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ABSTRACT The Failure Mode Effect Analysis process (FMEA) is widely used in industry for risk
assessment, as it effectively captures and documents domain-specific knowledge. This process is mainly
concerned with causal domain knowledge. In practical applications, FMEAs encounter challenges in
terms of comprehensibility, particularly related to inadequate coverage of listed failure modes and their
corresponding effects and causes. This can be attributed to the limitations of traditional brainstorming
approaches typically employed in the FMEA process. Depending on the size and diversity in terms
of disciplines of the team conducting the analysis, these approaches may not adequately capture a
comprehensive range of failure modes, leading to gaps in coverage. To this end, methods for improving
FMEA knowledge comprehensibility are highly needed. A potential approach to address this gap is rooted in
recent advances in common-sense knowledge graph completion, which have demonstrated the effectiveness
of text-aware graph embedding techniques. However, the applicability of such methods in an industrial
setting is limited. This paper addresses this issue on FMEA documents in an industrial environment.
Here, the application of common-sense knowledge graph completion methods on FMEA documents from
semiconductor manufacturing is studied. These methods achieve over 20% MRR on the test set and
70% of the top 10 predictions were manually assessed to be plausible by domain experts. Based on the
evaluation, this paper confirms that text-aware knowledge graph embedding for common-sense knowledge
graph completion are more effective than structure-only knowledge graph embedding for improving FMEA
knowledge comprehensibility. Additionallywe found that languagemodel in domain fine-tuning is beneficial
for extracting more meaningful embedding, thus improving the overall model performance.

INDEX TERMS Natural language processing, common-sense knowledge, failure mode effect analysis,
FMEA, semiconductor manufacturing, knowledge graph completion.

I. INTRODUCTION
Risk assessment and root cause analysis are two practices
that capture and document causal domain knowledge. This
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causal domain knowledge is crucial for downstream tasks
such as decision making, data analysis, and more. In industry,
Failure Mode Effect Analysis (FMEA) process is widely
used for risk assessment. On a high level, FMEA process
can be split into three main sub-types, which are system
FMEA, design FMEA, and process FMEA [1], [2], [3].
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Process FMEA is applied to enhance and optimise the
manufacturing processes and workflow [4]. In the FMEA
process, a multidisciplinary team is often involved in
brainstorming approaches to identify lists of failure modes,
their causes and effects. Failure modes along with their
causes and effects are documented in FMEA documents.
These FMEA documents typically use a standardised tabular
format. This tabular format columns contain the failure mode,
effect, cause, and other columns such as risk priority number,
detection, etc. Each row in FMEA documents tabular format
represents a particular failure mode of a process or product,
along with its corresponding effect and cause. As such, the
tabular structure of the FMEA documents indicates implicit
relations between designated FMEA cells belonging to the
same row. Mainly, cell text belonging to the failure mode
column describes the cause of cell text belonging to the
effect column. At the same time, cell text belonging to
the failure mode column describes the effect of the cell
text belonging to the cause column. In addition, the FMEA
tabular format incorporates columns such as Element ID and
Characteristic. These columns provide context information of
the causal relations, specifying process step type in process
FMEA. Finally, a document header is employed to outline
the scope of the FMEA. This header specifies the product
or technology, for which the FMEA is conducted, provides
context information for the entire FMEA. To facilitate
comprehension, Table 1 offers an illustrative example with
two rows extracted from actual process FMEA document
from semiconductor manufacturing.

Prior researchers have emphasized a notable issue in
FMEA documents regarding the non-standardized descrip-
tions of failure modes [5]. This results in instances where
similar or even identical failure modes are articulated and
documented in varying manners. This challenge extends to
the effect, cause, and characteristic columns as well. Conse-
quently, methods relying on exact matching for processing
this information are significantly impacted.

Also, Bluvband et al. have raised concerns regarding the
clarity and comprehensibility of brainstorming approaches
employed in FMEA, potentially resulting in instances of
missing information, such as the omission of possible failure
modes [6].Moreover, it is not uncommon for causes or effects
to be overlooked. As a consequence, FMEA documents
may exhibit significant variation, dependent on factors like
the team size, diversity in disciplines, and prior experience
in conducting the analysis. These disparities in FMEA
documents may imply limitations in terms of assignability,
precision, and plausibility of the documented information.

In summary, the variability in FMEA documents may raise
concerns regarding the comprehensibility of the information
they contain [7]. While increasing the size of the FMEA
team holds promise for improving the clarity of information
in these documents, practical constraints such as time and
resource limitations may present hurdles in implementing
this approach. Consequently, the absence of standardized
and comprehensible descriptions in FMEA documents can

significantly hinder the practical applicability and transfer-
ability of causal knowledge for downstream tasks.

In response to the challenges of non-standardized descrip-
tions of failure modes in FMEA, scholars turned to text
mining techniques. The effectiveness of these techniques
has been demonstrated in various ways, such as extracting
knowledge from FMEA documents for verification and
validation planning [8], standardizing components failure
modes [5], and assessing the consistency of cells and relations
in the FMEA tabular format [9].

At the same time, noteworthy advances in the common-
sense knowledge completion techniques include new publicly
available large scale data sets such as Atomic [10] and
ConceptNet [11], modelling the common-sense knowledge
bases as knowledge graphs and the use of knowledge
graph embedding algorithms for downstream tasks such
as common-sense knowledge graph completion [12], [13].
These advances have made it possible to integrate knowledge
from various data sources. For instance, in [13] and [12]
the authors leverage language models pre-trained on a large
scale text data set to enrich the embedding of the nodes
in common-sense knowledge bases. This technique can
be especially important for root cause analysis and risk
assessment in an industrial setting where a significant amount
of knowledge is documented in a semi-structuredway, as seen
in FMEA, and in a unstructured textual format, as evident in
failure analysis reports.

Complementary to existing research, that has explored
ontology-based solutions for improving the transferability of
causal domain knowledge contained in FMEA documents as
outlined in [14], [15], and [16] and has showcased notable
progress in common-sense knowledge completion techniques
[12], [13], our study aims to examine the potential impact
of these advancements on the FMEA process effectiveness.
Specifically, we explore whether leveraging common-sense
knowledge completion techniques can enhance the com-
prehensibility of brainstorming sessions by treating FMEA
documents as the initial knowledge base. As such, in this
work, the following intriguing research questions are raised:
(RQ1) What are the similarities and key differences

between the knowledge documented within FMEA and
common-sense knowledge bases?

(RQ2) How effective are common-sense knowledge com-
pletion techniques to enhance the comprehensibility of
information articulated in FMEA documents?

To the best of our knowledge, no previous studies
have explored the use FMEA documents as a domain-
specific common-sense knowledge base. To address this gap,
we propose to leverage novel common-sense techniques,
in particular graph embedding, to perform knowledge graph
completion tasks on actual FMEA documents from the semi-
conductor manufacturing industry. By answering the research
questions we have posed, we make concrete contributions
to the extension of common-sense reasoning techniques
to industrial applications. Specifically, our contributions
include:
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TABLE 1. Example of an actual process FMEA document from semiconductor manufacturing. The scope header (first row) provides context for the entire
FMEA document. The tabular structure indicates implicit causal relations between designated FMEA cells belonging to the same row. Two causal relations
are identified in each FMEA row: the first between the failure mode and its effect, and the second between the failure mode and its cause. The Element
ID and Characteristic columns describe the context information for each individual causal relation.

• Highlighting the FMEA comprehensibility issue with
respect to possible causes and effects.

• Assessing the similarities between common-sense
knowledge bases and industrial risk assessment docu-
ments.

• Highlighting the unique difficulties associated with
FMEA data to enable the successful implementation of
said techniques.

• Be the first to apply techniques from common-sense
completion to domain-specific knowledge extracted
from risk assessment documents.

• Empirical evaluation on actual FMEA documents in a
case study from semiconductor manufacturing.

II. RELATED WORK
In [17], Zhongyi et al. highlighted that the success of
FMEA depends on two key factors: (1) whether the FMEA
process completely and accurately identifies the failure
modes contained in the system and (2) whether it can
scientifically evaluate the risk level of these failure modes.
The former is also applicable to the causes and effects of the
identified failure modes. Typically, the FMEA failure modes
identification process along with its causes and its effects is
carried out by a multidisciplinary team of domain experts
using brainstorming approaches. Although the brainstorming
approaches are the most common method, Bluvband et al.
in [6] believe that they could easily lead to the omission
of failure modes. Therefore, Bluvband et al. in [6] propose
a checklist consisting of 10 types of failure modes as a
supplement to the brainstorming approaches enabling the
FMEA team to establish a personalised list of failures that are
associated with a specific activity or item. Other approaches
for improving the FMEA comprehensibility are summarised
in section II-A.

Unlike conventional knowledge bases, common-sense
knowledge bases, similar to FMEA, are characterized by
entities that are represented by non-standardized free-form
text. These knowledge bases attempt to model general
common-sense knowledge including causal relationships.
In context of common-sense knowledge completions, which
involves predicting missing links in a knowledge base, text-
aware knowledge graph embedding methods have shown
to be effective [12], [13]. These methods leverage natural
language processing techniques to extract information from

the free-form text descriptions of entities in the knowledge
base, which can then be used to improve the accuracy
of the knowledge graph embedding. There are several
approaches for common-sense knowledge completions based
on text-aware knowledge graph embedding, including those
summarized in section II-B.

A. IMPROVING FMEA COMPREHENSIBILITY
Several approaches have been proposed to support failure
modes, effects, and causes identification process including:

• Theoretical modelling: considers the system structure
and its function in failure mode identification process.
Fault Tree Analysis (FTA) [18] is a commonly used
theoretical modelling approach. Additional examples on
theoretical modelling approach include the extended Go
model [19], the module-based fault propagation (MFP)
model [20] and the functional fault identification and
propagation (FFIP) model [21].

• Clustering approaches: try to identify similarities
between products/processes and failure modes. Such
approaches are based on analysing historical data
and applying statistical clustering methods (e.g. K-
means). As a practical example, in [22] the authors
present methods for the extraction of component failure
modes from maintenance text data set using Ward
agglomeration and similarity-based histogram cluster-
ing. An ontology-based text mining system to process
millions of unstructured information and cluster them
with different techniques is presented in [23].

• Knowledge reasoning approaches: intend to obtain new
knowledge or conclusions. The most common methods
of knowledge reasoning approaches are expert systems
and case-based reasoning (CBR). Such approaches are
characterised by leveraging experiences accumulated
over long-term practice to build knowledge base. As a
welcome consequence, these approaches avoid complex
quantitative models. In practice, CBR can be integrated
with rule-based reasoning (RBR). For example, CBR
is leveraged as RBR for decisions making imitating
the experts decisions in fault analysis [24]. CBR is
also used to provide a recommendation list for cross
validation [25].

• Natural Language Processing (NLP) methods: are
typically leveraged to automatically classify and extract
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information from textual documents. In industry, NLP
methods are mainly applied to process instructions,
recorded text or warning information. For example, NLP
methods are used to analyse online user comments,
which describe faults that end users have experi-
enced [26].

More recent works on FMEA explore integration with other
techniques such as decision trees and fuzzy groups [27],
bayesian networks [28] and deep learning [9]. However, to the
best of our knowledge, no previous scholars considered the
use of the FMEA data set as domain specific common-sense
knowledge base. Thus, exploring the applicability of tech-
niques from common-sense completion to FMEA documents
is limited.

B. TEXT AWARE KNOWLEDGE GRAPH EMBEDDING FOR
COMMON-SENSE KNOWLEDGE BASE COMPLETION
A knowledge graph is a structured representation of knowl-
edge, denoted by G = (N ,T ,RT ), where N is a set of nodes
(entities), T is a set of triples, and RT is a set of relation types.
In a knowledge graph, where a triplet consists of a subject
node, a relation type, and an object node, given the incomplete
triplet ‘‘use of material with low/high substrate resistivity-
Causes - ??’’, the objective of knowledge graph completion
methods is to predict the missing object node, which is
likely to be ‘‘reduced breakdown voltage BVDSS/Rdson’’.
However, this task is challenging as it requires modeling
complex patterns and dependencies among nodes and relation
types in the knowledge graph.

Knowledge graph embedding is the process of repre-
senting nodes and relations types of a knowledge graph
as low-dimensional vectors in a continuous vector space.
Structure only knowledge graph embedding methods, such as
TransE [29] DistMult [30] ConvE [31], learn the nodes and
relation types embeddings only from the knowledge graph
structure treating the nodes and relation types as categorical
entries. For example, Convolution knowledge graph embed-
ding models, such as ConvE [31], use embedding layers to
learn the mapping function from categorical representation of
nodes and relations types in a knowledge graph to a denser,
continuous representation. The ConvE method also uses a
2D convolutional layer to capture the interactions between
the head node and the relation in a triple. Other approaches,
such as Structure Aware Convolutional network (SACN)
[32], combines different structure only knowledge graph
embedding methods, e.g. Graph Convolutional Network
(GCN) and ConvE, to provide solution for learning graph
node embedding utilizing graph connectivity structure.While
structure only knowledge method for knowledge graph
embedding effectively encodes the structure information
of the knowledge graph, it does not incorporate any text
information that might be available in a knowledge graph.

In common-sense knowledge graphs and FMEA knowl-
edge graphs, conceptually related nodes but not equivalent
are often represented as distinct nodes. It can be difficult to
capture the nuances of these relationships without access to

text information as part of the knowledge graph embedding
process. This is because the semantics of the text contained in
the nodes can have a significant impact on the relationships
between them.

Recent research have been focused on developing methods
to more effectively integrate text information into knowledge
graph embedding. For example, BERT KG [33] leverages
knowledge graph to directly adapt language model wights.
Other approaches leverages language models to extract
the text attributes embeddings. These embeddings are
concatenated to nodes embeddings, which are learned for
the knowledge graph structure [12] or even replaced them
completely taking BERT-ConvE as a prime example [13].

The BERT-ConvE method uses transformer based lan-
guage models to encode the text of the knowledge graph
nodes and ConvE to encode the structure information of the
knowledge graph. This approach has been shown to achieve
state-of-the-art performance on common-sense benchmark
knowledge graph completion tasks [13]. Both ConvE and
BERT-ConvE use the same pre-processing pipeline, where
all nodes and relation types are categorically encoded. The
knowledge graph is represented as triples and split into
a training and testing set. The training set contains the
known knowledge graph, while the testing set contains
triples to be predicted, which are not limited to the nodes
in the known knowledge graph. The primary difference
between BERT-ConvE and ConvE is that in ConvE, the
node and relation type from the training example are passed
to embedding layers, while in BERT-ConvE, a pre-trained
language model (e.g. BERT) is leveraged to extract the
nodes embeddings based on the nodes text and replaces the
nodes embedding layer. This allows for encoding of nodes
unknown to the training set and ensures text-awareness of
the embedding. These nodes are referred to as unknown
nodes. Furthermore, a variation of BERT-ConvE named
Triples-BERT-ConvE extracts the context-aware embeddings
of known nodes based on their neighbourhood in the
known knowledge graph. Meanwhile, the embeddings of the
relation types are learned during the training of the graph
embedding model. It should be noted that while training
the BERT-ConvE knowledge graph embedding model, the
weights of the language model (i.e. BERT) are frozen.
Thus, BERT-ConvE performance depends on the embeddings
quality of the texts contained in the node. The quality of
these text embeddings can be significantly impacted by the
relevance of the model original pre-training data and the
fine-tuning approach used to adapt the model to a domain
specific text.

III. METHOD
FMEA documents contain an incomplete set of failure
modes, causes, and effects, which can limit their usefulness
in developing appropriate root cause analysis and risk
mitigation strategies. The objective of this study is to develop
a method that can increase the usability of the causal
domain knowledge contained in a set of FMEA documents
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by transforming the information into a more structured
format, while also completing the lists of causes, and effects.
To achieve this objective, we propose a method that involves
the following steps:

1) Structured Data Representation: This step involves
representing the information in a structured format (i.e.
knowledge graph) that can be easily analyzed and used
to develop knowledge completion method. This step is
elaborated in section III-A.

2) Knowledge Completion: This step involves completing
missing causes, and effects using knowledge graph
embeddings by considering the FMEA documents as a
commons sens knowledge base. This step is elaborated
in section III-B.

A. KNOWLEDGE GRAPH CONSTRUCTION FROM FMEA
DOCUMENTS: MAPPING INFORMATION TO A GRAPH
STRUCTURE
Given a knowledge graph the definitions of nodes and relation
types within a knowledge graph are heavily dependent on the
downstream task at hand. For example, if the objective is to
enhance the comprehensibility of FMEA with regard to the
listed failure modes, it is critical to model context information
in a structured manner. This includes modeling context
information, such as process step type, and their relationship
to corresponding failure modes as separate nodes, which
can be linked together to represent the semantics of how a
particular failure mode might occur in a given context.

In contrast, if the downstream objective is to generate
hypotheses about the causes or effects of events (i.e. failure
modes), a different approach is necessary. The proposed
approach involves representing each cell from the failure
mode, effect, or cause columns in the FMEA document as
a node in a knowledge graph. Next, two edges are created
to represent the causal relations documented in each FMEA
row. Namely, one edge from the failure mode to the effect
with the type Causes, and another edge from the failure
mode to the cause with the type Due_to. This approach is
aligned with the data generation process, i.e. the FMEA
process, where failure modes are first identified and then
their causes and effects are determined, and has the potential
to improve model predictions as suggested in previous
research [34]. To maintain the same level of information
granularity, the nodes in the knowledge graph also include
additional attributes representing the context information.
These additional attribute include the scope of the FMEA and
process step type, which is represented by the Element ID and
Characteristics. Figure 1 illustrates an example of extracted
nodes and relations from a row contained in an actual Process
FMEA also described in Table 1.

Duplicated nodes and edges are removed to ensure that the
resulting FMEA knowledge graph is concise and informative
Transferring the FMEA documents into a knowledge graph
allows for a more streamlined and manageable representation
of the information contained in the FMEA documents.

FIGURE 1. Illustrating a knowledge graph extracted from an actual FMEA
document. The nodes depict entries in the failure mode, cause, and
effects columns. Relationships, denoted as Causes and Due_to, link
failure modes to causes and effects, respectively. Supplementary
attributes, such as the scope of the FMEA and process step type, are
incorporated into the nodes to uphold consistent information granularity
with the original FMEA document.

In order to compare the knowledge graph extracted
from FMEA documents (FMEA knowledge graph) with
common-sense knowledge bases, several metrics are used
to analyze the structure and content of the graphs. These
metrics include the number of nodes, the number of triples,
and the number of relation types in the graphs. Additionally,
the overall density for each of the knowledge graphs is also
computed.

Another important aspect of comparing the FMEA knowl-
edge graphwith common-sense knowledge graphs is to assess
and compare the semantic relations represented by relation
types. Also, language model tokenizers are used to assess
the relevance of the language used in the knowledge graph
nodes text to the language used in the data set, on which
the language models are initially pre-trained. This can help
to identify biases induced by domain-specific language
typically used in the FMEA documents.

B. KNOWLEDGE GRAPH COMPLETION: PREDICTING
MISSING CAUSES AND EFFECTS
FMEA documents often contain short text with domain-
specific language and abbreviations [9]. In these documents,
conceptually related nodes are often represented as distinct
nodes. To address these challenges, we are exploring and
improving methods for integrating text information into
knowledge graph embedding. In particular, we test the effec-
tiveness of BERT-ConvE in integrating text information into
the embeddings for the FMEA knowledge graph case. The
proposed method for FMEA knowledge graph completion
is depicted in Figure 2. This method leverages the use of
high-quality node text embeddings, including pre-trained
language models, in-domain fine-tuning approaches, and
context-aware node embeddings, to improve the accuracy and
completeness of knowledge graph embeddings.

The implementation of BERT-ConvE is based on
Dettmers et al. ConvE model [31], but there are some key
differences. Specifically, inverse relation types are added
to the training set, and training examples are generated by
randomly sampling nodes and relation types from the known
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knowledge graph. The resulting model output is a vector of
dimensions 1xKN , where KN is the number of known nodes
in the graph. To generate the expected output vector for each
training example, the known object nodes are retrieved from
the training set and encoded in a one-hot vector format, where
the values at the index of the known targets are set to 1, and
the rest of the values are set to 0. A 10% label smoothing
factor is applied to the expected output vector, and binary
cross-entropy loss is used to calculate the loss based on the
model prediction and the expected output vector.

Themain difference between ConvE and BERT-ConvE lies
in the initialization of the node embedding layer. In the ConvE
model, the node embedding layer is initialized randomly
and adapted during training. However, in BERT-ConvE, the
node embedding layer is initialized with the text embedding
of the nodes, leveraging the power of BERT to embed the
text information into the node embeddings. Importantly, the
node embedding layer is not trained during the training of
BERT-ConvE.

Also, in this research, we explore the impact of the
quality of node text embeddings on knowledge graph
embeddings. Specifically, we compare the effectiveness of
various approaches, including the selection of pre-trained
language models, in-domain fine-tuning of language models,
and the use of context-aware node embeddings.

When selecting the pre-trained language model, we con-
sidered several criteria, such as the training data set used,
the number of unknown words in the new data set, and
the number of tokens per unknown word, as suggested by
Tosone et al. [35].

The impact of in-domain fine-tuning of language models
on downstream tasks, such as knowledge graph embedding
methods for completing the FMEA knowledge graph,
is investigated. Specifically, we build up on Tosone’s
work [35], who conducted a series of experiments by
fine-tuning different language models on a data set from
semiconductor manufacturing using a masked language
modelling approach with both uniform masking (UM) and
point-wise mutual information (PMI) masking objectives
[36]. The PMI masking objective maximizes the point-wise
mutual information while selecting the span of tokens
to mask, while the UM masking objective masks tokens
randomly with uniform masking probability. We also explore
the relationship between the masking objective and the
relevance of the language used in the knowledge graph node
text to the language used in the data set, on which the
language models were initially pre-trained.

Finally, in this research, we also investigate the effective-
ness of context-aware node embeddings on the performance
of the method. To achieve this, we follow the approach of
Liu et al. [13] and retrieve the triples, in which the node is
a subject or object node. Next, these triples are transformed
into text sequences and feed to a language model to extract
context-aware embeddings. As each node appears in multiple
contexts, the context-aware embeddings of the node is
averaged over these multiple contexts.

Empirical analysis is used to compare different language
models and identify the best-performing embeddings for
completing the FMEA knowledge graph. The models are
evaluated using the mean reciprocal rank (MRR) as the score
function, which is computed in a filtered setting. This means
that candidates from known triples are not ranked together
with their inverse triples. MRR measures the rank of the
correct answer in the list of all possible answers, and it
is particularly useful when working with large knowledge
graphs. By computing MRR in a filtered setting, the model
ability to predict missing causes and effects is evaluated
more accurately. Higher MRR indicates improved model
performance. However, it is important to note that there
are limitations to the automatic metrics used to evaluate
the performance of knowledge graph embedding models,
as mentioned by Malaviya et al. [12]. As such, In addition
to the automatic metrics, human evaluations have been
conducted to provide a more comprehensive evaluation of the
models.

IV. EXPERIMENTS AND RESULTS
For the purpose of this research, a total of 1,059 risk assess-
ment documents exemplified by process FMEA documents
from semiconductor manufacturing industry are collected.
In total, these documents cover 438 scopes and results in a
data set of 492,507 FMEA rows. However, after removing
duplicate content, a data set of 188,227 FMEA rows remains.
The data set also includes 28,685 distinct process step types.
The data set is compared to common-sense knowledge bases
benchmark data sets from three perspectives.

The first perspective focuses on the structure information
present in the FMEA documents. Specifically, the proposed
transformation of the information contained in the FMEA
documents to a knowledge graph form is employed to
facilitate this assessment. This involves representing the
FMEA data set as a knowledge graph and comparing its
structure to the benchmark knowledge graph. Various metrics
such as density, number of connected components, number
of nodes, and number of relation types are used to assess
the similarities and differences between the FMEA data set
as a knowledge graph and common-sense knowledge bases
benchmark data sets.

Next we study the impact of context information, such
as process step type and scope, on the FMEA knowledge
graph in terms of graph density. It should be noted that
incorporating context information in the FMEA knowledge
graph significantly impacts its density. Here, the FMEA
knowledge graph includes both process step type and scope
as context information and is much less dense compared
to common-sense knowledge graphs such as ConceptNet
100k and Atomic. Specifically, the FMEA knowledge graph
density is almost nine times lower than that of ConceptNet
100k and five times lower than that of Atomic. Excluding
context information represented by scope and process step
type from the FMEA knowledge graph leads to an increase
in density values. Specifically, when only the process step
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FIGURE 2. Training pipeline overview: Triple-BERT-ConvE. FMEA documents are converted into a knowledge graph. This graph undergoes a series of
transformations using the Triple-BERT-ConvE workflow: (1) Fine-tuning S2ORC-SciBERT/BERT language models using masked language modeling with
UM/PMI masking objectives on nodes texts. (2) Converting the knowledge graph into text sequences and extracting context-aware embeddings of the
nodes.Training examples are generated by selecting a node and a relation type from the graph, retrieving its first neighbors based on the relation type,
and constructing a target output vector. All values in the target vector are set to 0 except for those corresponding to neighboring nodes, which are set to
1. Binary cross-entropy loss is employed to train the ConvE model layers, comprising relation embedding, Conv2D, and dense layers. At the same time,
the node embedding layer is populated with context-aware embeddings based on their graph neighborhood, rather than being trained directly.

type is included, the density value increases to more than
double its original value. When only scope is included, the
density value increases to three times its original value.
Finally, when all context information is are excluded, the
density value increases even further to more than eleven
times its original value. A summary of the analysis results is
presented in Table 2. The results show significant differences
between the FMEA knowledge graph and the common-sense
knowledge graphs such as Atomic and ConceptNet 100k. The
table provides a comprehensive overview of the structural
characteristics of the different knowledge graphs used in this
analysis. Based on the analysis of knowledge graph density,
it has been found that the FMEA knowledge graph without
context information (i.e. scope and process step type) is the
most comparable to the ConceptNet 100k knowledge graph
in terms of density. This suggests that the removal of context
information leads to a more connected structure in the FMEA
knowledge graph, which is similar to the structure of the
ConceptNet 100k graph.

The second perspective of this comparison is focused
on the content information that is present in the FMEA
documents. This involves assessing the semantics relations
in the FMEA knowledge graph and the text attributes of
the failure mode, effect, and cause columns, and comparing
them with benchmark data sets represented by Atomic and

ConceptNet. To assess the text attributes, we compare the text
present in the three data sets with text found in the general
domain. To assist in this assessment, we utilize language
models trained on the general domain. Specifically, we utilize
the tokenizers of these language models to identify unknown
words, which are typically split into multiple tokens. The
rationale behind this is that the higher the number of unknown
words for a language model, the less aligned its original
data set (which it was trained on) is with the data that is
being applied to it. In the first phase, we primarily focus
on evaluating the well-known BERT language model [37].
However, based on the results presented by Tosone [35],
we also explore the use of other language models such
as S2ORC-SciBERT [38], which have a higher degree of
overlap with the text in the FMEA data set [35]. As such, the
number of unknown words, along with the ratio of unknown
words per node and the average number of splits for unknown
words in the three data sets are reported in Table 3. We can
see that the FMEA data set contains a higher ratio of unknown
words per node compared to common-sense benchmark data
sets. However, by utilizing S2ORC-SciBERT for the FMEA
case, we observe a decrease in the ratio of unknown words
per node.

In the third and final perspective of this comparison,
we examine the semantics relations modelled by the three
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TABLE 2. Comparison of FMEA knowledge graphs to benchmark common-sense knowledge graphs based on their node and edge counts, number of
relation types, density, and connected components. The table includes benchmarks such as Atomic and ConceptNet, as well as variations of FMEA
knowledge graphs with different context information included or excluded. The results show the varying sizes and structures of the different knowledge
graphs. FMEA knowledge graph without context information comparable is the most to the ConceptNet 100k knowledge graph in terms of density.

TABLE 3. Text statistics analysis for three data sets (ConceptNet, Atomic, and FMEA) using two language models (BERT and S2ORC-SciBERT). The table
reports the number of unknown words, the ratio of unknown words per node, and the average number of splits per unknown word. Higher numbers of
unknown words indicate less alignment between the original language model data set and the data being applied to. FMEA data set has a higher ratio of
unknown words per node compared to common-sense benchmark data sets. By utilizing S2ORC-SciBERT for the FMEA case, a decrease in the ratio of
unknown words per node is observe.

data sets. Our approach focuses on causal relationships
in FMEA documents and proposes two types of relations.
ConceptNet and Atomic include relation types similar to the
first type found in the FMEA documents (i.e Causes), which
are the Causes type in ConceptNet and Effects and Reacts
in Atomic. These benchmarks also contain more detailed
relations of the same type, such as relations of the type
CausesDesire in ConceptNet and relations of type Intents
in Atomic. Furthermore, ConceptNet and Atomic include
relation types that share some semantic similarity with the
second type of relations found in the FMEA documents (i.e
Due_to), which are HasPrerequisite relations in ConceptNet
and Needs in Atomic. However, ConceptNet and Atomic
also include non-causal relation types, such as RelatedTo
and LocatedNear relations in ConceptNet and Attributes in
Atomic. Finally, it is worth noting that neither ConceptNet
nor Atomic contain information about the context in separate
attributes, such as the scope and process step type, as seen in
the FMEA documents. Hence, various techniques for graph
embeddings to complete the knowledge graph extracted
from FMEA documents excluding context information are
evaluated.

To assess the effectiveness of common-sense knowledge
completion techniques in improving the comprehensibility of
existing FMEA documents, we propose utilising knowledge
graph embedding for knowledge graph completion. As such,
a total of 11 models are evaluated on the FMEA data set, and
their performance is used to compare different criteria when

selecting the most suitable approach for FMEA knowledge
graph completion.

The first criterion is to evaluate the effectiveness of models
that incorporate the FMEA textual attribute compared to
models that only incorporate the structure of the FMEA
data set. ConvE model have been chosen as baseline
representing models that only incorporate the structure
of the FMEA data set. For the former, It is important
to choose an appropriate language model for the textual
attribute, as this can affect the quality of the embeddings
and the overall performance of the method. Therefore, two
language models, BERT and S2ORC-SciBERT, are tested
resulting in BERT-ConvE and S2ORC-SciBERT-ConvE
models.

The second criterion is to evaluate the effectiveness
of models that incorporate in-domain fine-tuned language
models. Here, we make use of BERT and S2ORC-SciBERT,
which are fine-tuned by Tosone [35] using Masked Language
Modelling on semiconductor manufacturing related data set,
which includes the same FMEA data set. Each FMEA
cell text is considered as an independent text snippet and
used for fine-tuning the language models. Specifically, this
study compares the effectiveness of two different Masked
Language Modelling techniques on two language models,
BERT and S2ORC-SciBERT. One technique is based on
the standard masking objective using uniformed masking
(UM), while the other technique leverages point-wise
mutual information to select masked tokens (PMI). The
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comparison is based on the resulting models, which include
BERT-UM-ConvE, BERT-PMI-ConvE, S2ORC-SciBERT-
UM-ConvE, and S2ORC-SciBERT-PMI-ConvE.

The third criterion is to examine the effectiveness of
incorporating the neighbourhood of a specific node in graph
embeddings, as it has been shown to improve the quality of
embeddings in common-sense knowledge graphs [27]. This
is evaluated by incorporating the neighbourhood information
of the FMEA data set nodes into the models resulting
in Triples-BERT-PMI-ConvE and Triples-S2ORC-SciBERT-
PMI-ConvE.

Moreover, we evaluate the effect of increasing the number
of trainable parameters of the graph embedding models by
increasing the size of ConvE kernel and the number of
channels resulting in Triples-BERT-PMI-ConvE-Large and
Triples-S2ORC-SciBERT-PMI-ConvE-Large.

All the models developed for these experiments are
trained for 1,000 epochs and evaluated using train-test
splits. Specifically, the average MRR values over the last
200 epochs are reported. To ensure a fair comparison,
we evaluated relations from known node to known node and
from unknown node to known node separately, as ConvE
initialises unknown nodes randomly. The experimental
results are presented in Table 4. The results demonstrate
that all models that incorporate the textual attribute of
FMEA outperform models that only consider the structure of
FMEA data. Surprisingly, models that use S2ORC-SciBERT
without fine-tuning perform worse than those that use BERT
without fine-tuning. Also, fine-tuning the language model
using UM reduces the performance of models that use
BERT but improves the performance of models that use
S2ORC-SciBERT. As anticipated, fine-tuning the language
model using PMI improves the performance of both models.
Furthermore, extracting context-aware embeddings improves
the performance of both models, and increasing the number
of trainable parameters enhances the performance of both
models.

Finally, a panel of domain experts conducted a manual
evaluation of the outcomes. The experts are provided
with examples from the testing set, as well as the top
10 filtered predictions recommended by Triples-S2ORC-
SciBERT-PMI-ConvE. They are asked to identify which of
the top 10 predictions are plausible based on their extensive
domain knowledge. Experts are also given the option to
mark ambiguous examples. 260 examples are validated in
accordance with these guidelines. Based on the feedback
received by the experts, 8% of the annotated data set is
reported to contained ambiguous information and required
disambiguation using context information such as the scope
and process step type. Interestingly, according to the experts’
assessment of the remaining examples, 70% of the top
10 predictions are plausible answers. Namely, in 99% of
cases, at least one possible answer is present in the top
10 filtered predictions recommended by Triples-S2ORC-
SciBERT-PMI-ConvE. The 99%figure is significantly higher
than the hit@10 of 26% figure, which can be acquired by

comparing if the target of an example is part of the top
10 predictions.

V. DISCUSSIONS
The results of this study demonstrate that there are
several similarities between the knowledge documented
during FMEA and common-sense knowledge bases. Firstly,
both FMEA and common-sense knowledge bases aim
to represent knowledge about the world in a structured
format. FMEA captures knowledge about failure modes
and their causes and effects in a specific domain within a
specific context (e.g. scope and process step type), while
common-sense knowledge bases capture knowledge about
the everyday world, including common objects, events,
and relationships between them. Secondly, both FMEA
and common-sense knowledge bases rely on the notion
of causality to represent knowledge. In FMEA, causal
relationships are used to capture the relationships between
failure modes and their causes and effects. In common-
sense knowledge bases, causal relationships are used to
capture the relationships between events and their causes and
effects.

However, there are several differences between the
knowledge documented during FMEA and common-sense
knowledge bases.

First, FMEA data is highly specialised and domain-
specific, whereas common-sense knowledge data sets are
more general and applicable to many different domains.
As such, the language used in the FMEA data set is
domain specific language, which differ from the language
used in the general domain. This is highlighted in Table 3
where the number of unknown words to a language model,
which is trained on data sets from the general domain (i.e.
BERT) contained in the FMEA data set is significantly
larger compared to number of unknown words to the same
language model contained in common-sense knowledge
bases. Concretely, in the FMEA data set case, the number of
unknown words to BERT is 1.85 and 1.62 times the number
of unknown words to BERT in the cases of ConceptNet and
Atomic respectively. Also, this is translated to a higher ratio
of unknown words per node in the FMEA case, which is
2.3 and 5.3 times the ratio of unknown words per node in
ConceptNet and Atomic respectively.

Second, the proposed approach in modelling FMEA
knowledge is primarily aimed at enhancing the comprehen-
sibility of FMEA by identifying the causes and effects of
a given failure mode. Therefore, the proposed approach is
limited to modelling causal relationships only, in contrast to
other common-sense knowledge bases, which also include
non-causal relationship types. However, it is possible to
extend the proposed approach by incorporating other types
of relationships, such as the relationship between the context
information and the failure mode or by integrating FMEA
data with other data sources to improve the coverage. This
can be achieved by modifying the approach based on its
intended use.
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TABLE 4. Performance comparison of FMEA knowledge graph completion using different model architectures and configurations. The study evaluates the
impact of feature extraction, language model fine-tuning, and context-aware embeddings on the achieved mean reciprocal rank (MRR) metric. Text-aware
knowledge graph embeddings based models that use PMI masking objective for in-domain fine-tuning of the language models and context-aware
embeddings based on the node neighbourhood achieve the highest MRRs. Increasing the number of model trainable parameters also improves the
achieved MRR. Textual attribute of FMEA improves model performance, while different language models and fine-tuning have varying effects.
Context-aware embeddings and increased trainable parameters enhance model performance.

Third, contextual information such as the scope and
process step type is explicitly expressed in FMEAdocuments,
whereas in some common-sense knowledge bases like
Atomic, it is implicitly included in the relation type and in
text attributes, and in others like ConceptNet, it is absent.
In the FMEA case, the inclusion or exclusion of this context
greatly affects the structure of the resulting knowledge graph.
The FMEA knowledge graph, when constructed to include
process step type and scope as context information, is much
more sparsely connected compared to benchmark graphs.
This may be because the nature of FMEA data and its
specific context may not have as many connections between
different nodes as more general common-sense knowledge
graphs. Excluding context information may result in a higher
density of the graph due to fewer nodes and relations, but this
could also lead to important information loss and decreased
analysis accuracy. Therefore, further research is necessary to
develop methods that explicitly consider context information
as separate input.

Despite their differences, the results of this study
demonstrate the effectiveness of common-sense knowledge
completion techniques applied on FMEA documents in
enhancing the comprehensibility of information in existing
FMEA documents. Specifically, incorporating text-aware
embeddings into knowledge graph embedding models has
shown significant improvement in the performance of the
BERT-ConvEmodel, compared to the ConvEmodel that uses
structure-only embeddings, as shown in Table 4.

While the FMEA domain-specific language was consid-
ered, the study also examined the impact of using different
language models that are more aligned with the FMEA
data set, such as S2ORC-SciBERT, on the performance of
the knowledge graph embedding model. Interestingly, the
study found that using a language model that shares more
similar tokens with the FMEA knowledge graph text may
not necessarily lead to improved model performance. In fact,
the use of S2ORC-SciBERT resulted in lower performing
model (S2ORC-SciBERT-ConvE) compared to models that

uses language models trained on general data sets, such as
BERT-ConvE. This drop in performance might be attributed
to the assumption that while the tokens may be more aligned
with the FMEA text, their semantics may differ significantly
from the original data set that the language model is trained
on, compared to the FMEA texts.

To address this challenge, the study also examined the
impact of using in-domain fine-tuning techniques of the
considered language models such as masked language mod-
elling using uniformed masking (UM) on the performance
of the knowledge graph embedding model. However, the
effectiveness of this approach is highly dependent on the
similarity of the language models tokens to the text in the
FMEA documents. The experiments show that fine-tuning
with UM on a language model with less similar tokens to the
FMEA text (such as BERT-UM-ConvE) resulted in a decrease
in performance compared to BERT-ConvE. Conversely, fine-
tuning with UM on a language model with more similar
tokens to the FMEA text (such as S2ORC-SciBERT-UM-
ConvE) leads to improved performance compared to S2ORC-
SciBERT-ConvE. In the case of BERT-UM-ConvE, the drop
in performance is attributed to be in line with the authors
findings in [36] where the authors argued that the use of
uniform masking in a MLM limits the language model
learning capabilities by reducing its training objective to
superficial local cues, resulting in an ineffective in-domain
fine-tuning process and inferior performance in downstream
tasks. To further assert this claim, the results show that
further improvement of the model performance is achieved
by fine-tuning the model using a modified masking objective
(i.e. PMI). Here, both models (i.e. S2ORC-SciBERT-
PMI-ConvE and BERT-PMI-ConvE) achieve performance
improvements over models, which use these languagemodels
with out in-domain fine tuning regardless of the language
models token similarity to the text in the FMEA.

Due to the similarity between the knowledge graph
extracted from FMEA documents and common-sense
knowledge graph, we investigate the effectiveness of
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the approach proposed by Liu et al. [13], which involves
extracting context-aware embeddings of nodes based on
their neighbourhoods in the graph. The results demonstrated
that models incorporating context-aware embeddings (i.e.
Triples-S2ORC-SciBERT-PMI-ConvE and Triples-BERT-
PMI-ConvE) outperformedmodels that only considered node
embeddings (i.e. S2ORC-SciBERT-PMI-ConvE and BERT-
PMI-ConvE). These findings are consistent with Liu et al.’s
argument that by exploiting the context dependency of
transformer-based language models, the quality of node
embeddings can be improved, resulting in an overall
improvement in model performance.

The results show that increasing the number of trainable
parameters in a model can improve its performance by
allowing the model to capture more complex patterns and
relationships in the data. However, larger models require
more computational resources to train and evaluate, which
can be a limiting factor for practical applications. This
is particularly relevant for applications like FMEA case,
where the model needs to be retrained on a regular basis to
incorporate new data and to maintain its accuracy.

It is worth noting that the reported filtered MRR results
for all models show a higher unknown-to-known MRR than
the known-to-known MRR. However, it is important to
highlight that even if a node describes the same semantic
meaning as an already known node, it can be expressed
in a different way and thus still be considered unknown.
This limits the effectiveness of the filter for the unknown-
to-known scenario because the head node is unknown while
the target node is known, making it easier to predict the
target node based on captured semantics. This explains why
the unknown-to-known MRR is generally higher. In contrast,
for the known-to-known scenario, we assume that all easy
targets are already known and filtered out, resulting in a
lower MRR. Therefore, the model needs to rely more on
its ability to accurately predict the next node, which can
be challenging due to the complex and varied nature of
information documented in the FMEA. Despite this, the
known-to-known scenario is still an important measure of
the model effectiveness since it is more representative of
real-world use cases where both the head and target nodes are
known, and the goal is to predict a hypothesis about possible
relations between them.

Finally, as FMEA knowledge graphs tend to contain
nodes with non-standard text description and arguably
incomplete, the top of the ranking could often includes
several false negative target entities, which are not captured
by automated evaluations. As such, the human evaluation
indicates significantly better performance compared to the
automatic evaluation, revealing the limitations of automated
evaluations for increasing the comprehensibility of FMEA
documents through knowledge graph embedding models.
The substantial discrepancy between human and machine
assessments can be attributed to the incompleteness and
non-standard notations of the FMEA graph.

VI. CONCLUSION
FMEA documents suffer from limitations related to the
comprehensibility of the brainstorming approaches used
to identify failure modes, causes, and effects. This study
proposes leveraging recent advancements in common-sense
knowledge completion techniques to address this issue. These
techniques involve using language models pre-trained on
large-scale data sets, modelling the knowledge contained in
FMEA documents as knowledge graphs, and using graph
embedding algorithms to complete the knowledge contained
in FMEA document and enrich future FMEAs.

The study is the first to apply techniques from
common-sense completion to domain-specific knowledge
extracted from risk assessment documents and provides
an empirical evaluation on actual FMEA documents in
a case study from semiconductor manufacturing. The
study findings reveal that there are several noteworthy
similarities between the knowledge documented in FMEA
and common-sense knowledge bases. Both FMEA and
common-sense knowledge bases aim to structure knowledge
about the world. While FMEA documents information
on failure modes and their causes and effects within a
specific domain and context, common-sense knowledge
bases encompass knowledge about everyday objects, events,
and their relationships. Furthermore, both rely on causality
to represent knowledge. FMEA utilizes causal relationships
to capture the connections between failure modes and their
causes and effects, while common-sense knowledge bases
utilize causal relationships to represent the links between
events and their causes and effects.

However, in contrast to the similarities between FMEA
and common-sense knowledge bases, there are also some
differences. Firstly, FMEA data is domain-specific and uses
specialised language, making it different from the general
language used in common-sense knowledge bases. Secondly,
the proposed approach only models causal relationships,
which is different from other knowledge bases that also
include non-causal relationships. However, it is possible
to modify the approach to include other relationships or
integrate it with other data sources. Thirdly, contextual
information is explicitly expressed in FMEA documents, but
it is implicit or absent in some common-sense knowledge
bases, which affects the resulting knowledge graph structure
and density. Therefore, further research is needed to develop
methods that explicitly consider context information as a
separate input.

Overall, the study highlights the suitability of incor-
porating common-sense knowledge completion techniques
and domain-specific language models into knowledge graph
embedding models for enhancing the comprehensibility of
information in FMEA documents. The use of text-aware
embeddings, in-domain fine-tuning with modified masking
objectives, and context-aware embeddings based on the
nodes neighbourhood are effective approaches for improving
model performance also for the FMEA case. The findings
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also suggest that using language models with more similar
tokens to the FMEA text may not necessarily lead to better
performance. Furthermore, the study revealed that FMEA
knowledge graphs often contain nodes with non-standard
text descriptions that may be incomplete. This can result
in the top-ranking including several false negative target
entities, which are not captured by automated evaluations.
Therefore, human evaluation may be a better approach to
increase the comprehensibility of FMEA documents through
knowledge graph embedding models. Based on the human
evaluation 70% of the top ten prediction of the model
are plausible answers, which illustrates the effectiveness
of the proposed techniques for improving the compre-
hensibility of the knowledge documented in the FMEA
documents.
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