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ABSTRACT Artificial Intelligence has the potential to contribute to sustainable cities, life on land, and
climate action. Specifically, data-driven AI models can analyze large, interconnected databases to develop
joint environmental actions. Air quality plays a pivotal role in both climate action and the development of
sustainable cities, but developing countries face challenges due to insufficient monitoring stations and limited
access to air quality data sets. This study builds upon the MoreAir project, which established a low-cost air
pollution monitoring system and provided the first air quality data set fromMorocco.We first exploit and delve
into the details of the obtained dataset. Subsequently, we conduct a multi-level comparison of data-driven
forecasting models, specifically focusing on short-term forecasting of Particulate Matter concentrations. Four
forecasting frameworks are explored, using different combinations of exogenous data and spatio-temporal
information. Our findings highlight that Machine Learning models, particularly LightGBM and CatBoost,
outperform other models. Overall, our study demonstrates that the inclusion of the spatial dimension along
with the diverse exogenous features enhances the models’ predictive performance, and provides valuable
insights.

INDEX TERMS Air pollution, urban air pollution forecasting, open datasets, statistical models, machine
learning, deep learning.

I. INTRODUCTION
A. MOTIVATION
The escalating challenges of urbanization and economic
development in recent decades have led to a rise in levels of
air pollution in low- and middle-income countries, as reported
by the World Health Organization [1]. The State of the
Air 2020 Report highlights that Asia, Africa, and the Middle
East endure the most alarming annual average exposure levels
of fine particulate matter (PM2.5) [2]. Fuller et al. reinforced
the gravity of the situation, revealing that nearly 9 out of
10 people who die from pollution-related causes live in low-
and middle-income countries [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Michael Lyu.

Notably, Sub-Saharan Africa’s low-income countries
experience a considerable proportion of premature deaths
and diseases attributed to pollution [4]. In Morocco,
a comprehensive report titled ‘‘Toxic Air: The Price of
Fossil Fuels,’’ published by Greenpeace MENA, discloses
that air pollution contributes to over 13,000 annual fatalities,
accounting for nearly 7% of all deaths, placing it as the
8th predominant cause of death [5].

These realities contrast starkly with global aspirations. The
United Nation’s 2030 Agenda has laid down ‘‘Sustainable
Development Goals’’, with 17 goals and 169 targets aimed
at achieving a range of improvements, from eradicating
poverty and inequality, protecting the planet, to ensuring
universal justice, prosperity, and health access. As part of
these goals, three targets are addressing the air pollution
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crisis, targeting reductions in related deaths and illnesses,
ensuring access to clean energy in homes, and improving
air quality in cities. However, the trajectory of air pollution
remains concerning, necessitating worldwide substantive,
sustainable interventions. To foster improvements in air
quality, governments, researchers, and individuals are actively
exploring diverse methods for monitoring, modeling, and
forecasting air quality.
While air quality monitoring infrastructures have been

established globally, Africa is severely underserved. A reveal-
ing statistic from UNICEF shows that a mere 6% of
African children live within 50 kilometers of any air quality
monitoring stations, in stark contrast to 72% in Europe and
North America. Monitoring stations, despite their precise
measurements, enable the capture of spatial variability, grapple
with challenges. The prohibitively high cost and maintenance
associated with deploying such networks in large numbers
serve as significant barriers. Additionally, the placement
of monitoring stations may not be optimal in proximity to
areas of anthropogenic activities or high population densities,
compromising the accuracy of the air pollution’s spatial
distribution estimations in urban regions, particularly in
roadsides and major traffic congestion areas [6].
Recent endeavors have focused on the development

of low-cost, compact sensors as means to address these
challenges. Such sensors utilize cost-efficient components,
data acquisition systems, and communication modules, and
present an alternative to traditional air quality monitoring
stations. Consequently, more open-air quality datasets have
emerged, facilitating research in the field [7], [8], [9], [10]. Yet,
the research landscape in Morocco remains scarce, primarily
due to the lack of openly available air quality datasets.

This study bridges the knowledge gap by drawing insights
from the first Moroccan air quality dataset collected using
the MoreAir platform, as presented in previous work [12].
The MoreAir platform’s design is adept at gauging outdoor
air pollution originating from both diffuse and point
sources of pollution. The selection of sites for this study
ensures representation across diverse pollution origins and
neighborhoods, setting the stage for accurate forecasting
models.
The MoreAir dataset, named after the platform, provides

context-specific information on air pollution, meteorological
conditions, and exogenous measurements gathered from
several neighborhoods in Rabat, the capital city of Morocco.
Utilizing the distinctive MoreAir data, the objective is to
deeply investigate the spatial, temporal, and contextual facets
of Morocco’s air quality. Another aim is to undertake an
exhaustive assessment of several data-driven models across
diverse forecasting frameworks and scenarios.

B. RESEARCH OBJECTIVES AND CONTRIBUTIONS
In response to the challenges and research gaps identified in
prior studies, the current work presents a holistic, data-driven
analysis for air quality prediction. It addresses a significant
gap in air quality prediction, especially concerning African

countries like Morocco, where there has been a historical
dearth of openly accessible multivariate spatio-temporal
air quality data. The main contributions of this work are
summarized as follows:

• Novel Dataset Introduction: The MoreAir dataset is
presented, making it the first of its kind for Morocco.
Distinctively characterized by its diverse and multivariate
input, this data set offers a pioneering opportunity for
comprehensive air quality analysis in the region.

• In-depth Data Analysis: A deep exploration of the
aforementioned data set is conducted, shedding light on
air quality trends. The in-depth analysis is distinctive
in that it uses a thorough methodology that considers
temporal, spatial and context-specific elements, which
have a substantial impact on influencing pollutant
concentrations.

• Comprehensive Model Evaluation: This work stands
out for its thorough evaluation of a range of forecasting
models, spanning from traditional statistical methods to
advanced deep learning techniques, such as mSSA, MLR,
XGBoost, CATBoost, LightGBM, RF, SVR, LSTM,
TCN, and MTGNN.

• Diverse Forecasting Frameworks: The study offers a
thorough model evaluation and a unique comparison of
predicting scenarios. Exogenous features and spatial data
are incorporated into the forecasting models to assess
their impact on the prediction accuracy. The findings
underscore the marked improvement in prediction
accuracy when both spatio-temporal and exogenous data
are taken into account.

C. STRUCTURE
The structure of this paper is as follows. Section II provides
a discussion on the study’s background and initiates the data
exploration, offering an extensive exploration of the MoreAir
project and its corresponding dataset. This section describes
the dataset attributes, the undertaken preprocessing steps,
and the withdrawn insights specific to the Moroccan context.
In section III, the methodology adopted for this study is
unveiled, starting with the notations and problem formulation
followed by an overview of the explored forecasting
frameworks. Section IV elaborates on the evaluated models,
the hyperparameter tuning process, and the performance
assessment criteria used. In section V, a thorough presentation
and analysis of the experimental results are provided. The
paper concludes in Section VI, where it summarizes the
findings, offers concluding remarks, and suggests potential
directions for future research.

II. BACKGROUND AND DATA EXPLORATION
A. AI FOR AIR QUALITY
Artificial Intelligence (AI) has become an indispensable tool
for addressing a plethora of modern challenges, including
proactive monitoring and prediction of air quality. The
gravity of air pollution, a global menace affecting health
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and ecosystems alike, underscores the urgent need for
innovative solutions. In this context, air quality prediction
has become crucial in the pursuit of sustainable cities. The
multivariate and intricate spatio-temporal patterns present in
air quality data have necessitated the exploration of a diverse
range of forecasting approaches, with data-driven forecasting
techniques gaining significant traction [13].

From Statistical to Data-Driven Models: Historical attempts
to predict air quality heavily relied on statistical approaches.
For instance, the Multivariate Singular Spectrum Analysis
(mSSA) [14], a non-parametric decomposition-based method,
provided a solid statistical foundation, effectively tackling
various forecasting scenarios due to its strong statistical
underpinnings. However, with the increasing granularity and
volume of data, and given the fact that it is challenging to
intricate dynamics in air quality data, there was a clear need
for more advanced techniques to capture complex non-linear
relationships inherent in air quality data. This led to the gradual
transition to machine learning models, and subsequently, deep
learning models.
Machine Learning Models: Support Vector Regression

(SVR) and ensemble tree-based models like Extreme Gradient
Boosting (XGBoost), Categorical Boost (CatBoost), Light
Gradient Boost Machine (LightGBM), and Random Forest
(RF) have pioneered this transition [15], [16], [17]. Their
proficiency in modeling non-linearities made them the go-to
choice for many researchers [18], [19], [20]. Concurrently,
Multiple Linear Regression (MLR) [21] serves as a reliable
tool for practitioners seeking a balance between model
simplicity and interpretability.
Deep Learning Models: Recognizing the intricacies of air

quality data, the research community shifted towards deep
learning models, particularly those designed to capture long
and short-term dependencies in the data [22]. Long Short
Term Memory (LSTM) [23] networks, for example, exhibited
significant prowess in understanding long-term patterns [24].
Conversely, Temporal Convolutional Networks (TCN)s [25],
have been heralded for their efficiency in capturing short-term
temporal relations, especially in Spatio-Temporal series where
spatial interactions are pivotal.
Graph Neural Networks for Air Quality: The uniqueness

of air quality data, characterized by interconnected influences
from various sources, and the subsequent multi-variation of
features, makes it apt for representation as a graph. Multiple
works have exploited graph based models to address the
forecasting task in air quality [26], [27], [28], [29]. The
Multivariate Time Series Forecasting Graph Neural Network
(MTGNN) [30] model stood out as it was one that yielded
the most promising results. Its adaptability in learning the
Spatio-Temporal graph coupled with its capability to perform
convolutions across spatial and temporal dimensions makes it
a powerful tool for such applications.
As technology continues to advance, leveraging its

capabilities becomes vital for fostering a healthier and more
sustainable environment. The complexity of air quality data
combined with the scarcity of available datasets, especially

multivariate spatio-temporal ones in regions like Africa,
presents significant challenges. Addressing this, the research
exploits the novel MoreAir dataset, generated by the MoreAir
system. A range of models, from traditional to advanced ones,
are engaged to offer a comprehensive perspective on air quality
forecasting. This analysis highlights the unique strengths and
weaknesses of each model, providing deep insights into the
intricate challenge of air quality prediction. The overarching
goal of our work is to furnish a thorough comparison across
models and forecasting scenarios, ultimately contributing
to the vision of sustainable cities with improved air
quality.

B. THE MOREAIR PROJECT AND DATA SET
In our prior work [31], a novel approach was developed to
create the MoreAir data set, aiming to examine the impact of
multiple factors on air pollution levels. This unique data set
was initially developed to investigate the potential relationship
between environmental conditions and the respiratory health
of asthma patients in their living environments. The main
characteristics of the dataset are:

• First in Africa: The MoreAir data set is a novel
achievement since its the first of its kind on the African
continent. Its inceptionmarked amomentousmilestone in
the domains of air quality monitoring and environmental
health research within the region.

• Comprehensive Data: This dataset encapsulates three
primary categories of environmental information: air
quality data, weather data, and geographical data. This
extensive collection spans time and encompasses diverse
neighborhoods. It is composed of 52 temporal and
geographical features, presenting a multidimensional
perspective of the study areas.

• Rich Geographical Features: In addition to mete-
orological data, the MoreAir dataset comprises an
array of geographical factors. These factors include an
assortment of attributes across different zones within the
study areas. The inclusion of these factors contributes
to a nuanced comprehension of the environmental
context.

To address concerns about the accuracy and reliability of the
sensors used for air quality monitoring, an extensive evaluation
was conducted in an earlier study [31]. Low-cost sensors, while
cost-effective, often face challenges related to calibration,
operational stability under various meteorological conditions,
and intramodel variability. The evaluation confirmed that
the sensors exhibited accuracy and repeatability, providing
reliable measurements of particulate matter concentrations.
Additionally, these sensors demonstrated the capability to
detect events involving elevated particulate matter levels and
identify PM ‘‘hot-spots.’’ In a comparative experiment, the
low-cost sensor was placed alongside the more sophisticated
OPC-N3 optical particle counter from Alphasense, a sensor
with well-established data quality validated in various studies.
This experiment further reinforced confidence in the chosen
PM sensor.

VOLUME 11, 2023 133133



S. Berkani et al.: Data Driven Forecasting Models for Urban Air Pollution

C. DATA SET DESCRIPTION
The unique MoreAir data set merges three different types
of environmental data: air quality, meteorological, and
geographical data.
Air quality and meteorological records: the data set consists

of data reported by 3 air quality monitoring sensors settled
in three locations with different characteristics in Rabat,
Morocco. These air quality measurements were carried
out using the MoreAir system [12]. The collected data
is composed of measurements of fine particulate matters
concentrations (PM2.5 and PM10), in (µg/m3), temperature
and relative humidity in ◦C and % respectively, as well as
GPS data and timestamps associated with each measurement.
Pollutant concentrations are recorded in real-time at five-
second intervals over a three-month period, leading to over
966600 observations. This spans from November 11th, 2020,
to January 6th, 2021.
Geographical Factors: the concentrations of air pollutants

in urban areas arise from different sources, such as facilities,
shops, and several activities. In our previous studies, these
pollution sources were identified by monitoring the PM
concentrations while walking through the narrow streets of
the selected neighborhoods. Thus, two methods were used
to extract spatial features: feature abstraction and micro-level
scale data collection. With micro-level data collection, several
context-specific pollution sources were identified, addressing
the limitations faced when using feature abstraction. This
led to the acquisition of 52 factors, mainly: Neighborhood,
Buffer Size, Zone, Distance to nearest road, Distance to nearest
large road, Type of nearest road, Distance to nearest Public
Bath/ Oven, Distance to nearest Green area, Distance to water
area, Water area Type, Green area Type, Distance to nearest
Bus Station, Distance to nearest Taxi Station, Distance to
nearest train station, Distance to tramway station, Distance to
nearest Craft, Distance to nearest traditional Market, Distance
to street vendors, Distance to Cuisine, Street Food, Cuisine,
Commercial, Crafts, Street Vendors, Commercial market,
Commercial Center, School, Public Establishment, Public
baths, Public Ovens, Tourism, Hospital, Tramway stops, Bus
Stops, Taxi Stops, Sport, Industry, Parking, Green Land
area, Water Area, Arterial Roads, Low capacity roads, Dual
Carriageway, Roundabout, Tunnels, Parkways and Height of
sampling point.
We made use of geographical factors during the data

exploration phase. These factors were instrumental in
understanding spatial variations and their potential impact
on the analysis. While they were primarily used for data
exploration, they played a crucial role in gaining insights
into the dataset’s spatial characteristics and ensuring the
robustness of the employed models’ predictions. In the
experimental section, we focused on the main exogenous
data, such as meteorological factors like humidity and
temperature, which directly influenced the model’s predic-
tions. This comprehensive approach allowed us to build
a solid foundation for the research and produce reliable
results.

One of the primary objectives of the MoreAir project
is continuous air quality data collection. Thus, the sensor
nodes have been actively upgrading to enable uninterrupted
measurements and gather new data [32]. This ongoing data
collection effort is crucial for advancing our field research,
enhancing predictive capabilities, and providing a valuable
resource for future studies in this domain.

D. DATA SET PRE-PROCESSING
Handling missing or noisy data from the sensors was a
critical aspect of this study’s data pre-processing. Given the
dependence of Spatio-Temporal forecasting on both spatial
and temporal granularity, a meticulous approach was followed
to ensure data quality and reliability. The key steps taken to
address these issues include:

• Spatial Coverage: Due to the installation of sensor
nodes at different locations, alignment issues arose
during the data collection process. Therefore, our
data pre-processing began with a spatial analysis to
determine the spatial coverage accurately. Three distinct
neighborhoods, with unique characteristics, were chosen
to represent the geographical diversity in the data.
The first neighborhood is considered one of the city’s
most opulent areas, distinguished by expansive roads,
abundant green spaces, and modern architecture. The
second neighborhood is one of the oldest in the
city, with negligible traffic but a dense population
and diverse traditional activities. Additionally, it is
situated in close proximity to the beach, an important
natural source of particulate matter pollution. The third
neighborhood shares similarities with the second in terms
of population and daily activities but exhibits distinct
spatial characteristics.

• Temporal Coverage: To further enhance data quality,
the temporal span was limited to the period when all three
sensors were actively collecting and transmitting data.
The selected air quality time series was then aggregated
into 15-minute intervals using the arithmetic aver-
age, guaranteeing consistent and continuous temporal
coverage.

• Denoising the Dataset: The careful selection of both
spatial and temporal spans, coupled with the arithmetic
average aggregation along the temporal axis, significantly
reduced the presence of missing data. However, as part
of the meticulous preprocessing, the issue of noisy input
data was also addressed through an outlier detection
process. The 95% quartile outlier detection technique was
implemented to identify and filter out noisy data points.
These outliers, often caused by sensor inaccuracies or
anomalies, were carefully identified and addressed to
enhance data quality.

• Missing Data Imputation: Since the number of missing
values remained relatively low after these preprocessing
steps, missing data imputation was carried out using a
moving average model, implemented with the imputeTS
library in (R) [33]. This step ensured that any remaining
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gaps in the data were effectively filled, maintaining data
integrity.

The combined effect of these data handling procedures was to
ensure that the dataset was of high quality, free from excessive
noise, and to effectively address any missing data. These steps
were taken to enhance the reliability of the analysis and the
accuracy of the findings.

Following data pre-processing, the dataset was transformed
into a 3D-Tensor. The first axis, with 5371 observations,
accounts for time. The second axis encapsulates the spatial
dimension, covering 3 distinct spatial points. Lastly, the
third axis represents both endogenous and exogenous factors,
consisting of 4 variables.

The dataset was divided into two subsets: 80% for training
and 20% for testing. The time series splitting method was
employed to prevent information leakage. Prior to feeding
the data into the forecasting models, it was normalized using
a feature scaling technique. To ensure a fair comparison,
all models are subjected to nearly identical assessment
approaches. Thus, the training and testing sets remain fixed
across all the applied models.

E. DATA SET EXPLORATION
In this section, the temporal variations in the distribution of
air quality is investigated and the impact of spatial features is
examined.

FIGURE 1. Variation of PM2.5 and PM10 records by day of week.

FIGURE 2. Variation of PM2.5 and PM10 records by time of day.

Fig.1 presents the average concentrations of PM2.5 and
PM10 for each day of the week. It is observed that both
pollutants exhibit significantly higher concentrations on
Monday, Tuesday, and Saturday across most locations.
The lowest values were recorded on Wednesday and
Friday.
Fig.2, depicts the average concentrations of PM2.5 and

PM10 throughout the day in the three studied locations.
Although the concentrations vary on different scales, both
pollutants display similar fluctuations. Clearly, their mean
concentrations gradually increase and reach their peaks
towards the end of the day. Additional peaks are observed
during the morning hours (08:00 to 10:00) and the afternoon
hours (13:00 to 16:00), which align with rush hours when
people commute to and from work or school.
Even when considering daily concentrations in detail,

Location 2 consistently exhibits the highest pollutant
concentrations, whereas the two other neighborhoods share
low values. The similarity between Location 1 and Location 3
is particularly evident from midnight to 08:00, before diurnal
activities commence.

Comparing the dynamics of pollutant concentrations across
different locations enables empirical investigations into their
spatial distribution in areas with distinct characteristics.
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Fig.3 shows the number of pollution sources or impacting
factors identified in the vicinity of the studied locations.
Location 2 has the highest number of impacting factors,
followed by location 3, which can be attributed to its high
population and diverse range of traditional activities.
In Fig.4, the y-axis displays the closeness of the studied

locations to the different pollution sources and impacting
features. It is evident that locations 2 and 3 are significantly
closer to traditional markets, crafts, and water areas. Both the
proximity to pollution sources and the number of sources
contribute to the similar variation in PM concentrations
observed in Locations 2 and 3. However, given its proximity
to the beach, Location 2 experiences significantly higher
records, as it is exposed to sea salt, which is a natural source
of particulate matter. Conversely, Location 1, representing the
opulent neighborhood, with the fewest pollutants and farthest
from crafts and traditional markets, records the lowest values.
The conformity between the results observed in

Figures 1 and 2, and those observed in Figures 3 and 4,
confirms the entanglement between the temporal and spatial
dimensions, which motivates our exploration of the third and
fourth frameworks of our application.

FIGURE 3. Number of sources contributing to air pollution by location.

III. METHODOLOGY
A. NOTATIONS AND PROBLEM FORMULATION
In this paper, the task of collective, single-step-ahead
forecasting is addressed. Where the objective is to collectively
predict the future values of one target variable, denoted as Y ,
among m variables collected at s locations at n discrete points
in time. This is represented by the data tensor Z ∈ Rm×s×n.
Given the historical window of length p from time step
t − p+ 1 to t , represented as Z(t − p+ 1 : t), where

Z(t − p+ 1 : t) = (Z(t − p+ 1), . . . ,Z(t − 1),Z(t)) (1)

The aim is to build a mapping f (.) that takes the historical
data as input and yields the forecast of the target variable at
horizon 1, denoted as y(t+1) =

(
y(1)(t + 1), . . . , y(s)(t + 1)

)
.

Here, Z(i) =
(
Z(1)(i), . . . ,Z(s)(i)

)
is a matrix given by:

Z(i) =


y(1)(i) . . . y(s)(i)

z(1)1 (i)
. . .

...
...

. . . z(s)m−2(i)
z(1)m−1(i) . . . z(s)m−1(i)

 =


y(i)
z1(i)

...

zm−1(i)

 ∈ Rm×s

∀i ∈ {1, . . . , n}.

B. FORECASTING FRAMEWORKS OVERVIEW
In this paper, the forecasting problem is examined under
four distinct frameworks. These frameworks are designed to
capture distinct aspects of the forecasting task while evaluating
the impact of various features on the forecast accuracy:

1) TIMES SERIES (TS) FRAMEWORK
Within this framework, historical pollutant concentration
data for both PM2.5 and PM10 from the three monitoring
locations are independently utilized as input features. The
primary objective is to forecast pollutant concentrations
at each location based solely on their respective historical
values. This framework serves as a foundational baseline for
comparisons with more intricate frameworks, facilitating a
clear evaluation of the employed forecasting models. During
the experiments, each location is considered individually,
and only the target time series is incorporated into the
forecasting model. Each neighborhood is treated separately
then the overall performance is reported. The predicted
values are computed using the mapping function as described
in Equation (2).

ŷ(j)(t + 1) = f
(
y(j)(t − p+ 1 : t)

)
, ∀j ∈ {1, . . . , s} (2)

2) TIME SERIES WITH EXOGENOUS DATA (TSX) FRAMEWORK
Building upon the TS framework, additional exogenous
features are introduced, such as temperature and humidity,
alongside both PM2.5and PM10 as input variables. The aim
here is to assess how contextual variables impact forecasting
accuracy. The output values for each location, are obtained as
described in Equation (3).

ŷ(j)(t + 1) = f
(
Z(j)(t − p+ 1 : t)

)
, ∀j ∈ {1, . . . , s} (3)

It’s important to note that in both TS and TSX frameworks,
each location is treated independently without considering
relationships with other locations.

3) SPATIO-TEMPORAL (ST) FRAMEWORK
In this framework, the spatial dimension is explored by utiliz-
ing data from all three monitoring locations simultaneously.
This framework seeks to capture spatial correlations and
dependencies between locations when forecasting pollutant
concentrations. The input incorporates historical pollutant data
from all monitoring locations. Throughout the experiments,
two distinct and independent scenarios are explored: one
centered on predicting PM2.5 concentrations and another on

133136 VOLUME 11, 2023



S. Berkani et al.: Data Driven Forecasting Models for Urban Air Pollution

FIGURE 4. Distances to impacting factors by location.

forecasting PM10 concentrations. The final collective output
is determined using Equation (4).

ŷ(t + 1) = f (Y(t − p+ 1 : t)) (4)

4) SPATIO-TEMPORAL WITH EXOGENOUS (STX) FRAMEWORK
Extending the ST framework, the STX framework includes
exogenous features, mirroring the TSX framework. Here,
spatial information from all monitoring locations is combined
with contextual variables. The objective is to evaluate how
effectively models can leverage both spatial and contextual
data for forecasting. The final forecast is computed using
Equation (5).

ŷ(t + 1) = f (Z(t − p+ 1 : t)) (5)

By considering the four distinct frameworks, summarized
in table 1, the impact of incorporating the spatial dimension
and exogenous variables on the accuracy of the forecasts

TABLE 1. Summary of the four forecasting frameworks.

can be analyzed and evaluated. The comparative analysis
provides insights into the effectiveness of contrasted models
under various scenarios, highlighting the importance of
spatial dependencies and exogenous information in improving
forecasting performance. In the experiments, it should be noted
that when forecasting PM2.5 and PM10 independently in the
TS and ST frameworks, they are treated as unrelated tasks.
However, in the TSX and STX frameworks, when forecasting
one pollutant, the other serves as additional exogenous data
to enhance the forecasting accuracy.

IV. EXPERIMENTAL SETTINGS
A. ASSESSED MODELS
In this section, the ten algorithms selected for the comprehen-
sive comparative study are introduced. The careful choice of
data-driven forecasting models was driven by several pivotal
considerations:
Diversity and Coverage: The objective is to encompass a

wide spectrum of data-driven forecasting techniques, ensuring
a comprehensive assessment of air quality prediction. The
selection includes statistical, traditional machine learning,
and deep learning models, providing a holistic view of their
performance in the context of air quality forecasting.
Real-World Applicability: The chosen models represent

a blend of well-established and state-of-the-art techniques
commonly applied across various forecasting domains. This
reflects their practical relevance and makes the findings
valuable to both researchers and practitioners involved in air
quality prediction.
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Baseline Comparison: To establish a benchmark, simple
models like MLR and mSSA are included. These models serve
as reference points for evaluating the performance of more
complex methods and assessing whether the added complexity
of advanced techniques yields significant improvements.
Machine Learning Advancements: Machine learning

models are incorporated, including XGBoost, CatBoost,
LightGBM, and Random Forest, due to their demonstrated
capability to capture intricate non-linear relationships within
data. These models have achieved groundbreaking results in
various data-driven tasks, rendering them suitable for handling
the intricate patterns in air quality data.
Deep Learning Relevance: To assess their suitability and

performance alongside traditional approaches, deep learning
models like LSTM, TCN, and the MTGNN are employed.
DL models are especially pertinent in scenarios where
temporal and spatial relationships play crucial roles. LSTM
and TCN were initially applied in time series frameworks and
subsequently extended to incorporate spatial dimensions when
applicable. MTGNN, due to its multivariate nature, found
utility in the third and fourth frameworks.
By meticulously considering these factors, the goal was

to conduct a comprehensive evaluation, catering to various
aspects of air quality forecasting and ensuring the practical
relevance of the study.

B. HYPERPARAMETER TUNING
The precision of forecasting models is intrinsically linked to
the choice of hyper-parameters. To ensure the comparison
between models is fair and impartial, a rigorous grid search
strategy was utilized for each model. This aimed to uncover
the optimal combination of parameters that would enhance
their predictive efficacy when applicable.

For instance, to tune the mSSA model, ranks were adjusted
between 5 to 20, segment lengths were experimented with,
and choices were alternated between normalization and direct
variance options. For the machine learning models, an array
of learning rates from 0.001 to 0.1 was tested and diverse
loss functions such as RMSE, MAE, and RMSLE were
incorporated when relevant. For XGBoost, configurations
spanned different booster types, including DART (Dropouts
meet Multiple Additive Regression Trees), gblinear, and
gbtree. Diverse learning objectives, such as regression with
Pseudo Huber loss, squared loss, and squared log loss
were also explored. LightGBM’s fine-tuning consisted of
adjustments in boosting types: traditional Gradient Boosting
Decision Tree, DART, andGradient-based One-Side Sampling.
Meanwhile, the SVR adjustments focused on kernel types—
radial basis function, linear, and polynomial kernel—with
epsilon values tweaking from 0 to 0.01. Regarding TCN,
LSTM, and MTGNN, the number of layers, filters, and
learning rates were adjusted. The impact of incorporating
dropout was also evaluated. For LSTM, unit numbers were
an added variable, while for TCN, dilation rates were
included in the tuning process. It’s important to stress that
these configurations are critical to ensure that the models

successfully strike a balance between recognizing complex
data patterns and avoiding overfitting, even though they give
a peek of the substantial tuning effort employed.

C. PERFORMANCE ASSESSMENT
The evaluation of model performance in our study relies on
two key metrics: the coefficient of determination (R2) and the
Mean Squared Error (MSE), defined as follows:

R2 = 1 −

∑n
j=1

(
Yj − Ŷj

)2
∑n

j=1
(
Yj − Ȳ

)2 (6)

MSE =
1
n

n∑
j=1

(
Ŷj − Yj

)2
(7)

where n represents the size of the test set, Yj denotes the j-th
observed value, and Ŷj signifies the corresponding predicted
value.

To ensure a robust assessment, five separate runs of
the models were conducted, and their average errors
compared. Given that this study examines different locations
independently in the TS and TSX frameworks, the overall
performance of each model is reported.
The chosen data-driven models are used to forecast

one-step-ahead concentrations for both PM2.5 and PM10.
Experiments utilize historical data gathered from three
locations (s=3) with a window size of 14-time stamps (p=14).

V. RESULTS
This section evaluates the performance of 10 various forecast-
ing models tested on the two pollutants of interest: PM2.5 and
PM10. Table 2 and table 3 represent the different frameworks,
and summarize the models’ performance depicted by the
values of R2 and MSE.

It is shown that within the time series’ framework, XGBoost
outperforms the contrasted models for both pollutants.
Compared to the persistent model, XGBoost achieves a
decrease in MSE of 15.98% for PM10 and of 8.97% for PM2.5.
XGBoost scores the highest R2 (0.71) for PM2.5, followed
by LSTM (0.70) and LightGBM (0.69). Similarly, for PM10,
XGBoost outperforms Catboost with an R2 of 0.66, and
LighGMB with an R2 of 0.65, as well as the other employed
forecasters.

The low performance of the deep learning methods, LSTM
and TCN, as reflected by their high MSE and low R2 scores,
can be attributed to the non-linearity of the pollutants data
along with the limited number of data samples. In contrast, the
boosting models demonstrate their ability to capture dynamics
even with relatively small data sets.
In the second framework, when exogenous variables

are introduced, CatBoost and LightGBM show improved
performance for both pollutants, making them the leading
forecasters. LightGBM, for instance, achieves a decrease in
MSE of 3.21% and 6.62% for PM10 and PM2.5 respectively
across the frameworks. However, XGBoost and Random
Forest failed to improve due to the increased number of input
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TABLE 2. Time series forecasting comparison. the best results are shown in bold.

TABLE 3. Spatio-temporal forecasting comparison. the best results are shown in bold.

features compared to our limited number of entries in the data,
which led to an extrapolation flaw in these tree-based models.

In the third framework, where Spatio-Temporal data were
provided, table 3 shows that the graph-based MTGNN model
achieved a higher R2 score compared to the contrasted models
for both pollutants. The satisfactory results of MTGNN,
despite the relatively limited entries in our data set, reflect the
model’s capacity to depict spatial and temporal fluctuations
simultaneously. In terms of forecasting performance, CatBoost
and LighGBM ranked first.
These boosting models show further improvement when

exogenous data are incorporated, surpassing the performance
of the MTGNN for both pollutants. Specifically, LightGBM
and Catboost achieve an R2 of 0.698 and 0.696, and anMSE of
13.371 and 13.658, respectively. Therefore, these two models
perform the best across all frameworks for predicting both
PM2.5 and PM10 concentrations.

The diversity of the forecasting scenarios allows us to
deduce that incorporating both exogenous data and the spatial
dimension led to significant improvements in the performance
of the employed models. For instance, Catboost applied on
the Spatio-Temporal data with exogenous features reduces the
persistent model’s MSE by 18.25% for PM10 and by 18.96%
for PM2.5. The inclusion of exogenous features in our data
set provides clear insights into the dynamics of the data and
enhances the performance of the forecasters by adding more
structure to the input.
However, XGBoost and Random Forest are negatively

affected by the incorporation of the spatial dimension and
exogenous data, mainly due to the extrapolation flaw inherent
in these tree-based models. It is worth mentioning that our
study reveals that LightGBM and CatBoost, as machine
learning models, are most suitable for addressing the
formulated problem across the different frameworks.
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FIGURE 5. Comparison between the forecast and real values for PM2.5.

FIGURE 6. Geographical heatmap.

The forecast PM2.5 concentrations averaged hourly,
depicted in Fig.5b, visually validate the predictive per-
formance of the MTGNN forecaster. Specifically, when
contrasted to the real values displayed in Fig.5a, we clearly see
that the forecaster captured the peak hours, all while seizing
the main variations within the data.
In Fig.6, we present the geographical heat maps of PM

concentrations. When contrasting the heatmaps generated
by MTGNN with the real values’ heatmaps, we notice that
MTGNN clearly captures the average concentration levels
throughout the day. In conformity to the average concentration
of pollutants depicted in fig.2, the highest concentrations are
observed at night (18h - 23h45).

VI. CONCLUSION
This study is a sequel to the MoreAir study, which introduced
a low-cost urban air pollution monitoring system, creating a

novel and unique context-specific air quality data set from
Morocco. Our initial exploration of this dataset involved
a multi-level comparison of various data-driven models to
address the problem of short-term forecasting of Particulate
Matter concentrations. The experiments were conducted under
four different forecasting scenarios, using statistical methods,
machine learning models, and deep learning approaches.
Among the assessed models, ML algorithms, particularly
LightGBM and CatBoost, emerged as leading performers in
three of these frameworks. Specifically, LightGBM achieved
the highest R2 and lowest MSE in the PM10 TSX and
STX frameworks. In contrast, CatBoost dominated the same
frameworks for PM2.5 predictions, presenting optimal R2 and
MSE metrics. The deep learning MTGNN model, despite
the constraints of a limited dataset, demonstrated satisfactory
results in the ST framework for both PM2.5 and PM10.
Additionally, the findings underscore the enhanced forecasting
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precision achieved by incorporating the spatial dimension and
exogenous features into the dataset.
While our current study has provided valuable insights

into air quality prediction using the MoreAir dataset, we are
actively planning and working on several key directions for
future research. These directions encompass maintaining
continuous data collection and real-time monitoring, ensuring
the uninterrupted flow of critical data to enhance our research
and its broader applications. We also aim to contribute to
the advancement of the field of air quality forecasting by
enhancing fault tolerance using federated learning techniques.
Additionally, we anticipate the opportunity to develop
and implement novel algorithms for air quality prediction,
leveraging the accumulation of more data to explore
advanced machine learning techniques and refine existing
models, ultimately leading to more accurate and reliable
forecasts.
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