1), 0.85ei2π (0.91), 0.91ei2π (0.91)),

T D9 (s) = (0.92ei2π (0.48), 1.81ei2π (1.25), 0.86ei2π (1.06)),

Definition 14: Let 9 = (I,J ) be a CSDFG. The
complement of 9 for amplitude term is defined by:
1. ωĪ (x) = ωI (x), τĪ (x) = τI (x) and 0Ī (x) = 0I (x).
2.

ωJ̄ (xb) =



ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

,

if ωJ (xb) = 0.

(
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)
− ωJ (xb))

if 0 < ωJ (xb) ≤ 1.

τJ̄ (xb) =



τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

,

if τJ (xb) = 0.

(
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)
− τJ (xb)),

if 0 < τJ (xb) ≤ 1.

0J̄ (xb) =



0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

,

if 0J (xb) = 0.

(
0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

− 0J (xb)),

if 0 < 0J (xb) ≤ 1.

In sameway, the complement of9 for phase term is defined
as:
1. ~Ī (x) = ~I (x), ςĪ (x) = ςI (x) and δĪ (x) = δI (x). 2.

~J̄ (xb) =



~I (x)~I (b)
~I (x) + ~I (b) − ~I (x)~I (b)

,

if ~J (xb) = 0.

(
~I (x)~I (b)

~I (x) + ~I (b) − ~I (x)~I (b)
− ~J (xb))

if 0 < ~J (xb) ≤ 2π.

ςJ̄ (xb) =



ςI (x) + ςI (b) − 2ςI (x)ςI (b)
1 − ςI (x)ςI (b)

,

if ςJ (xb) = 0.

(
ςI (x) + ςI (b) − 2ςI (x)ςI (b)

1 − ςI (x)ςI (b)
− ςJ (xb)),

if 0 < ςJ (xb) ≤ 2π.

δJ̄ (xb) =



δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

,

if δJ (xb) = 0.

(
δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

− δJ (xb)),

if 0 < δJ (xb) ≤ 2π.

Again, the complement of a CSDFG 9 is represented by
9̄ = (Ī, J̄ ).
Definition 15: A homomorphism ϑ : 9 → 9 ′ of two

CSDFGs 9 = (I,J ) and 9 ′
= (I ′,J ′) is a mapping

ϑ : ϒ → ϒ ′ follows:

1. ωI (x) ≤ ωI ′ (ϑ(x)), τI (x) ≤ τI ′ (ϑ(x)), 0I (x) ≤

0I ′ (4(x)), ~I (x) ≤ ~I ′ (ϑ(x)), ςI (x) ≤ ςI ′ (ϑ(x)), δI (x) ≤

δI ′ (ϑ(x)) for all x ∈ ϒ .
2. ωJ (xb) ≤ ωJ ′ (ϑ(x)ϑ(b)), τJ (xb) ≤ τJ ′ (ϑ(x)ϑ(b)),

0J (xb) ≤ 0J ′ (ϑ(x)ϑ(b)), ~J (xb) ≤ ~J ′ (ϑ(x)ϑ(b)),
ςJ (xb) ≤ ςJ ′ (ϑ(x)ϑ(b)), δJ (xb) ≤ δJ ′ (ϑ(x)ϑ(b)) for all
xb ∈ Z .
Definition 16: An isomorphism ϑ : 9 → 9 ′ of two

CSDFGs 9 = (I,J ) and 9 ′
= (I ′,J ′) is a bijective

mapping ϑ : ϒ → ϒ ′ follows:
1. ωI (x) = ωI ′ (ϑ(x)), τI (x) = τI ′ (ϑ(x)), 0I (x) =

0I ′ (ϑ(x)), ~I (x) = ~I ′ (ϑ(x)), ςI (x) = ςI ′ (ϑ(x)), δI (x) =

δI ′ (ϑ(x)) for all x ∈ ϒ .
2. ωJ (xb) = ωJ ′ (ϑ(x)ϑ(b)), τJ (xb) = τJ ′ (ϑ(x)ϑ(b)),

0J (xb) = 0J ′ (ϑ(x)ϑ(b)), ~J (xb) = ~J ′ (ϑ(x)ϑ(b)),
ςJ (xb) = ςJ ′ (ϑ(x)ϑ(b)), δJ (xb) = δJ ′ (ϑ(x)ϑ(b)) for all
xb ∈ Z1.
Definition 17: A W-Isomorphism ϑ : 9 → 9 ′ of two

CSDFGs 9 = (I,J ) and 9 ′
= (I ′,J ′) is a bijective

mapping ϑ : ϒ → ϒ ′ follows:
1. ϑ is a homomorphism.
2. ωI (x) = ωI ′ (ϑ(x)), τI (x) = τI ′ (ϑ(x)), 0I (x) =

0I ′ (ϑ(x)), ~I (x) = ~I ′ (ϑ(x)), ςI (x) = ςI ′ (ϑ(x)), δI (x) =

δI ′ (ϑ(x)) for all x ∈ ϒ .
Definition 18: An CW-Isomorphism ϑ : 9 → 9 ′ of two

CSDFGs 9 = (I,J ) and 9 ′
= (I ′,J ′) is a bijective

mapping ϑ : ϒ → ϒ ′ fulfilling
1. ϑ is a homomorphism.
2. ωJ (xb) = ωJ ′ (ϑ(x)ϑ(b)), τJ (xb) = τJ ′ (ϑ(x)ϑ(b)),

0J (xb) = 0J ′ (ϑ(x)ϑ(b)), ~J (xb) = ~J ′ (ϑ(x)ϑ(b)),
ςJ (xb) = ςJ ′ (ϑ(x)ϑ(b)), δJ (xb) = δJ ′ (ϑ(x)ϑ(b)) for all
xb ∈ Z .
Definition 19: A CSDFG 9 = (I,J ) is said to be self

complementary if 9̄ ∼= 9.
Proposition 1: If 9 = (I,J ) is a self complementary

CSDFG, then

∑
x ̸=b

ωJ (xb) =
1
2
(
∑
x ̸=b

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

),

∑
x ̸=b

τJ (xb) =
1
2
(
∑
x ̸=b

τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

),

∑
x ̸=b

0J (xb) =
1
2
(
∑
x ̸=b

0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

),

∑
x ̸=b

~J (xb) =
1
2
(
∑
x ̸=b

~I (x)~I (b)
~I (x) + ~I (b) − ~I (x)~I (b)

),

∑
x ̸=b

ςJ (xb) =
1
2
(
∑
x ̸=b

ςI (x) + ςI (b) − 2ςI (x)ςI (b)
1 − ςI (x)ςI (b)

),

∑
x ̸=b

δJ (xb) =
1
2
(
∑
x ̸=b

δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

).

Proof: Let 9 is a self complementary CSDFG, then there
exist an isomorphism ϑ : ϒ → ϒ such that
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ωI (ϑ(x)) = ωI (x), τI (ϑ(x)) = τI (x), 0I (ϑ(x)) = 0I (x),
~I (ϑ(x)) = ~I (x), ςI (ϑ(x)) = ςI (x), δI (ϑ(x)) = δI (x)
for all x ∈ ϒ ωJ (ϑ(x)ϑ(b)) = ωJ (xb), τJ (ϑ(x)ϑ(b)) =

τJ (xb), 0J (ϑ(x)ϑ(b)) = 0J (xb), ~J (ϑ(x)ϑ(b)) = ~J (xb),
ςJ (ϑ(x)ϑ(b)) = ςJ (xb), δJ (ϑ(x)ϑ(b)) = δJ (xb) for all
xb ∈ Z .

By utilizing the definition of complement, we have

ωJ (ϑ(x)ϑ(b))

=
ωI (ϑ(x))ωI (ϑ(b))

ωI (ϑ(x)) + ωI (ϑ(b)) − ωI (ϑ(x))ωI (ϑ(b))
− ωJ (ϑ(x)ϑ(b)).

ωJ (xb) =
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)
− ωJ (ϑ(x)ϑ(b)),∑

x ̸=b

ωJ (xb)

=

∑
x ̸=b

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

−

∑
x ̸=b

ωJ (ϑ(x)ϑ(b)),∑
x ̸=b

ωJ (xb) +

∑
x ̸=b

ωJ (ϑ(x)ϑ(b))

=

∑
x ̸=b

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

,

2
∑
x ̸=b

ωJ (xb) =

∑
x ̸=b

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

,

∑
x ̸=b

ωJ (xb) =
1
2

∑
x ̸=b

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

,

Similarly, the other parts can be proved. □
Proposition 2: If a CSDFG 9 = (I , J ) on an crisp graph

9∗
= (ϒ,Z) satisfy the following:

ωJ (xb) =
1
2
(

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

),

τJ (xb) =
1
2
(
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)
),

0J (xb) =
1
2
(
0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

),

~J (xb) =
1
2
(

~I (x)~I (b)
~I (x) + ~I (b) − ~I (x)~I (b)

),

ςJ (xb) =
1
2
(
ςI (x) + ςI (b) − 2ςI (x)ςI (b)

1 − ςI (x)ςI (b)
),

δJ (xb) =
1
2
(
δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

).

for all x,b∈ ϒ , then 9 is self complementary.
Proof: Take 9 is CSDFG that obey

ωJ (xb) =
1
2
(

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

),

τJ (xb) =
1
2
(
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)
),

0J (xb) =
1
2
(
0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

),

for all x,b∈ ϒ , then the identity mapping Y : ϒ → ϒ is an
isomorphism from 9 xb 9̄ that obey the following axioms:

ωI (Y(x)) = ωI (x), τI (Y(x)) = τI (x), 0I (Y(x)) =

0I (x), ~I (Y(x)) = ~I (x), ςI (Y(x)) = ςI (x), δI (Y(x)) =

δI (x) for all x ∈ ϒ .
We know that the membership value of arc set to is

specified as
ωJ (xb) =

1
2 (

ωI (x)ωI (b)
ωI (x)+ωI (b)−ωI (x)ωI (b)

), for all x,b∈ ϒ .
We have

ωJ (Y(x)Y(b))

= ωJ (xb) =
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)
− ωJ (xb)

=
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)

−
1
2
(

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

)

=
1
2
(

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

) = ωJ (xb).

Similarly the other conditions of isomorphisms

τJ (Y(x)Y(b)) = τJ (xb),

0J (Y(x)Y(b)) = 0J (xb),

~J (Y(x)Y(b)) = ~J (xb),

ςJ (Y(x)Y(b)) = ςJ (xb),

δJ (Y(x)Y(b)) = δJ (xb),

are satisfied by Y . Hence 9 = (I , J ) is self complementary.
□
Proposition 3: Let 9 = (I,J ) and 9 ′

= (I ′,J ′) be two
CSDFGs, then 9 ∼= 9 ′ iff 9̄ ∼= 9̄ ′.
Proof: Let 9 and 9 ′ be two isomorphic CSDFGs.

Then utilizing isomorphism property, there exist a bijective
mapping ϑ : ϒ → ϒ ′ that fulfill

ωI (x) = ωI ′ (ϑ(x)), τI (x) = τI ′ (ϑ(x)), 0I (x) =

0I ′ (ϑ(x)),
~I (x) = ~I ′ (ϑ(x)), ςI (x) = ςI ′ (ϑ(x)), δI (x) = δI ′ (ϑ(x))
for all x ∈ ϒ1.
ωJ (xb) = ωJ ′ (ϑ(x)4(b)), τJ (xb) = τJ ′ (4(x)4(b)),
0J (xb) = 0J ′ (4(x)4(b)),
~J (xb) = ~J ′ (ϑ(x)ϑ(b)), ςJ (xb) = ςJ ′ (ϑ(x)ϑ(b)),
δJ (xb) = δJ ′ (ϑ(x)ϑ(b)) for all xb ∈ Z1. By applying the
definition of complement, the membership value of an arc is

ωJ (xb) =
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)
− ωJ (xb),

ωJ (xb) =
ωI ′ (ϑ(x))ωI ′ (ϑ(b))

ωI ′ (ϑ(x)) + ωI ′ (ϑ(b)) − ωI ′ (ϑ(x))ωI ′ (ϑ(b))
− ωJ ′ (ϑ(x)ϑ(b)),

ωJ (xb) = ωJ ′ (ϑ(x)ϑ(b)).
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Also, the non membership value of an arc is

τJ (xb) =
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)
− τJ (xb),

τJ (xb) =
τI ′ (ϑ(x)) + τI ′ (ϑ(b)) − 2τI ′ (ϑ(x))τI ′ (ϑ(b))

1 − τI ′ (ϑ(x))τI ′ (ϑ(b))
− τJ ′ (ϑ(x)ϑ(b)),

τJ (xb) = τJ ′ (ϑ(x)ϑ(b)).

And for the abstinence value of an arc xb is

0J (xb) =
0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

− 0J (xb),

0J (xb) =
0I ′ (ϑ(x)) + 0I ′ (ϑ(b)) − 20I ′ (ϑ(x))0I ′ (ϑ(b))
0I ′ (ϑ(x)) + 0I ′ (ϑ(b)) − 0I ′ (ϑ(x))0I ′ (ϑ(b))

− 0J ′ (ϑ(x)ϑ(b)),

0J (xb) = 0J ′ (ϑ(x)ϑ(b)).

Likewise, other parts can be proved for the phase terms.
Hence 9̄ ∼= 9̄ ′. Likely, the converse part can also be
proved. □
Proposition 4: Suppose 9 = (I,J ) and 9 ′

= (I ′,J ′)
are two W-Isomorphic CSDFGs, then 9̄ and 9̄ ′ are also
W-Isomorphic to each other.
Proof: Let9 and9 ′ be twoW-Isomorphic CSDFGs. Then

by definition of W-Isomorphism, there occurs a bijective
mapping ϑ : ϒ → ϒ ′ that obey
ωI (x) = ωI ′ (ϑ(x)), τI (x) = τI ′ (ϑ(x)), 0I (x) = 0I ′ (ϑ(x)),
~I (x) = ~I ′ (ϑ(x)), ςI (x) = ςI ′ (ϑ(x)), δI (x) = δI ′ (4(x))
for all x ∈ ϒ1.
and
ωJ (xb) ≤ ωJ ′ (ϑ(x)ϑ(b)), τJ (xb) ≤ τJ ′ (ϑ(x)ϑ(b)),
0J (xb) ≤ 0J ′ (ϑ(x)ϑ(b)),
~J (xb) ≤ ~J ′ (ϑ(x)ϑ(b)), ςJ (xb) ≤ ςJ ′ (ϑ(x)ϑ(b)),
δJ (xb) ≤ δJ ′ (ϑ(x)ϑ(b)) for all xb ∈ Z1.

For the membership value of an arc, we have

ωJ (xb) ≤ ωJ ′ (ϑ(x)ϑ(b))

−ωJ (xb) ≥ −ωJ ′ (ϑ(x)ϑ(b))

H(ωI (x), ωI (b)) − ωJ (xb) ≥ H(ωI (x), ωI (b))

− ωJ ′ (ϑ(x)ϑ(b))

H(ωI (x), ωI (b)) − ωJ (xb) ≥ H(ωI ′ (ϑ(x)), ωI ′ (ϑ(b)))

− ωJ ′ (ϑ(x)4(b))

ωJ (xb) ≥ ωJ ′ (ϑ(x)ϑ(b)).

For the non membership value of an arc, we have

τJ (xb) ≤ τJ ′ (ϑ(x)ϑ(b))

−τJ (xb) ≥ −τJ ′ (ϑ(x)ϑ(b))

S(τI (x), τI (b)) − τJ (xb) ≥ S(τI (x), τI (b))
− τJ ′ (ϑ(x)ϑ(b))

S(τI (x), τI (b)) − τJ (xb) ≥ S(τI ′ (ϑ(x)), τI ′ (ϑ(b)))

− τJ ′ (ϑ(x)ϑ(b))

τJ (xb) ≥ τJ ′ (ϑ(x)ϑ(b)).

And for the abstinence value of an arc, we have

0J (xb) ≤ 0J ′ (ϑ(x)ϑ(b))

−0J (xb) ≥ −0J ′ (ϑ(x)ϑ(b))

S ′(0I (x), 0I (b)) − 0J (xb) ≥ S ′(0I (x), 0I (b))

− 0J ′ (ϑ(x)ϑ(b))

S ′(0I (x), 0I (b)) − 0J (xb) ≥ S ′(0I ′ (ϑ(x)), 0I ′ (ϑ(b)))

− 0J ′ (ϑ(x)4(b))

0J (xb) ≥ 0J ′ (ϑ(x)ϑ(b)).

Similarly other parts of phase term can be proved. Therefore,
we see that 9̄ is W-Isomorphic to 9̄ ′. □
Definition 20: A CSDFG is said to be complete if

ωJ (xb) =
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)
,

τJ (xb) =
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)
,

0J (xb) =
0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

,

~J (xb) =
~I (x)~I (b)

~I (x) + ~I (b) − ~I (x)~I (b)
,

ςJ (xb) =
ςI (x) + ςI (b) − 2ςI (x)ςI (b)

1 − ςI (x)ςI (b)
,

δJ (xb) =
δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

,

for all x,b∈ ϒ .
Definition 21: A CSDFG is said to be strong if

ωJ (xb) =
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)
,

τJ (xb) =
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)
,

0J (xb) =
0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

,

~J (xb) =
~I (x)~I (b)

~I (x) + ~I (b) − ~I (x)~I (b)
,

ςJ (xb) =
ςI (x) + ςI (b) − 2ςI (x)ςI (b)

1 − ςI (x)ςI (b)
,

δJ (xb) =
δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

,

for all xb∈ Z .
Definition 22: Let 9 = (I,J ) be a strong CSDFG on a

graph 9∗
= (ϒ,Z). The complement of 9 for amplitude

term is defined as:
1. ωĪ (x) = ωI (x), τĪ (x) = τI (x) and 0Ī (x) = 0I (x).
2.

ωJ̄ (xb) =



ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

,

if ωJ (xb) = 0.
0,

if 0 < ωJ (xb) ≤ 1.
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τJ̄ (xb) =



τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

,

if τJ (xb) = 0.
0,

if 0 < τJ (xb) ≤ 1.

0J̄ (xb) =



0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

,

if 0J (xb) = 0.
0,

if 0 < 0J (xb) ≤ 1.

In a same way, the complement of 9 for phase term is
described as:
1. ~Ī (x) = ~I (x), ςĪ (x) = ςI (x) and δĪ (x) = δI (x).
2.

~J̄ (xb) =



~I (x)~I (b)
~I (x) + ~I (b) − ~I (x)~I (b)

,

~J (xb) = 0.
0,

0 < ~J (xb) ≤ 2π.

ςJ̄ (xb) =



ςI (x) + ςI (b) − 2ςI (x)ςI (b)
1 − ςI (x)ςI (b)

,

ςJ (xb) = 0.
0,

0 < ςJ (xb) ≤ 2π.

δJ̄ (xb) =



δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

,

δJ (xb) = 0.
0,

0 < δJ (xb) ≤ 2π.

Moreover, the complement of a strong CSDFG 9 is
represented by 9̄ = (Ī, J̄ ).
Definition 23: A CSDFG 9 = (I,J ) is called regular of

degree (F1eiF
∗

1 ,F2eiF
∗

2 ,F3eiF
∗

3 ) or (F1eiF
∗

1,F2eiF
∗

2,F3eiF
∗

3 )
regular, if its each node has same degree. i.e,

Dω(x) =

∑
x,b ̸=x∈ϒ

ωJ (xb) = F1,

Dτ (x) =

∑
x,b ̸=x∈ϒ

τJ (xb) = F2,

D0(x) =

∑
x,b ̸=x∈ϒ

0J (xb) = F3,

Dei~ (x) =

∑
x,b ̸=x∈ϒ

~J (xb) = F∗

1 ,

Deiς (x) =

∑
x,b ̸=x∈ϒ

ςJ (xb) = F∗

2 ,

Deiδ (x) =

∑
x,b ̸=x∈ϒ

δJ (xb) = F∗

3 .

for all x ∈ ϒ

Example 3: Let 9 = (I,J ) be a CSDFG on
9∗

= (ϒ,Z), where ϒ = {x, b, r, s, u, v} and

FIGURE 2. Regular CSDFG.

Z = {xb, xr, bs, vr, vu, us} as shown in Figure 2. The node
set I and the arc set J of 9 are defined as.
I

=< (
x

0.61ei2π (0.7)
,

b
0.61ei2π (0.7)

,
r

0.61ei2π (0.7)
,

s
0.61ei2π (0.7)

,

u
0.61ei2π (0.7)

,
v

0.61ei2π (0.7)
),(

x
0.15ei2π (0.2)

,

b
0.15ei2π (0.2)

,
r

0.15ei2π (0.2)
,

s
0.15ei2π (0.2)

,
u

0.15ei2π (0.2)
,

v
0.15ei2π (0.2)

),(
x

0.3ei2π (0.4)
,

b
0.3ei2π (0.4)

,

r
0.3ei2π (0.4)

,
s

0.3ei2π (0.4)
,

u
0.3ei2π (0.4)

,
v

0.3ei2π (0.4)
)>

and

J

=< (
xb

0.35ei2π (0.45)
,

xr
0.35ei2π (0.45)

,
bs

0.35ei2π (0.45)
,

vr
0.35ei2π (0.45)

,

vu
0.35ei2π (0.45)

,
us

0.35ei2π (0.45)
),(

xb
0.21ei2π (0.3)

,
xr

0.21ei2π (0.3)
,

bs
0.21ei2π (0.3)

,
vr

0.21ei2π (0.3)
,

vu
0.21ei2π (0.3)

,
us

0.21ei2π (0.3)
),

(
xb

0.25ei2π (0.35)
,

xr
0.25ei2π (0.35)

,
bs

0.25ei2π (0.35)
,

vr
0.25ei2π (0.35)

,
vu

0.25ei2π (0.35)
,

us
0.25ei2π (0.35)

)>

x = (0.61ei2π (0.7), 0.15ei2π (0.2), 0.3ei2π (0.4))
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b = (0.61ei2π (0.7), 0.15ei2π (0.2), 0.3ei2π (0.4))

r = (0.61ei2π (0.7), 0.15ei2π (0.2), 0.3ei2π (0.4))

s = (0.61ei2π (0.7), 0.15ei2π (0.2), 0.3ei2π (0.4))

u = (0.61ei2π (0.7), 0.15ei2π (0.2), 0.3ei2π (0.4))

v = (0.61ei2π (0.7), 0.15ei2π (0.2), 0.3ei2π (0.4))

xb = (0.35ei2π (0.45), 0.21ei2π (0.3), 0.25ei2π (0.35))

xr = (0.35ei2π (0.45), 0.21ei2π (0.3), 0.25ei2π (0.35))

bs = (0.35ei2π (0.45), 0.21ei2π (0.3), 0.25ei2π (0.35))

vr = (0.35ei2π (0.45), 0.21ei2π (0.3), 0.25ei2π (0.35))

vu = (0.35ei2π (0.45), 0.21ei2π (0.3), 0.25ei2π (0.35))

us = (0.35ei2π (0.45), 0.21ei2π (0.3), 0.25ei2π (0.35))

By calculations, one can see that 9 = (I,J ) is a
(0.7ei2π (0.9), 0.42ei2π (0.6), 0.5ei2π (0.7))-regular CSDFG.
Definition 24: A CSDFG 9 = (I,J ) on a graph

9∗
= (ϒ,Z) is said to be totally regular of degree

(H1eiH
∗

1 ,H2eiH
∗

2 ,H3eiH
∗

3 ) or (H1eiH
∗

1 ,H2eiH
∗

2 ,H3eiH
∗

3 )
totally regular, if its each node has same total degree, i.e,

T Dω(x) =

∑
x,b ̸=x∈ϒ

ωJ (xb) + ωI (x) = H1,

T Dτ (x) =

∑
x,b ̸=x∈ϒ

τJ (xb) + τI (x) = H2,

T D0(x) =

∑
x,b ̸=x∈ϒ

0J (xb) + 0I (x) = H3,

T Dei~ (x) =

∑
x,b ̸=x∈ϒ

~J (xb) + ~I (x) = H∗

1,

T Deiς (x) =

∑
x,b ̸=x∈ϒ

ςJ (xb) + ςI (x) = H∗

2,

T Deiδ (x) =

∑
x,b ̸=x∈ϒ

δJ (xb) + δI (x) = H∗

3.

for all x ∈ ϒ .
Example 4: Let 9 = (I,J ) be a CSDFG on 9∗

=

(ϒ,Z), where ϒ = {x, b, r, s} and Z = {xb, br, xs, rs} as
shown in Figure 3. The nodes set I and arcs set J of 9 are
defined as.

I

=< (
x

0.6ei2π (0.45)
,

b
0.6ei2π (0.45)

,
r

0.6ei2π (0.45)
,

s
0.6ei2π (0.45)

),

(
x

0.15ei2π (0.2)
,

b
0.15ei2π (0.2)

,
r

0.15ei2π (0.2)
,

s
0.15ei2π (0.2)

),

(
x

0.3ei2π (0.4)
,

b
0.3ei2π (0.4)

,
r

0.3ei2π (0.4)
,

s
0.3ei2π (0.4)

) >

and

J

=< (
xb

0.31ei2π (0.25)
,

br
0.23ei2π (0.23)

,
xs

0.23ei2π (0.23)
,

rs
0.31ei2π (0.25)

), (
xb

0.21ei2π (0.3)
,

br
0.2ei2π (0.3)

,
xs

0.2ei2π (0.3)
,

FIGURE 3. Totally regular CSDFG.

rs
0.21ei2π (0.3)

), (
xb

0.25ei2π (0.35)
,

br
0.2ei2π (0.35)

,

xs
0.2ei2π (0.35)

,
rs

0.25ei2π (0.35)
) >

x = (0.6ei2π (0.45), 0.15ei2π (0.2), 0.3ei2π (0.4))

b = (0.6ei2π (0.45), 0.15ei2π (0.2), 0.3ei2π (0.4))

r = (0.6ei2π (0.45), 0.15ei2π (0.2), 0.3ei2π (0.4))

s = (0.6ei2π (0.45), 0.15ei2π (0.2), 0.3ei3π (0.4))

xb = (0.31ei2π (0.25), 0.21ei2π (0.3), 0.25ei2π (0.35))

br = (0.23ei2π (0.23), 0.2ei2π (0.3), 0.2ei2π (0.35))

xs = (0.23ei2π (0.23), 0.2ei2π (0.3), 0.2ei2π (0.35))

rs = (0.31ei2π (0.25), 0.21ei2π (0.3), 0.25ei2π (0.35))

By calculations, one can see that 9 = (I,J ) is
a (1.14ei2π (0.93), 0.56ei2π (0.8), 0.75ei2π (1.1))-totally regular
CSDFG.
Theorem 1: Consider a CSDFG 9 = (I,J ) which is

isomorphic to another CSDFG 9 ′
= (I ′,J ′);

1. If 9 is regular, then 9 ′ is also regular.
2. If 9 is totally regular, then 9 ′ is also totally regular.
Proof: 1. Let 9 be isomorphic to 9 ′ and 9 be

(F1eiF
∗

1 ,F2eiF
∗

2 ,F3eiF
∗

3 )-regular CSDFG, therefore degree
of every node of 9 is provided as:

D9 (x) = (Dωei~ (x),Dτeiς (x),D0eiδ (x))

D9 (x) = (
∑
xb∈Z

ωJ (xb)e
i(

∑
xb∈Z

~J (xb))
,

∑
xb∈Z

τJ (xb)e
i(

∑
xb∈Z

ςJ (xb))
,

∑
xb∈Z

0J (xb)e
i(

∑
xb∈Z

δJ (xb))
)

D9 (x) = (
∑

x,b ̸=x∈ϒ

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

e
i(

∑
x,b ̸=x∈ϒ

~I (x)~I (b)
~I (x)+~I (b)−~I (x)~I (b) )

,
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∑
x,b ̸=x∈ϒ

τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

e
i(

∑
x,b ̸=x∈ϒ

ςI (x)+ςI (b)−2ςI (x)ςI (b)
1−ςI (x)ςI (b) )

,∑
x,b ̸=x∈ϒ

0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

e
i(

∑
x,b ̸=x∈ϒ

δI (x)+δI (b)−2δI (x)δI (b)
δI (x)+δI (b)−δI (x)δI (b) )

)

= (F1eiF
∗

1 ,F2eiF
∗

2 ,F3eiF
∗

3 )

Since 9 ∼= 9 ′, we must have

(F1eiF
∗

1 ,F2eiF
∗

2 ,F3eiF
∗

3 )

= (Dωei~ (x),Dτeiς (x),D0eiδ (x))

= (
∑
xb∈Z

ωJ (xb)e
i(

∑
xb∈Z

~J (xb))
,

∑
xb∈Z

τJ (xb)e
i(

∑
xb∈Z

ςJ (xb))
,

∑
xb∈Z

0J (xb)e
i(

∑
xb∈Z

δJ (xb))
)

= (
∑

x,b̸=x∈ϒ

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

e
i(

∑
x,b ̸=x∈ϒ

~I (x)~I (b)
~I (x)+~I (b)−~I (x)~I (b) )

,∑
x,b̸=x∈ϒ

τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

e
i(

∑
x,b ̸=x∈ϒ

ςI (x)+ςI (b)−2ςI (x)ςI (b)
1−ςI (x)ςI (b) )

,∑
x,b̸=x∈ϒ

0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

e
i(

∑
x,b ̸=x∈ϒ

δI (x)+δI (b)−2δI (x)δI (b)
δI (x)+δI (b)−δI (x)δI (b) )

)

(F1eiF
∗

1 ,F2eiF
∗

2 ,F3eiF
∗

3 )

= (
∑

x,b̸=x∈ϒ

ωI ′ (ϑ(x))ωI ′ (ϑ(b))
ωI ′ (ϑ(x)) + ωI ′ (ϑ(b)) − ωI ′ (ϑ(x))ωI ′ (ϑ(b))

e
i(

∑
x,b ̸=x∈ϒ

~I′ (ϑ(x))~I′ (ϑ(b))
~I′ (ϑ(x))+~I′ (ϑ(b))−~I′ (ϑ(x))~I′ (ϑ(b))

)
,∑

x,b̸=x∈ϒ

τI ′ (ϑ(x)) + τI ′ (ϑ(b)) − 2τI ′ (ϑ(x))τI ′ (ϑ(b))
1 − τI ′ (ϑ(x))τI ′ (ϑ(b))

e
i(

∑
x,b ̸=x∈ϒ

ςI′ (ϑ(x))+ςI′ (ϑ(b))−2ςI′ (ϑ(x))ςI′ (ϑ(b))
1−ςI′ (ϑ(x))ςI′ (ϑ(b))

)
,∑

x,b̸=x∈ϒ

0I ′ (ϑ(x)) + 0I ′ (ϑ(b)) − 20I ′ (ϑ(x))0I ′ (ϑ(b))
0I ′ (ϑ(x)) + 0I ′ (ϑ(b)) − 0I ′ (ϑ(x))0I ′ (ϑ(b))

e
i(

∑
x,b ̸=x∈ϒ

δI′ (ϑ(x))+δI′ (ϑ(b))−2δI′ (ϑ(x))δI′ (ϑ(b))
δI′ (ϑ(x))+δI′ (ϑ(b))−δI′ (ϑ(x))δI′ (ϑ(b))

)
)

= (
∑
xb∈Z

ωJ ′ (ϑ(x)ϑ(b))e
i(

∑
xb∈Z

~J ′ (ϑ(x)ϑ(b)))
,

∑
xb∈Z

τJ ′ (ϑ(x)(b))e
i(

∑
xb∈Z

ςJ ′ (ϑ(x)ϑ(b)))
,

∑
xb∈Z

0J ′ (ϑ(x)ϑ(b))e
i(

∑
xb∈Z

δJ ′ (ϑ(x)ϑ(b)))
)

= (D
ω′ei~′ (x),D

τ ′eiς ′ (x),D
0′eiδ′ (x))

= D9 ′ (x)

Thus, 9 ′ is a (F1eiF
∗

1 ,F2eiF
∗

2 ,F3eiF
∗

3 )-regular CSDFG.

2. Let 9 be isomorphic to 9 ′ and 9 is (H1eiH
∗

1 ,H2eiH
∗

2 ,

H3eiH
∗

3 )-totally regular CSDFG. So, the total degree of each
node is given as:

T D9 (x) = (T Dω(x), T Dτ (x), T D0(x))

= (
∑
xb∈Z

ωJ (xb) + ωI (x),
∑
xb∈Z

τJ (xb) + τI (x),∑
xb∈Z

0J (xb) + 0I (x))

= (
∑

x,b ̸=x∈ϒ

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

+ ωI (x),

∑
x,b ̸=x∈ϒ

τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

+ τI (x),

∑
x,b ̸=x∈ϒ

0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

+ 0I (x))

= (H1,H2,H3).

Since 9 ∼= 9 ′, we must have

(H1,H2,H3)

= (T Dω(x), T Dτ (x), T D0(x))

= (
∑
xb∈Z

ωJ (xb) + ωI (x),
∑
xb∈Z

τJ (xb) + τI (x),∑
xb∈Z

0J (xb) + 0I (x))

= (
∑

x,b ̸=x∈ϒ

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

+ ωI (x),

∑
x,b ̸=x∈ϒ

τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

+ τI (x),

∑
x,b ̸=x∈ϒ

0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

+ 0I (x))

= (
∑

x,b ̸=x∈ϒ

ωI ′ (ϑ(x))ωI ′ (ϑ(b))
ωI ′ (ϑ(x)) + ωI ′ (ϑ(b)) − ωI ′ (ϑ(x))ωI ′ (ϑ(b))

+ ωI ′ (ϑ(x)),∑
x,b ̸=x∈ϒ

τI ′ (ϑ(x)) + τI ′ (ϑ(b)) − 2τI ′ (ϑ(x))τI ′ (ϑ(b))
1 − τI ′ (4(x))τI ′ (4(b))

+ τI ′ (4(x)),∑
x,b ̸=x∈ϒ

0I ′ (4(x)) + 0I ′ (4(b)) − 20I ′ (4(x))0I ′ (4(b))
0I ′ (4(x)) + 0I ′ (4(b)) − 0I ′ (4(x))0I ′ (4(b))

+ 0I ′ (4(x)))

= (
∑
xb∈Z

ωJ ′ (ϑ(x)ϑ(b)) + ωI ′ (ϑ(x)),
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∑
xb∈Z

τJ ′ (ϑ(x)ϑ(b)) + τI (ϑ(x)),∑
xb∈Z

0J ′ (ϑ(x)ϑ(b)) + 0I (ϑ(x)))

= (T Dω′ (x), T Dτ ′ (x), T D0′ (x))

= T D9 ′ (x).

Also for phase terms,

T D9 (x)

= (T Dei~ (x), T Deiς (x), T Deiδ (x))

= (
∑
xb∈Z

~J (xb) + ~I (x),
∑
xb∈Z

ςJ (xb) + ςI (x),∑
xb∈Z

δJ (xb) + δI (x))

= (
∑

x,b ̸=x∈ϒ

~I (x)~I (b)
~I (x) + ~I (b) − ~I (x)~I (b)

+ ~I (x),

∑
x,b ̸=x∈ϒ

ςI (x) + ςI (b) − 2ςI (x)ςI (b)
1 − ςI (x)ςI (b)

+ ςI (x),

∑
x,b ̸=x∈ϒ

δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

+ δI (x))

= (H∗

1,H
∗

2,H
∗

3).

Since 9 ∼= 9 ′, we must have

(H∗

1,H
∗

2,H
∗

3)

= (T Dei~ (x), T Deiς (x), T Deiδ (x))

= (
∑
xb∈Z

~J (xb) + ~I (x),∑
xb∈Z

ςJ (xb) + ςI (x),
∑
xb∈Z

δJ (xb) + δI (x))

= (
∑

x,b̸=x∈ϒ

~I (x)~I (b)
~I (x) + ~I (b) − ~I (x)~I (b)

+ ~I (x),

∑
x,b̸=x∈ϒ

ςI (x) + ςI (b) − 2ςI (x)ςI (b)
1 − ςI (x)ςI (b)

+ ςI (x),

∑
x,b ̸=x∈ϒ

δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

+ δI (x))

= (
∑

x,b̸=x∈ϒ

~I ′ (ϑ(x))~I ′ (4(b))
~I ′ (4(x)) + ~I ′ (4(b)) − ~I ′ (4(x))~I ′ (4(b))

+ ~I ′ (ϑ(x)),∑
x,b ̸=x∈ϒ

ςI ′ (ϑ(x)) + ςI ′ (ϑ(b)) − 2ςI ′ (ϑ(x))ςI ′ (ϑ(b))
1 − ςI ′ (ϑ(x))ςI ′ (ϑ(b))

+ ςI ′ (ϑ(x)),∑
x,b ̸=x∈ϒ

δI ′ (ϑ(x)) + δI ′ (ϑ(b)) − 2δI ′ (ϑ(x))δI ′ (ϑ(b))
δI ′ (ϑ(x)) + δI ′ (ϑ(b)) − δI ′ (ϑ(x))δI ′ (ϑ(b))

+ δI ′ (ϑ(x)))

= (
∑
xb∈Z

~J ′ (ϑ(x)ϑ(b)) + ~I ′ (ϑ(x)),

∑
xb∈Z

ςJ ′ (ϑ(x)ϑ(b)) + ςI (ϑ(x)),∑
xb∈Z

δJ ′ (ϑ(x)ϑ(b)) + δI (ϑ(x)))

= (T D~ ′ (x), T Dς ′ (x), T Dδ′ (x))

= T D9 ′ (x).

□
Theorem 2: Suppose that 9 = (I,J ) is a CSDFG on

a graph 9∗
= (ϒ,Z) with ωIei~I , τIeiςI and 0IeiδI as

constant functions, then 9 = (I,J ) is a regular CSDFG iff
9 is totally regular CSDFG.
Proof: Let ωIei~I , τIeiςI and 0IeiδI be constant func-

tions, i.e, ωI (x)ei~I (x) = c1eic
∗

1 , τI (x)eiςI (x) = c2eic
∗

2 and
0I (x)eiδI (x) = c3eic

∗

3 are constant functions ∀ x ∈ ϒ , where
c1eic

∗

1 , c2eic
∗

2 and c3eic
∗

3 are constants.
Let 9 = (I,J ) be (F1eiF

∗

1 ,F2eiF
∗

2 ,F3eiF
∗

3 )-regular
CSDFG, then

Dω(x) =

∑
x,b ̸=x∈ϒ

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

= F1,

Dτ (x) =

∑
x,b ̸=x∈ϒ

τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

= F2,

D0(x) =

∑
x,b ̸=x∈ϒ

0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

= F3,

Dei~ (x) =

∑
x,b̸=x∈ϒ

~I (x)~I (b)
~I (x) + ~I (b) − ~I (x)~I (b)

= F∗

1 ,

Deiς (x) =

∑
x,b ̸=x∈ϒ

ςI (x) + ςI (b) − 2ςI (x)ςI (b)
1 − ςI (x)ςI (b)

= F∗

2 ,

Deiδ (x) =

∑
x,b ̸=x∈ϒ

δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

= F∗

3 .

The total degree of a vertex is given by

T Dω(x) =

∑
x,b ̸=x∈ϒ

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

+ ωI (x) = F1 + c1,

T Dτ (x) =

∑
x,b ̸=x∈ϒ

τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

+ τI (x) = F2 + c2,

T D0(x) =

∑
x,b ̸=x∈ϒ

0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

+ 0I (x) = F3 + c3,

T Dei~ (x) =

∑
x,b ̸=x∈ϒ

~I (x)~I (b)
~I (x) + ~I (b) − ~I (x)~I (b)

+ ~I (x) = F∗

1 + c∗1,

T Deiς (x) =

∑
x,b ̸=x∈ϒ

ςI (x) + ςI (b) − 2ςI (x)ςI (b)
1 − ςI (x)ςI (b)

+ ςI (x) = F∗

2 + c∗2,
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T Deiδ (x) =

∑
x,b ̸=x∈ϒ

δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

+ δI (x) = F∗

3 + c∗3.

Hence, 9 is a ((F1 + c1)ei(F
∗

1 +c∗1), (F2 + c2)ei(F
∗

2 +c∗2), (F3 +

c3)ei(F
∗

3 +c∗3))-totally regular CSDFG.
Conversely, suppose that9 = (I,J ) is (H1eiH

∗

1 ,H2eiH
∗

2 ,

H3eiH
∗

3 )-totally regular CSDFG, then

T Dω(x) =

∑
x,b ̸=x∈ϒ

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

+ ωI (x) = H1,∑
x,b ̸=x∈ϒ

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

+ c1 = H1,∑
x,b ̸=x∈ϒ

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

= H1 − c1,

Dω(x) = H1 − c1 = F1.

T Dei~ (x) =

∑
x,b ̸=x∈ϒ

~I (x)~I (b)
~I (x) + ~I (b) − ~I (x)~I (b)

+ ~I (x) = H∗

1,∑
x,b ̸=x∈ϒ

~I (x)~I (b)
~I (x) + ~I (b) − ~I (x)~I (b)

+ c∗1 = H∗

1,∑
x,b ̸=x∈ϒ

~I (x)~I (b)
~I (x) + ~I (b) − ~I (x)~I (b)

= H∗

1 − c∗1,

Dei~ (x) = H∗

1 − c∗1 = F∗

1 .

Similarly for non membership value,

T Dτ (x) =

∑
x,b ̸=x∈ϒ

τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

+ τI (x) = H2,∑
x,b ̸=x∈ϒ

τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

+ c2 = H2,∑
x,b ̸=x∈ϒ

τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

= H2 − c2,

Dτ (x) = H2 − c2 = F2.

T Deiς (x) =

∑
x,b ̸=x∈ϒ

ςI (x) + ςI (b) − 2ςI (x)ςI (b)
1 − ςI (x)ςI (b)

+ ςI (x)

= H∗

2,∑
x,b ̸=x∈ϒ

ςI (x) + ςI (b) − 2ςI (x)ςI (b)
1 − ςI (x)ςI (b)

+ c∗2 = H∗

2,∑
x,b ̸=x∈ϒ

ςI (x) + ςI (b) − 2ςI (x)ςI (b)
1 − ςI (x)ςI (b)

= H∗

2 − c∗2,

Deiς (x) = H∗

2 − c∗2 = F∗

2 .

Also for abstinence value,

T D0(x) =

∑
x,b ̸=x∈ϒ

0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

+ 0I (x) = H3,∑
x,b ̸=x∈ϒ

0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

+ +c3 = H3,∑
x,b ̸=x∈ϒ

0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

= H3 − c3,

D0(x) = H3 − c3 = F3

T Deiδ (x) =

∑
x,b ̸=x∈ϒ

δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

+ +δI (x) = H∗

3,∑
x,b ̸=x∈ϒ

δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

+ +c∗3 = H∗

3,∑
x,b ̸=x∈ϒ

δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

= H∗

3 − c∗3,

Deiδ (x) = H∗

3 − c∗3 = F∗

3 .

So 9 is a (F1eiF
∗

1 ,F2eiF
∗

2 ,F3eiF
∗

3 )-regular CSDFG.
Theorem 3: Suppose that 9 = (I,J ) is a CSDFG on a

graph 9∗
= (ϒ,Z). If 9 is both (F1eiF

∗

1 ,F2eiF
∗

2 ,F3eiF
∗

3 )-
regular and (H1eiH

∗

1 ,H2eiH
∗

2 ,H3eiH
∗

3 )-totally regular
CSDFG, then ωIei~I , τIeiςI and 0IeiδI as constant
functions.
Proof: Let9 be (F1eiF

∗

1 ,F2eiF
∗

2 ,F3eiF
∗

3 )-regular and
(H1eiH

∗

1 ,H2eiH
∗

2 ,H3eiH
∗

3 ) totally regular CSDFG. Then, the
degree of a node is defined as

Dω(x) =

∑
x,b ̸=x∈ϒ

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

= F1,

Dτ (x) =

∑
x,b ̸=x∈ϒ

τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

= F2,

D0(x) =

∑
x,b ̸=x∈ϒ

0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

= F3,

Dei~ (x) =

∑
x,b̸=x∈ϒ

~I (x)~I (b)
~I (x) + ~I (b) − ~I (x)~I (b)

= F∗

1 ,
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Deiς (x) =

∑
x,b ̸=x∈ϒ

ςI (x) + ςI (b) − 2ςI (x)ςI (b)
1 − ςI (x)ςI (b)

= F∗

2 ,

Deiδ (x) =

∑
x,b ̸=x∈ϒ

δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

= F∗

3 .

The total degree is given by

T Dω(x) =

∑
x,b ̸=x∈ϒ

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

+ +ωI (x) = H1,

T Dτ (x) =

∑
x,b ̸=x∈ϒ

τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

+ +τI (x) = H2,

T D0(x) =

∑
x,b ̸=x∈ϒ

0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

+ +0I (x) = H3,

T Dei~ (x) =

∑
x,b ̸=x∈ϒ

~I (x)~I (b)
~I (x) + ~I (b) − ~I (x)~I (b)

+ +~I (x) = H∗

1,

T Deiς (x) =

∑
x,b ̸=x∈ϒ

ςI (x) + ςI (b) − 2ςI (x)ςI (b)
1 − ςI (x)ςI (b)

+ +ςI (x) = H∗

2,

T Deiδ (x) =

∑
x,b ̸=x∈ϒ

δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

+ +δI (x) = H∗

3.

It follows that

T Dω(g) = F1 + ωI (x) = H1,

ωI (x) = H1 − F1.

T Dτ (g) = F2 + τI (x) = H2,

τI (x) = H2 − F2.

T D0(g) = F3 + 0I (x) = H3,

0I (x) = H3 − F3.

T Dei~ (g) = F∗

1 + ~I (x) = H∗

1,

~I (x) = H∗

1 − F∗

1 .

T Deiς (g) = F∗

2 + ςI (x) = H∗

2,

ςI (x) = H∗

2 − F∗

2 .

T Deiδ (g) = F∗

3 + δI (x) = H∗

3,

δI (x) = H∗

3 − F∗

3 .

Hence, ωIei~I = (H1 − F1)ei(H
∗

1−F∗

1 ), τIeiςI = (H2 −

F2)ei(H
∗

2−F∗

2 ) and
0IeiδI = (H3 − F3)ei(H

∗

3−F∗

3 ) are constant functions.
Converse of theorem 3 need not to be true in general as

given in the following example 5. □
Example 5: Let 9 = (I,J ) be a CSDFG on

9∗
= (ϒ,Z), where ϒ = {x, b, r, s, u, v} and Z =

{xb, xr, bs, vr, vu, us} as shown in Figure 4. The node set I

FIGURE 4. Neither regular nor totally regular CSDFG.

and arc set J of 9 are defined as.

I

=< (
x

0.62ei2π (0.45)
,

b
0.62ei2π (0.45)

,
r

0.62ei2π (0.45)
,

s
0.62ei2π (0.45)

,

u
0.62ei2π (0.45)

,
v

0.62ei2π (0.45)
),(

x
0.34ei2π (0.15)

,
b

0.34ei2π (0.15)
,

r
0.34ei2π (0.15)

,
s

0.34ei2π (0.15)
,

u
0.34ei2π (0.15)

,
v

0.34ei2π (0.15)
),

(
x

0.43ei2π (0.42)
,

b
0.43ei2π (0.42)

,
r

0.43ei2π (0.42)
,

s
0.43ei2π (0.42)

,

u
0.43ei2π (0.42)

,
v

0.43ei2π (0.42)
)>

and

B

=< (
xb

0.31ei2π (0.21)
,

xr
0.25ei2π (0.13)

,
bs

0.23ei2π (0.25)
,

vr
0.15ei2π (0.19)

,

vu
0.13ei2π (0.17)

,
us

0.14ei2π (0.18)
),(

xb
0.43ei2π (0.3)

,
xr

0.36ei2π (0.4)
,

bs
0.27ei2π (0.35)

,
vr

0.25ei2π (0.45)
,

vu
0.22ei2π (0.21)

,
us

0.21ei2π (0.23)
),

(
xb

0.34ei2π (0.2)
,

xr
0.55ei2π (0.35)

,

bs
0.31ei2π (0.4)

,
vr

0.21ei2π (0.3)
,

vu
0.32ei2π (0.22)

,
us

0.24ei2π (0.31)
)>

Here ωAeiσA , τAeiςA and κAeiρA for x,b,r,s,u,v are constant
functions. But
DG(x) = (0.56ei2π (0.38), 0.79ei2π (0.7), 0.89ei2π (0.55)) ̸=

(0.4ei2π (0.32), 0.61ei2π (0.85), 0.76ei2π (0.65)) = DG(r).
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x = (0.62ei2π (0.45), 0.34ei2π (0.15), 0.43ei2π (0.42))

b = (0.62ei2π (0.45), 0.34ei2π (0.15), 0.43ei2π (0.42))

r = (0.62ei2π (0.45), 0.34ei2π (0.15), 0.43ei2π (0.42))

s = (0.62ei2π (0.45), 0.34ei2π (0.15), 0.43ei2π (0.42))

u = (0.62ei2π (0.45), 0.34ei2π (0.15), 0.43ei2π (0.42))

v = (0.62ei2π (0.45), 0.34ei2π (0.15), 0.43ei2π (0.42))

xb = (0.31ei2π (0.21), 0.43ei2π (0.3), 0.34ei2π (0.2))

xr = (0.25ei2π (0.13), 0.36ei2π (0.4), 0.55ei2π (0.35))

bs = (0.23ei2π (0.25), 0.27ei2π (0.35), 0.31ei2π (0.4))

vr = (0.15ei2π (0.19), 0.25ei2π (0.45), 0.21ei2π (0.3))

vu = (0.13ei2π (0.17), 0.22ei2π (0.21), 0.32ei2π (0.22))

us = (0.14ei2π (0.18), 0.21ei2π (0.23), 0.24ei2π (0.31)).

Here ωIei~I , τIeiςI and 0IeiδI for x,b,r,s are constant
functions. But
D9 (x) = (0.56ei2π (0.34), 0.79ei2π (0.7), 0.89ei2π (0.6)) ̸=

(0.38ei2π (0.44), 0.52ei2π (0.8), 0.52ei2π (0.7)) = D9 (r) and
T DG(x) = (1.18ei2π (0.83), 1.13ei2π (0.85), 1.32ei2π (0.97)) ̸=

(1.02ei2π (0.77), 0.95ei2π (1.00), 1.19ei2π (1.07)) = T DG(r)
Hence, 9 = (I,J ) is neither regular nor totally regular

CSDFG.
Definition 25: LetJ = {(xb, ωJ (xb)ei~J (xb), τJ (xb)eiςJ (xb),

0J (xb)eiδJ (xb))|xb ∈ Z} be the set of arcs in CSDFG9, then
• The degree of an arc xb ∈ Z is represented by D9 (xb) =

(Dωei~ (xb),Dτeiς (xb),D0eiδ (xb)), where

Dω(xb) =

∑
xr∈Z,r ̸=b

ωJ (xr) +

∑
br∈Z,x ̸=r

ωJ (br)

= DωI (x) +DωI (b) − 2ωJ (xb)

= DωI (x) +DωI (b)

− 2(
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)
).

Dτ (xb) =

∑
xr∈Z,r ̸=b

τJ (xr) +

∑
br∈Z,x ̸=r

τJ (br)

= DτI (x) +DτI (b) − 2τJ (xb)

= DτI (x) +DτI (b)

− 2(
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)
).

D0(xb) =

∑
xr∈Z,r ̸=b

0J (xr) +

∑
br∈Z,x ̸=r

0J (br)

= D0I (x) +D0I (b) − 20J (xb)

= D0I (x) +D0I (b)

− 2(
0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

).

Dei~ (xb) =

∑
xr∈Z,r ̸=b

~J (xr) +

∑
br∈Z,x ̸=r

~J (br)

= D~I (x) +D~I (b) − 2~J (xb)

= D~I (x) +D~I (b)

− 2(
~I (x)~I (b)

~I (x) + ~I (b) − ~I (x)~I (b)
).

Deiς (xb) =

∑
xr∈Z,r ̸=b

ςJ (xr) +

∑
br∈Z,x ̸=r

ςJ (br)

= DςI (x) +DςI (b) − 2ςJ (xb)

= DςI (x) +DςI (b)

− 2(
ςI (x) + ςI (b) − 2ςI (x)ςI (b)

1 − ςI (x)ςI (b)
).

Deiδ (xb) =

∑
xr∈Z,r ̸=b

δJ (xr) +

∑
br∈Z,x ̸=r

δJ (br)

= DδI (x) +DδI (b) − 2δJ (xb)

= DδI (x) +DδI (b)

− 2(
δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

).

• The total degree of an arc xb ∈ Z is represented by
T D9 (xb) = (T Dωei~ (xb), T Dτeiς (xb), T D0eiδ (xb)), where

T Dω(xb) =

∑
xr∈Z,r ̸=b

ωJ (xr) +

∑
br∈Z,x ̸=r

ωJ (br) + ωJ (xb)

= DωI (x) +DωI (b) − ωJ (xb)

= DωI (x) +DωI (b)

− (
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)
).

T Dτ (xb) =

∑
xr∈Z,r ̸=b

τJ (xr) +

∑
br∈Z,x ̸=r

τJ (br) + τJ (xb)

= DτI (x) +DτI (b) − τJ (xb)

= DτI (x) +DτI (b)

− (
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)
).

T D0(xb) =

∑
xr∈Z,r ̸=b

0J (xr) +

∑
br∈Z,x ̸=r

0J (br) + 0J (xb)

= D0I (x) +D0I (b) − 0J (xb)

= D0I (x) +D0I (b)

− (
0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

).

T Dei~ (xb) =

∑
xr∈Z,r ̸=b

~J (xr) +

∑
br∈Z,x ̸=r

~J (br) + ~J (xb)

= D~I (x) +D~I (b) − ~J (xb)

= D~I (x) +D~I (b)

− (
~I (x)~I (b)

~I (x) + ~I (b) − ~I (x)~I (b)
).

T Deiς (xb) =

∑
xr∈Z,r ̸=b

ςJ (xr) +

∑
br∈Z,x ̸=r

ςJ (br) + ςJ (xb)

= DςI (x) +DςI (b) − ςJ (xb)

= DςI (x) +DςI (b)

− (
ςI (x) + ςI (b) − 2ςI (x)ςI (b)

1 − ςI (x)ςI (b)
).

T Deiδ (xb) =

∑
xr∈Z,r ̸=b

δJ (xr) +

∑
br∈Z,x ̸=r

δJ (br) + δJ (xb)
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= DδI (x) +DδI (b) − δJ (xb)

= DδI (x) +DδI (b)

− (
δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

).

Definition 26: A CSDFG 9 = (I,J ) is said to be arc
regular, if its every arc has same degree. i.e,

Dω(xb)

= DωI (x) +DωI (b) − 2ωJ (xb)

= DωI (x) +DωI (b) − 2(
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)
)

= L1.

Dτ (xb)

= DτI (x) +DτI (b) − 2τJ (xb)

= DτI (x) +DτI (b) − 2(
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)
)

= L2.

D0(xb)

= D0I (x) +D0I (b) − 20J (xb)

= D0I (x) +D0I (b) − 2(
0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

)

= L3.

Dei~ (xb)

= D~I (x) +D~I (b) − 2~J (xb)

= D~I (x) +D~I (b) − 2(
~I (x)~I (b)

~I (x) + ~I (b) − ~I (x)~I (b)
)

= L∗

1.

Deiς (xb)

= DςI (x) +DςI (b) − 2ςJ (xb)

= DςI (x) +DςI (b) − 2(
ςI (x) + ςI (b) − 2ςI (x)ςI (b)

1 − ςI (x)ςI (b)
)

= L∗

2.

Deiδ (xb)

= DδI (x) +DδI (b) − 2δJ (xb)

= DδI (x) +DδI (b) − 2(
δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

)

= L∗

3.

for all xb ∈ Z . 9 is called (L1eiL
∗

1 ,L2eiL
∗

2 ,L3eiL
∗

3 )-arc
regular CSDFG.
Definition 27: A CSDFG 9 = (I,J ) is said to be totally

arc regular, if its every arc has same degree. i.e,

T Dω(xb)

= DωI (x) +DωI (b) − ωJ (xb)

= DωI (x) +DωI (b) − (
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)
)

= K1.

T Dτ (xb)

= DτI (x) +DτI (b) − τJ (xb)

= DτI (x) +DτI (b)

− (
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)
) = K2.

T D0(xb)

= D0I (x) +D0I (b) − 0J (xb)

= D0I (x) +D0I (b) − (
0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

)

= K3.

T Dei~ (xb)

= D~I (x) +D~I (b) − ~J (xb)

= D~I (x) +D~I (b) − (
~I (x)~I (b)

~I (x) + ~I (b) − ~I (x)~I (b)
)

= K∗

1.

T Deiς (xb)

= DςI (x) +DςI (b) − ςJ (xb)

= DςI (x) +DςI (b) − (
ςI (x) + ςI (b) − 2ςI (x)ςI (b)

1 − ςI (x)ςI (b)
)

= K∗

2.

T Deiδ (xb)

= DδI (x) +DδI (b) − δJ (xb)

= DδI (x) +DδI (b) − (
δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

)

= K∗

3.

for all xb ∈ Z . 9 is called (K1eiK
∗

1 ,K2eiK
∗

2 ,K3eiK
∗

3 )-totally
arc regular CSDFG.
Example 6: Let 9 = (I,J ) be a CSDFG on

9∗
= (ϒ,Z), where ϒ = {x, b, r, s} and Z =

{xb, xs, bs, xr, br, rs} as shown in Figure 5. The node set I
and the arc set J of 9 are defined as.

I

=< (
x

0.42ei2π (0.36)
,

b
0.34ei2π (0.43)

,
r

0.51ei2π (0.37)
,

s
0.36ei2π (0.56)

),

(
x

0.27ei2π (0.19)
,

b
0.35ei2π (0.26)

,
r

0.28ei2π (0.26)
,

s
0.18ei2π (0.39)

),

(
x

0.33ei2π (0.46)
,

b
0.47ei2π (0.52)

,
r

0.35ei2π (0.45)
,

s
0.47ei2π (0.39)

)>

and

J

=< (
xb

0.12ei2π (0.15)
,

xs
0.12ei2π (0.15)

,
bs

0.12ei2π (0.15)
,

xr
0.12ei2π (0.15)

,

br
0.12ei2π (0.15)

,
rs

0.12ei2π (0.15)
),

(
xb

0.25ei2π (0.28)
,

xs
0.25ei2π (0.28)

,

bs
0.25ei2π (0.28)

,
xr

0.25ei2π (0.28)
,

br
0.25ei2π (0.28)

,
rs

0.25ei2π (0.28)
),

(
xb

0.11ei2π (0.13)
,

xs
0.11ei2π (0.13)

,

bs
0.11ei2π (0.13)

,
xr

0.11ei2π (0.13)
,

br
0.11ei2π (0.13)

,
rs

0.11ei2π (0.13)
)>.
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FIGURE 5. Edge regular and totally edge regular CSDFG.

Since degree of each arc is
(0.48ei2π (0.6), 1.0ei2π (1.12), 0.44ei2π (0.52))
and total degree of each arc is
(0.6ei2π (0.75), 1.25ei2π (1.4), 0.55ei2π (0.65)).

x = (0.42ei2π (0.36), 0.27ei2π (0.19), 0.33ei2π (0.46))

b = (0.34ei2π (0.43), 0.35ei2π (0.26), 0.47ei2π (0.52))

r = (0.51ei2π (0.37), 0.28ei2π (0.26), 0.35ei2π (0.45))

s = (0.36ei2π (0.56), 0.18ei2π (0.39), 0.47ei2π (0.39))

xb = (0.12ei2π (0.15), 0.25ei2π (0.28), 0.11ei2π (0.13))

xs = (0.12ei2π (0.15), 0.25ei2π (0.28), 0.11ei2π (0.13))

bs = (0.12ei2π (0.15), 0.25ei2π (0.28), 0.11ei2π (0.13))

xr = (0.12ei2π (0.15), 0.25ei2π (0.28), 0.11ei2π (0.13))

br = (0.12ei2π (0.15), 0.25ei2π (0.28), 0.11ei2π (0.13))

rs = (0.12ei2π (0.15), 0.25ei2π (0.28), 0.11ei2π (0.13))

So,9 = (I,J ) is (0.48ei2π (0.6), 1.0ei2π (1.12), 0.44ei2π (0.52))-
arc regular and (0.6ei2π (0.75), 1.25ei2π (1.4), 0.55ei2π (0.65))-
totally arc regular CSDFG.
Theorem 4: Suppose 9 = (I,J ) is (F1eiF

∗

1 ,F2eiF
∗

2 ,

F3eiF
∗

3 )-regular CSDFG. IfωJ ei~J , τJ eiςJ and0J eiδJ are
constant functions, then 9 is (L1eiL

∗

1 ,L2eiL
∗

2 ,

L3eiL
∗

3 )-arc regular CSDFG.
Proof: Suppose that 9 = (I,J ) is a (F1eiF

∗

1 ,F2eiF
∗

2 ,

F3eiF
∗

3 )-regular CSDFG, then

Dωei~ (x) =

∑
x,b ̸=x∈ϒ

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)

e
i(

∑
x,b ̸=x∈ϒ

~I (x)~I (b)
~I (x)+~I (b)−~I (x)~I (b) )

= F1eiF
∗

1 .

Dτeiς (x) =

∑
x,b ̸=x∈ϒ

τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

e
i(

∑
x,b ̸=x∈ϒ

ςI (x)+ςI (b)−2ςI (x)ςI (b)
1−ςI (x)ςI (b) )

= F2eiF
∗

2 .

D0eiδ (x) =

∑
x,b ̸=x∈ϒ

0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

e
i(

∑
x,b ̸=x∈ϒ

δI (x)+δI (b)−2δI (x)δI (b)
δI (x)+δI (b)−δI (x)δI (b) )

= F3eiF
∗

3 .

Now ωJ ei~J , τJ eiςJ and 0J eiδJ are constant functions,
therefore, ωJ (xb)ei~J (xb)

= c1eic
∗

1 , τJ (xb)eiςJ (xb)
= c2eic

∗

2

and 0J (xb)eiδJ (xb)
= c3eic

∗

3 for all xb ∈ Z .
Since the degree of an arc xb ∈ Z is given by D9 (xb) =

(Dωei~ (xb),Dτeiς (xb),D0eiδ (xb)), where

Dω(xb) = DωI (x) +DωI (b)

− 2(
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)
)

= F1 + F1 − 2c1 = 2(F1 − c1) = L1.

Dτ (xb) = DτI (x) +DτI (b)

− 2(
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)
)

= F2 + F2 − 2c2 = 2(F2 − c2) = L2.

D0(xb) = D0I (x) +D0I (b)

− 2(
0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

)

= F3 + F3 − 2c3 = 2(F3 − c3) = L3.

Dei~ (xb) = D~I (x) +D~I (b)

− 2(
~I (x)~I (b)

~I (x) + ~I (b) − ~I (x)~I (b)
) = 2F∗

1 − 2c∗1

= 2(F∗

1 − c∗1) = L∗

1.

Deiς (xb) = DςI (x) +DςI (b)

−2(
ςI (x)+ςI (b) − 2ςI (x)ςI (b)

1 − ςI (x)ςI (b)
) = 2F∗

2 − 2c∗2

= 2(F∗

2 −c∗2) = L∗

2.

Deiδ (xb) = DδI (x) +DδI (b)

− 2(
δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

) = 2F∗

3 − 2c∗3

= 2(F∗

3 − c∗3) = L∗

3.

□
Hence 9 is (L1eiL

∗

1 ,L2eiL
∗

2 ,L3eiL
∗

3 )-arc regular CSDFG.
Theorem 5: Suppose a CSDFG 9 is (L1eiL

∗

1 ,L2eiL
∗

2 ,

L3eiL
∗

3 )-arc regular and (K1eiK
∗

1 ,K2eiK
∗

2 ,K3eiK
∗

3 )-totally
arc regular, then ωJ ei~J , τJ eiςJ and 0J eiδJ are constant
functions.
Proof: Suppose that 9 is (L1eiL

∗

1 ,L2eiL
∗

2 ,L3eiL
∗

3 )-arc
regular CSDFG, then the degree of its each arc is

Dω(xb) = DωI (x) +DωI (b)

− 2(
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)
) = L1.

Dτ (xb) = DτI (x) +DτI (b)

− 2(
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)
) = L2.
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D0(xb) = D0I (x) +D0I (b)

− 2(
0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

) = L3.

Dei~ (xb) = D~I (x) +D~I (b)

− 2(
~I (x)~I (b)

~I (x) + ~I (b) − ~I (x)~I (b)
) = L∗

1.

Deiς (xb) = DςI (x) +DςI (b)

− 2(
ςI (x) + ςI (b) − 2ςI (x)ςI (b)

1 − ςI (x)ςI (b)
) = L∗

2.

Deiδ (xb) = DδI (x) +DδI (b)

− 2(
δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

) = L∗

3.

Also 9 is (K1eiK
∗

1 ,K2eiK
∗

2 ,K3eiK
∗

3 ) totally arc regular
CSDFG, then the degree of each arc is

T Dω(xb) = DωI (x) +DωI (b)

− (
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)
) = K1.

T Dτ (xb) = DτI (x) +DτI (b)

− (
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)
) = K2.

T D0(xb) = D0I (x) +D0I (b)

− (
0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

) = K3.

T Dei~ (xb) = D~I (x) +D~I (b)

− (
~I (x)~I (b)

~I (x) + ~I (b) − ~I (x)~I (b)
) = K∗

1.

T Deiς (xb) = DςI (x) +DςI (b)

− (
ςI (x) + ςI (b) − 2ςI (x)ςI (b)

1 − ςI (x)ςI (b)
) = K∗

2.

T Deiδ (xb) = DδI (x) +DδI (b)

− (
δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

) = K∗

3.

Further, it follows that

T Dω(xb) = K1

DωI (x) +DωI (b) − (
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)
) = K1

DωI (x) +DωI (b) − 2(
ωI (x)ωI (b)

ωI (x) + ωI (b) − ωI (x)ωI (b)
)

+ ωJ (xb) = K1

ωJ (xb) = K1 − F1.

T D~ (xb) = K∗

1

D~I (x) +D~I (b) − (
~I (x)~I (b)

~I (x) + ~I (b) − ~I (x)~I (b)
) = K∗

1

D~I (x) +D~I (b) − 2(
~I (x)~I (b)

~I (x) + ~I (b) − ~I (x)~I (b)
)

+ ~J (xb) = K∗

1

~J (xb) = K∗

1 − F∗

1 .

Similarly, for non membership value

T Dτ (xb) = K2

DτI (x) +DτI (b) − (
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)
) = K2

DτI (x) +DτI (b) − 2(
τI (x) + τI (b) − 2τI (x)τI (b)

1 − τI (x)τI (b)
)

+ τJ (xb) = K2

τJ (xb) = K2 − F2.

T Dς (xb) = K∗

2

DςI (x) +DςI (b) − (
ςI (x) + ςI (b) − 2ςI (x)ςI (b)

1 − ςI (x)ςI (b)
) = K∗

2

DςI (x) +DςI (b) − 2(
ςI (x) + ςI (b) − 2ςI (x)ςI (b)

1 − ςI (x)ςI (b)
)

+ ςJ (xb) = K∗

2

ςJ (xb) = K∗

2 − F∗

2 .

Also, similarly for the abstinence value

T D0(xb) = K3

D0I (x) +D0I (b) − (
0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

) = K3

D0I (x) +D0I (b)−2(
0I (x) + 0I (b)−20I (x)0I (b)

0 I
(x)

+ 0I (b) −0I (x)0I (b)) + ςJ (xb)=K3

ςJ (xb) = K3 − F3.

T Dδ(xb) = K∗

3

DδI (x) +DδI (b) − (
δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

) = K∗

3

DδI (x) +DδI (b) − 2(
δI (x) + δI (b) − 2δI (x)δI (b)
δI (x) + δI (b) − δI (x)δI (b)

)

+ δJ (xb) = K∗

3

δJ (xb) = K∗

3 − F∗

3 .

□
Hence, ωJ ei~J , τJ eiςJ and 0J eiδJ are constant

functions. □
Theorem 6: Suppose 9 = (I,J ) is a CSDFG. Then the

functions ωJ ei~J , τJ eiςJ and 0J eiδJ are constant iff 9 is
regular as well as totally arc regular CSDFG.
Proof: Suppose that 9 is a CSDFG. Assume that ωJ ei~J ,

τJ eiςJ and 0J eiδJ are constant functions, therefore,
ωJ (xb)ei~J (xb)

= c1eic
∗

1 , τJ (xb)eiςJ (xb)
= c2eic

∗

2 and
0J (xb)eiδJ (xb)

= c3eic
∗

3 for all xb ∈ Z , where c1eic
∗

1 , c2eic
∗

2

and c3eic
∗

3 are constants.
Since the degree of a node x ∈ ϒ is given by D9 (x) =

(Dωei~ (x),Dτeiς (x),D0eiδ (x)), where

Dωei~ (x) =

∑
xb∈Z

ωJ (xb)e
i(

∑
xb∈Z

~J (xb))

Dωei~ (x) =

∑
x,b ̸=x∈ϒ

ωI (x)ωI (b)
ωI (x) + ωI (b) − ωI (x)ωI (b)
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e
i(

∑
x,b ̸=x∈ϒ

~I (x)~I (b)
~I (x)+~I (b)−~I (x)~I (b) )

Dωei~ (x) =

∑
xb∈Z

c1e
i(

∑
xb∈Z

c1)

Dωei~ (x) = Fc1eiFc
∗

1 .

Dτeiς (x) =

∑
xb∈Z

τJ (xb)e
i(

∑
xb∈Z

ςJ (xb))

Dτeiς (x) =

∑
x,b ̸=x∈ϒ

τI (x) + τI (b) − 2τI (x)τI (b)
1 − τI (x)τI (b)

e
i(

∑
x,b ̸=x∈ϒ

ςI (x)+ςI (b)−2ςI (x)ςI (b)
1−ςI (x)ςI (b) )

Dτeiς (x) =

∑
xb∈Z

c2e
i(

∑
xb∈Z

c2)

Dτeiς (x) = Fc2eiFc
∗

2 .

D0eiδ (x) =

∑
xb∈Z

0J (xb)e
i(

∑
xb∈Z

δJ (xb))

D0eiδ (x) =

∑
x,b ̸=x∈ϒ

0I (x) + 0I (b) − 20I (x)0I (b)
0I (x) + 0I (b) − 0I (x)0I (b)

e
i(

∑
x,b ̸=x∈ϒ

δI (x)+δI (b)−2δI (x)δI (b)
δI (x)+δI (b)−δI (x)δI (b) )

D0eiδ (x) =

∑
xb∈Z

c3e
i(

∑
xb∈Z

c3)

D0eiδ (x) = Fc3eiFc
∗

3 .

Thus,9 is (Fc1eiFc
∗

1 ,Fc2eiFc
∗

2 ,Fc3eiFc
∗

3 )-regular CSDFG.
As for an arc xb ∈ Z , its total degree is given as

T D9 (xb) = (T Dωei~ (xb), T Dτeiς (xb), T D0eiδ (xb)), where

T Dω(xb) =

∑
xr∈Z,r ̸=b

ωJ (xr) +

∑
br∈Z,x ̸=r

ωJ (br) + ωJ (xb)

=

∑
xr∈Z,r ̸=b

c1 +

∑
br∈Z,x ̸=r

c1 + c1

= c1(F − 1) + c1(F − 1) + c1
= c1(2F − 1).

T D~ (xb) =

∑
xr∈Z,r ̸=b

~J (xr) +

∑
br∈Z,x ̸=r

~J (br) + ~J (xb)

=

∑
xr∈Z,r ̸=b

c∗1 +

∑
br∈Z,x ̸=r

c∗1 + c∗1

= c∗1(F − 1) + c∗1(F − 1) + c∗1
= c∗1(2F − 1).

T Dτ (xb) =

∑
xr∈Z,r ̸=b

τJ (xr) +

∑
br∈Z,x ̸=r

τJ (br) + τJ (xb)

=

∑
xr∈Z,r ̸=b

c2 +

∑
br∈Z,x ̸=r

c2 + c2

= c2(F − 1) + c2(F − 1) + c2

= c2(2F − 1).

T Dς (xb) =

∑
xr∈Z,r ̸=b

ςJ (xr) +

∑
br∈Z,x ̸=r

ςJ (br) + ςJ (xb)

=

∑
xr∈Z,r ̸=b

c∗2 +

∑
br∈Z,x ̸=r

c∗2 + c∗2

= c∗2(F − 1) + c∗2(F − 1) + c∗2
= c∗2(2F − 1).

T D0(xb) =

∑
xr∈Z,r ̸=b

0J (xr) +

∑
br∈Z,x ̸=r

0J (br) + 0J (xb)

=

∑
xr∈Z,r ̸=b

c3 +

∑
br∈Z,x ̸=r

c3 + c3

= c3(F − 1) + c3(F − 1) + c3
= c3(2F − 1).

T Dδ(xb) =

∑
xr∈Z,r ̸=b

δJ (xr) +

∑
br∈Z,x ̸=r

δJ (br) + δJ (xb)

=

∑
xr∈Z,r ̸=b

c∗3 +

∑
br∈Z,x ̸=r

c∗3 + c∗3

= c∗3(F − 1) + c∗3(F − 1) + c∗3
= c∗3(2F − 1).

Hence 9 is (c1(2F − 1)ei(c
∗

1(2F−1)), c2(2F − 1)ei(c
∗

2(2F−1)),

c3(2F − 1)ei(c
∗

3(2F−1)))-totally arc regular CSDFG. So 9 is a
regular graph and it is also totally arc regular.
Conversely, let 9 be a (L1eiL

∗

1 ,L2eiL
∗

2 ,L3eiL
∗

3 ) regular
and (K1eiK

∗

1 ,K2eiK
∗

2 ,K3eiK
∗

3 ) totally arc regular CSDFG.
The total degree of an arc xb is given by
T D9 (xb) = (T Dωei~ (xb), T Dτeiς (xb), T D0eiδ (xb)),

where

T Dω(xb) = DωI (x) +DωI (b) − ωJ (xb)

K1 = F1 + F1 − ωJ (xb)

ωJ (xb) = 2F1 −K1.

T Dei~ (xb) = D~I (x) +D~I (b) − ~J (xb)

K∗

1 = F∗

1 + F∗

1 − ~J (xb)

~J (xb) = 2F∗

1 −K∗

1. for all xb ∈ Z.

T Dτ (xb) = DτI (x) +DτI (b) − τJ (xb)

K2 = F2 + F2 − τJ (xb)

τJ (xb) = 2F2 −K2.

T Deiς (xb) = DςI (x) +DςI (b) − ςJ (xb)

K∗

2 = F∗

2 + F∗

2 − ςJ (xb)

ςJ (xb) = 2F∗

2 −K∗

2. for all xb ∈ Z.

T D0(xb) = D0I (x) +D0I (b) − 0J (xb)

K3 = F3 + F3 − 0J (xb)

0J (xb) = 2F3 −K3.

T Deiδ (xb) = DδI (x) +DδI (b) − δJ (xb)

K∗

3 = F∗

3 + F∗

3 − δJ (xb)

δJ (xb) = 2F∗

3 −K∗

3. for all xb ∈ Z.

Hence, ωJ ei~J , τJ eiςJ and 0J eiδJ are constant functions.
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IV. APPLICATION
The Financial Action Task Force (FATF) is critical to
worldwide efforts to prevent money laundering and terrorist
funding. FATF, founded in 1989, is a non-profit group
that establishes worldwide standards and promotes actions
to protect the integrity of the global financial system.
This is accomplished through the use of many important
functions. First and foremost, FATF creates and disseminates
a collection of guidelines known as the ‘‘FATFRecommenda-
tions,’’ which serve as a complete foundation for anti-money
laundering (AML) and counter-terrorist financing (CTF)
efforts. These suggestions, among other things, include
guidance on customer due diligence, reporting suspicious
transactions, and seizure of illegal assets. Furthermore, FATF
conducts reciprocal reviews of member and non-member
countries to examine their AML/CTF systems and verify
compliance with the guidelines. In addition, the organisation
monitors and supports nations’ attempts to adopt these
measures, urging them to align their AML/CTF regimes
with international norms. FATF encourages worldwide
collaboration and coordination in combating financial crimes
through its function as a global standard-setter and assessor.
Furthermore, it involves both the public and private sectors,
with a focus on coordination among multiple stakeholders
such as financial institutions, law enforcement agencies,
and regulators. FATF’s work has been crucial in improving
the efficacy of AML/CTF procedures and protecting the
international financial system from misuse by criminals and
terrorists, thanks to research and guidance. In situations
of noncompliance, FATF can place nations on its ‘‘grey
list’’ or ‘‘blocklist,’’ emphasising its role in ensuring global
responsibility. Overall, the FATF’s multidimensional strategy
is critical to worldwide efforts to combat financial crime
and protect the financial system’s integrity. In this section,
we propose a strategy and address the difficult task of
deciding which country should be taken off the FATF’s grey

list. Understanding the issue will help you comprehend the
chosen approach.

A. ALGORITHM
The algorithm is as follows:

INPUT: A discrete set of proper alternatives B =

{B1,B2, . . . ,Bn} under some parameters in order to achieve
the target and creation of complex fuzzy preference relation
(CFPR) Q = (dkq)n×n.
OUTPUT: The selection of a suitable alternative.
1. Take dkq = (ωkqei~kq , τkqeiςkq , 0kqeiδkq ) (k,b=

1,2,3,4. . . ,n) and set of alternatives B = {B1,B2, . . . ,Bn}.
2. Aggregate all dkq = (ωkqei~kq , τkqeiςkq , 0kqeiδkq ) (k,b=

1,2,3,4,. . . .,n) relating to the alternative Bk and get the
complex fuzzy element (CFE) dk of the alternative Bk over
all other alternatives by using complex dombi fuzzy operator,
as shown in the equation at the bottom of the page.

3. Take the following equation to find the score functions:

s(dk ) = (ω2
− τ 2 − 02) +

1
4π2 (~

2
− ς2

− δ2)

4. By using the equation of the score function, calculate the
value of the score function s(dk ) of the combined overall
preference value dk (k = 1, 2,. . . ,n).
5. On the basis of the score function s(dk ) (k=1,2,3,4. . . ,n),

sort through the alternatives Bk (k=1,2,3,4. . . ,n).
6. Using the scoring functions that were acquired in

step 4 of the process, output the suitable choice.

B. SELECTION OF SUITABLE COUNTRY FOR RELEASING
FUNDS AND EXISTED FROM THE GREY LIST OF FATF
In this application, we create a few assumptions that play a
beneficial role in decision-making problems.
FATF is an intergovernmental organisation that implements
effective regulatory and operational measures to tackle

dk = CDFoperator(dk1, dk2, . . . , dkn)

dk = (

√√√√√(1 −
1

1 + [
∑n

b=1
1
n (

ω2
kq

1−ω2
kq
)ξ ]1/ξ

)e

i2π
√√√√√(1− 1

1+[
∑n
b=1

1
n (

(
~kq
2π )2

1−(
~kq
2π )2

)ξ ]1/ξ

)

,

(1−
1

1+[
∑n

b=1
1
n (

1−τkq
τkq

)ξ ]1/ξ
)e

i2π (1− 1

1+[
∑n
b=1

1
n (

1−
~kq
2π

~kq
2π

)ξ ]1/ξ

)

,

√√√√√(1−
1

1 + [
∑n

b=1
1
n (

02
kq

1−02
kq
)ξ ]1/ξ

)e

i2π
√√√√√(1− 1

1+[
∑n
b=1

1
n (

(
δkq
2π )2

1−(
δkq
2π )2

)ξ ]1/ξ

)

)
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FIGURE 6. CSDFG directed network.

money laundering, terrorist financing, and similar threats
to the global financial system. Over time, its mandate has
grown to include a wider range of duties. All nations
should adhere to the instructions made by the FATF in
order to play their respective roles in effectively addressing
the threat to financial institutions. These suggestions seek
to increase the financial system’s transparency and give
the nation a framework for looking into and taking action
against criminal behaviours. The FATF, along with other
international partners, keeps track of how well each nation
is doing in fending off its own dangers to the financial
system and the black money that might be used to finance
terrorism or other related crimes. The FATF is a decision-
making body, and its Session meets three times a year
to assess the development of the various states’ judicial,
administrative, and operational measures to combat money
laundering and terrorism funding. To determine whether
members are adhering to FATF regulations or not, it relies on
self-evaluations and recurring mutual evaluation reports from
experts.

The Financial Action Task Force (FATF) provided some
funds to improve and maintain the situation of country to
remove them from the grey list. In this way a country can
take advantage to stabilize economically and defensively.
The following are some of the criteria that were taken into
consideration for this purpose.

• Control of terror financing activities.
• To reduce corruption of various departments.
• Available resources.
• Money laundering.
• Improving financial sector operations.
• Building up social safety nets.
• Strengthening public financial management.
• Minimum level of international reserves.
• Budget consistent with fiscal framework.
• Restriction on government previous policies and enhanc-

ing new policies.

B1 = (0.5ei2π (0.5), 0.5ei2π (0.5), 0.5ei2π (0.5))

B2 = (0.5ei2π (0.5), 0.5ei2π (0.5), 0.5ei2π (0.5))

B3 = (0.5ei2π (0.5), 0.5ei2π (0.5), 0.5ei2π (0.5))

B1B2 = (0.6ei2π (0.4), 0.3ei2π (0.2), 0.1ei2π (0.1))

B2B1 = (0.3ei2π (0.2), 0.6ei2π (0.4), 0.1ei2π (0.1))

B1B3 = (0.7ei2π (0.5), 0.4ei2π (0.3), 0.2ei2π (0.1))

B3B1 = (0.4ei2π (0.3), 0.7ei2π (0.5), 0.2ei2π (0.1))

B2B3 = (0.4ei2π (0.4), 0.5ei2π (0.3), 0.1ei2π (0.2))

B3B2 = (0.5ei2π (0.3), 0.4ei2π (0.4), 0.1ei2π (0.2))

The team specialists present their preference data in
the form of CSFPR Q = (dkq)3×3, where dkq =

(ωkqei~kq , τkqeiςkq , 0kqeiδkq ) is a complex spherical fuzzy
element (CSFE) assigned by the expert. Members of the team
should choose three countries in which they are planning
to release fund and removing from the grey list. The team
make pairwise comparison in the three countries to select the
suitable one.

Consider (0.6ei2π (0.55), 0.3ei2π (0.4), 0.1ei2π (0.05)), the
amplitude term for the grade 0.6 shows that sixty percent of
the expert says B1 is preferable country over B2 to be put out
from the grey list, 0.3 shows thirty percents are not in favor
of the country B1 and 0.1 shows 10 percents are neutral. Now
the phase term 0.55 shows that fifty five percent of the experts
says that the country B1 will stand-by all instructions in future
over the country B2, 0.4 shows that forty percents are against
B1 and 0.05 shows 5 percents are neutral.
The directed network of CSFPR Q given in 2 and is

displayed in figure 6.
In the first scenario, we proceed as follows. Let B =

{J1 = Afghanistan,B2 = Syria,B3 = Africa} be the
set of countries where the team wishes to conclude which
country will be most suitable to exist from grey list and to
deliver funds. Let 65 percent of the team’s specialists feel
that Afghanistan should be chosen to be out of grey list,
20 percent of the specialists are against Afghanistan and
5 percent are neutral after carefully analyzing the parameters.
Therefore, we can determine the terms of all membership,
non membership and neutral functions. It is necessary to
compute the phase term, which defines which country will
comply all instructions in future and improve their situation.
Let 40 percent of the specialists are in favour of Afghanistan,
15 percent are opposite and 10 percent are neutral. The
CSFPR Q = (dkq)3×3 is shown in Table 2 and displed in
Figure 6.
By using complex dombi fuzzy operator, we calculate

dkq = (ωkqei~kq , τkqeiςkq , 0kqeiδkq ) (k,b = 1,2,3) of the
countriesBk over others.We have taken ξ = 1. The combined
overall preference value dk (k=1,2,3) which is given below:

d1 =(0.6183ei2π (0.4714), 0.6170ei2π (0.7097),

0.3373ei2π (0.3247))

d2 =(0.4146ei2π (0.3982), 0.4706ei2π (0.6170),

0.3247ei2π (0.3373))

d3 =(0.4714ei2π (0.3878), 0.4940ei2π (0.5385),

0.3373ei2π (0.3373))
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TABLE 1. CSFPR.

TABLE 2. SFPR of the expert.

TABLE 3. Comparison among proposed and existing operator.

The score function s(dk ) (k=1,2,3) is calculated by using

s(dk ) = (ω2
− τ 2 − 02) +

1
4π2 (~

2
− ς2

− δ2)

which is given below:

s(d1) = −0.4991

s(d2) = −0.4909

s(d3) = −0.3889

We determine the three countries rankings using the scoring
functions Bk as:

B3 ≻ B2 ≻ B1.

The results of the ranking indicate that B3, Africa is the
most suitable country to release funds and put out from the
grey list of FATF.

C. COMPARATIVE ANALYSIS
In this section, we write a numerical example to compare
withb the outcomes of our newly introduced operators with
those of existing operator, specifically the spherical dombi
fuzzy operator. The context involves a scenario where a firm
is in need of acquiring a machine for their office. To make
an informed decision, they consider machines offered by
three different companies denoted as Ak (k = 1, 2, 3). The
selection process revolves around four essential parameters:

1. Rate of Injection:
This parameter quantifies how fast the machine can

perform the injection process.
2. Back Pressure:
This refers to the level of resistance that the machine exerts

when executing its functions.
3. Mould and Material Temperature:
These parameters indicate the temperature conditions at

which the machine operates, which can significantly affect
performance.

4. Brand Tag:
This parameter evaluates the reputation and branding of

the machine manufacturer, which is often a crucial factor in
decision-making.

An expert of the office provides his preference infor-
mation in the form of complex spherical fuzzy prefer-
ence relation (CSFPR) Q = (dkq)3×3, where dkq =

(ωkqeiσkq , τkqeiςkq , 0kqeiδkq ) is the complex spherical fuzzy
element (CSFE) assigned by the expert. The amplitude term
for membership and non-membership grades represents the
preference and non-preference values, respectively, for the
speed of the machine.

Now the phase term for membership and non-membership
grades represents the preference and non-preference values,
respectively, for the accuracy of PCs. CSFPR Q =

(dkq)3×3 is represented in Table 1. If we consider only
the amplitude terms, then the data in the form of PFPR
are given in Table 2. From the ranking results given in
Table 3, it is easy to see that the best alternatives using
the proposed operators are A1 and A4; whereas by using
the existing operators, the best alternative is A4. Thus, the
best alternatives are A1 and A4. While computing the results
using the complex spherical dombi fuzzy graph operator,
we consider both the amplitude and phase terms. The results
using the presented operators provide complete information
and avoid any loss of information. On the other hand,
in calculating the results using the spherical dombi fuzzy
operator, we consider only the amplitude term. Thus, to com-
pute the results of information having two terms, namely
amplitude and phase term, complex spherical dombi fuzzy
operators are able to draw conclusions. The operators that
we have applied can handle two-dimensional phenomena.
Therefore, to tackle imprecise or unclear information, our
proposed method will provide a platform to handle such
information.

V. CONCLUSION
Graphs are useful for graphically displaying information
and modelling relationships between various items. They are
extensively employed in a range of biological, social, and
physical systems, as well as in industrial and communication
network diagnostics. Their importance is derived from their
capacity to digest data from many sources and deliver critical
insights for decision-making. This study proposes the notion
of CSDFG, which is an extension of SDFG that provides
greater flexibility and comparability. It establishes CSDFG’s
complement and investigates notions like as homomorphism,
isomorphism, W-Isomorphism, and CW-Isomorphism, yield-
ing a variety of findings. CSDFGs that are both regular and
completely regular are also examined. In addition, the appli-
cation of CSDFG is illustrated. Future work might include
specifying operations on CSDFGs and investigating CSDFG
energy.
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