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ABSTRACT In the cross-view condition, the gait recognition rate caused by the vastly different gait
silhouette maps is substantially reduced. To improve the accuracy of gait recognition under cross-view
conditions, this paper proposes a cross-view gait recognition network model combining multi-scale feature
residual module (MFRM) and self-attention (SA) mechanism based on Generative Adversarial Network
(GAN). First, the local and global feature information in the input gait energy image is fully extracted using
the MFRM. Then, the SA mechanism module is used to adjust the information of channel dimensions
and capture the association between feature information and is introduced into both the generator and
discriminator. Next, the model is trained using a two-channel network training strategy to avoid the pattern
collapse problem during training. Finally, the generator and discriminator are optimized to improve the
quality of the generated gait images. This paper conducts experiments using the CASIA-B and OU-MVLP
public datasets. The experiments demonstrate that the MFRM can better obtain the local and global feature
information of the images. The SAmechanismmodule can effectively establish global dependencies between
features, so that the generated gait images have clearer and richer detail information. The average Rank-1
recognition accuracies of the results in this paper reach 91.1% and 97.8% on the two datasets respectively,
which are both better than the current commonly used algorithms, indicating that the network model in this
paper can well improve the gait recognition accuracy across perspectives.

INDEX TERMS Cross-view, gait recognition, residual module, self-attention mechanism, two-channel
networks.

I. INTRODUCTION
With the rapid development of the information age world-
wide, the modernization ability of national governance can
be strengthened by identifying personal identity rapidly and
accurately through biometric identification technology. Gait
recognition, as a novel biometric identification technology
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in recent years, is capable of personal identification by their
walking posture. Compared with biometric identification
technologies such as the human face, fingerprint, and iris,
gait recognition has the advantages of long distance [1],
no contact [2], no need for cooperation [3], and camouflage
prevention. Therefore, gait recognition technology has exten-
sive application prospects and economic values in such fields
as security monitoring [4], criminal investigation [5], human-
computer interaction, and medical diagnosis [6]. In actual
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scenes, however, the accuracy of gait recognition is affected
by many factors like clothing changes [7], walking speed
[8], carrying condition [9], and cross-viewing angle [10].
Clothing changes, walking speed, and belongings are all
subjective factors, which cannot easily be optimized. The
cross-view problem belongs to an objective factor of instru-
ment shooting, which can be well optimized through models
to improve the accuracy of gait recognition. Therefore, the
cross-view angle is regarded as the factor affecting gait
recognition most [11], [12], and it is also a research hotspot
and mainstream issue in the field of gait recognition.

At present, the research on cross-view gait recognition
through traditional methods can be roughly divided into two
categories: one is based on model matching and the other is
based on appearance matching. The model matching-based
method [13], [14] performs modeling on the basis of the
skeletal structure of the human body in the high-resolution
gait image and reaches the goal of personal identification by
extracting the traveling trajectories of the subject. Despite
a good gait identification effect under cross-view scenes,
this method needs to calculate a complex model, occupies
large computing resources, and proposes high requirements
for the quality of gait images. Comparatively, the method
based on appearance matching only takes the gait silhouette
map obtained from the low-resolution gait image as the input
and judges the identity of the observed object by identifying
the distinguishing feature information. Generally, thismethod
takes a periodic gait sequence set [15] or energy-like graphs
[16], [17], [18], [19] as the input. Gait energy image (GEI) in
the energy-like image is a normalized image of the observed
object in a walking period, which can effectively represent
the relative location change of body silhouette in a period,
so it has been widely used. Taking the gait silhouette of the
observed object as the input, the method based on appearance
matching is more sensitive to the change in individual
appearance, especially when walking with a backpack or
wearing a coat, which is more difficult to identify.

In recent years, the rapid development of deep learning
technology provides a new idea for cross-view gait recog-
nition. At present, there are many deep learning network
models based on traditional appearance-matching technol-
ogy. These network models can be roughly divided into
view transformation model [20], [21], feature fusion model
[22], [23], and deep neural network models [24], [25]. The
view transformation model can realize personal identification
using a singular value decomposition feature matrix to realize
identity recognition, but it cannot use the feature information
from all views at the same time, and a large number of training
samples are usually needed for modeling. Comparatively,
the feature fusion model can make full use of different
feature information for joint modeling, thereby achieving
the purpose of recognition. Among them, many researchers
pay more attention to the method which can fuse and
aggregate the spatial-temporal information from the skeletons
and silhouettes [26], [27]. These two types of features are
complementary, so the performance of these models becomes

better after feature fusion. However, fusing the two kind of
features is not simple, it requires complex modeling, high-
precision feature alignment, and stronger computing power
[28]. In addition, there are large semantic gaps between
different types of feature information [29], and these semantic
gaps cannot be completely eliminated after feature fusion.
Therefore, there is often considerable noise in the fused
model, greatly influencing the recognition performance of
the model. Different from the first two models, the deep
neural network model is based on commonly used network
architectures, such as convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and generative adversarial
networks (GANs). The deep neural network model extracts,
fuses, and classifies important feature information through
different modules and finally identifies the identity through
comparisons. Given that it can be integrated with different
modules, the deep neural network model can effectively
extract the deep and shallow features of the research object,
make full use of the feature information from multiple views
and scales, and minimize the impact of the semantic gap.

Deep neural network models often incorporate the ideas
of feature fusion and view transformation and elevate the
recognition rate by improving the model structure or adding
modules. Hu et al. [30] integrated a multi-branch residual
structure into the CNNs, which facilitated the model to make
full use of the more representative feature information of
the input image. Zhai [31] used an autoencoder (AE) to
separate identity features and view features from GEI for
coding recombination and reconstructed the GEI for identity
recognition. Wang et al. [32] constrained the generator
using multiple loss functions on the basis of GANs to
improve the performance of the model. Following the
idea of a ‘‘zero-sum game’’ [33], the GAN-based network
architecture can generate the target image better, with a
shorter running time and a higher quality of the generated
image. Although the current network model based on GAN
has great advantages, GAN itself cannot make full use of
the relationship between multi-scale features, leading to the
fuzzy details of the generated image and further affecting
the accuracy of gait recognition. The self-attention (SA)
mechanism has been of wide concern since it was put
forward because it not only considers global aspects but also
focuses on key points and can effectively establish the global
dependence between features. At present, the SA mechanism
has achieved good performance in image super-resolution
reconstruction [34] and image generation [35]. Zhang and
Bao [36] introduced the SA mechanism module into the
GAN to learn the correlation between features to improve
the quality of generated pictures. Given that GAN itself is
prone to pattern collapse during training [33], this model
also has such problems, and the gait recognition accuracy
of the model needs to be further improved. The two-channel
training strategy [37] uses a variety of losses to constantly
constrain the generator through two network architectures
that transform the input image into the target image and
then reconstruct it into the input image, so that the generated
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images are diverse and clear, which can well eliminate the
influence caused by pattern collapse.

To sum up, to reduce the influence of cross-view on gait
recognition, a GAN-based cross-view gait recognition net-
work model combining multi-scale feature residual structure
and SA mechanism was proposed. The multi-scale feature
residual module (MFRM) was integrated into the feature
extraction part of the proposed model. The module used
differently sized receptive fields to fully obtain the local and
global feature information of the image and generated more
representative image feature maps, laying the foundation
for the subsequent generation of high-quality gait maps.
The model also introduced the SA mechanism module to
adjust the information of channel dimensions, which was
helpful to capture the correlation between feature information
and contributed to the clearer and richer quality details
of the generated gait map. To avoid pattern collapse in
training, the two-channel network training strategy was
adopted. The proposed network model is more conducive
to the identification of identity information, improves the
accuracy of gait recognition, and obtains gait results closer
to the true value. This network model also exhibits excellent
generalization ability.

The remainder of this paper is as follows: the proposed
network structure and model loss were introduced in
Section II. The experimental details, experimental results,
and ablation experiments were presented in Section III. The
conclusions were given in Section IV.

II. PROPOSED NETWORK STRUCTURE
The overall structure of this network is shown in Fig. 1,
including two generators G and a discriminator D. The
MFRM was integrated into G to improve the multi-scale
feature extraction ability of the feature extraction module.
Then, the SA mechanism module was introduced into G
and D to adjust the feature information of the channel
dimension, establish the correlation between different feature
information, optimize G and D, and enhance the identifica-
tion ability of the model. This network could realize the gait
transformation of any gait image under any viewing angle.

In Fig. 1, xi and yi denote the gait image and view label of
the subject i, respectively. xsi and y

s
i stand for the gait image

and view label of the subject i at the original viewing angle s.
x ti and y

t
i represent the gait image and view label the subject i

at the target viewing angle t . Therein, i, j ∈ {1, 2, . . . ,Nx}
and s, t ∈ {1, 2, . . . ,Nv}, where Nx stands for the total
number of subjects in the dataset and Nv represents the total
number of viewing angles in the dataset. The one-hot vector
codingmethodwas adopted for the view label ysi . Specifically,
1 was allocated to the location corresponding to the viewing
angle of the gait image and 0 to other locations, and the view
label served as the indicator for the target viewing angle of
the generator.

The GAN-based network model was trained using the
two-channel network training strategy to prevent GAN from
pattern collapse, i.e., to avoid the consistency of generated

images, which would lead to the reduction of diversity. Two
channels refer to the source domain data stream channel
and the target domain data stream channel. The core of
the model included two generators G and a discriminator
D. The generators generated images with specific meanings
according to the input information and tried to fool the
‘‘discriminator’’, which was used to distinguish whether the
input images were generated or real, and the two were
optimized alternately until the results were optimal. Given the
same training process of the two channels, an explanation was
given based on the source domain data stream channel.

Two source gait images xsi and x
t
j were randomly extracted,

and view labels ysi and y
t
j were fabricated through one-hot

coding. In the source domain data stream channel, the source
gait image xsi and the target view indicator ytj were first
connected as the input of the generator G to generate a
synthesized gait image xs′i , which can be expressed by a
formula G(xsi , y

t
j ) → xs′i . Then, the synthesized gait image

xs′i and the source view label ysi were connected and fed into
the generator G to generate a reconstructed gait image x s̃i ,
which can be expressed by the formula: G(xs′i , ysi ) → x s̃i .
Finally, the discriminator D judged the authenticity of the
source gait image xsi and the reconstructed gait image x s̃i and
the type of their view domain, and constrained the generator
and discriminator using the adversarial loss Ladv and view
classification loss Lview. To facilitate the generator to generate
an image similar to the target gait image x ti in a short time, the
pixel-level loss Lpixle was used to minimize the error between
the synthesized gait image xs′i and the target gait image x ti .
The cyclic consistency loss Lcycle constrained the generator
by comparing the similarity between the source gait image xsi
and the reconstructed image x s̃i , ensuring that the generator
only changed the viewing angle of the source gait image xsi
without changing its identity information.

From the overall architecture of the two-channel network,
the source gait image xsi in the source domain data stream
channel had gone through the process from the viewing angle
s to t and finally to s, that is xsi → xs′i → x s̃i . The source gait
image x tj in the data stream channel of the target domain had
gone through the process from the viewing angle t to s and
finally to t , that is x tj → x t′j → x t̃j . This two-channel network
architecture forced the generatorG to only change the feature
information related to the viewing angle in the input image,
not only enabling G to generate high-quality images but
also effectively avoiding the tendency of generated images
to similar distribution, lack of diversity, and pattern collapse.

A. GENERATOR NETWORK
To fully extract and utilize the features of the input image,
the MFRM and the SA mechanism were introduced into the
generator. As shown in Fig. 2, the generator network struc-
ture mainly included three parts: the down-sampling area,
SA module, and up-sampling area. The feature extraction
module and the MFRM constituted the down-sampling area.
The original image and label code were first sent to the
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FIGURE 1. Overall structure of the network model.

FIGURE 2. Generator network.

down-sampling area to extract the key features of multi-scale
images. Then, the global dependency between the extracted
features was established by the SA module. Finally, the up-
sampling area generated an image with the same size as the
original image and a transformed viewing angle based on the
relevant feature information.

B. MULTI-SCALE FEATURE RESIDUAL MODULE
To better extract the global and local features of gait
images, the MFRM was integrated into the feature extraction
module of generator G to obtain more representative multi-
scale feature information. As shown in Fig. 3, the structure
consisted of main roads and branch roads. The main roads

extracted important feature information from the input image
silhouette with a large receptive field. The branch roads used
small receptive fields to extract the local detail information
of images. After extracting the feature information of the
two main roads, two feature maps were obtained, the feature
maps of the main roads and the branch roads were fused
and output by using the residual, and the output feature
map A was obtained. The combination of main and branch
roads and residuals could not only improve the information
extraction effect of the network but also reduce the calculation
parameters of the network.

The parameter settings of the MFRM are shown in
Table 1, which comprised three small modules. Among
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them, K represents the size of the convolution kernel. C is
the number of channels of the input tensor. S represents
stride, and P is padding. Block1 is a convolution layer with
a convolution kernel of 1 × 1. Block2 and Block3 were
feature extraction modules for main roads and branch roads,
respectively. The BN and LeakyReLU activation functions
were used after each convolution layer.

FIGURE 3. Multi-scale feature residual network.

TABLE 1. Parameter setting of multi-scale feature residual structure.

C. SELF-ATTENTION MECHANISM
The viewing angle refers to the angle between the camera
and the traveling trajectory of the subject. Therefore, the
gait energy maps (GEIs) synthesized under different viewing
angles should be quite different, but the GEIs synthesized
under 72◦, 90◦, and 108◦ were only slightly different in the
details of the legs, as shown in Fig. 4. Among them, Fig. 4(a)
represents the GEIs of the subject in three viewing angles
under the normal walking condition, and Fig. 4(b) and 4(c)
represent walking with a bag and walking with a coat respec-
tively. Although the multi-scale feature residual structure
could capture the global features and local features of gait
images well by using differently sized convolution kernels,
the generated images were blurred in detail and accompanied
by virtual shadows because GAN could not make full use
of all feature information. When the target viewing angle
was 72◦, the model could easily generate gait images with
the viewing angle of 90◦ or 108◦ by mistake. The same
phenomenon would happen when the target viewing angle
was 90◦ or 108◦. This is because the model only extracts the
global information and local information of the image while
not establishing the relationship between information, that is,
obtaining the relationship between all the location features
of the image is impossible. The SA mechanism can establish
the relationship between local features and global features in
a large range and adjust the feature information in the channel
dimension, which has the key performance of capturing the
internal correlation of features. The SA mechanism will
use the features of all locations to generate certain detail

information of the image, making the generated picture more
realistic. Therefore, the SA mechanism was introduced into
the model, and by adding the SA mechanism module in
different locations of the generator and the discriminator, the
proposed feature information was integrated to improve the
quality of model generation.

FIGURE 4. GEIs at a viewing angle of 72◦–108◦ under three conditions.
(a) GEIs at a viewing angle of 72◦–108◦ under normal walking condition.
(b) GEIs at a viewing angle of 72◦–108◦ under walking with a bag
condition. (c) GEIs at a viewing angle of 72◦–108◦ under walking with a
coat condition.

The structure of the SA mechanism module is shown in
Fig. 5. First, the feature map A ∈ RC×H×W extracted from
the previous layer was sent to two convolution layers with
C/f output channels, and two new feature maps B and L were
generated, respectively, where {B,L} = RC×H×W and f ∈

(1, 2, 4, 8), and the value of f was taken as 8. The shape of
feature maps B and L was adjusted as RC×N , where N =

H × W , which represents the number of features. Then, the
transposed B and L were subjected to matrix multiplication
and normalization through the Softmax function to calculate
SA β, where β ∈ RN×N , as seen in Formula (1).

βuv =
exp(Bu · Lv)
N∑
u=1

exp(Bu · Lv)

, (1)

where u and v are location subscripts; Bu is the feature (u =

1, 2, . . . ,N ) of B at the location u; Lv represents the feature
(v = 1, 2, . . . ,N ) of L at the location v. βuv ∈ β, which was
used to measure the influence of the location u on the location
v. If the features of the two locations were more similar, they
were correlated to a greater degree.

The feature A was sent to a convolution layer with C
output channels, and a new feature map M ∈ RC×H×W

was generated, with its shape adjusted to RC×N . Then, the
transposedM and β were subjected to matrix multiplication,
and the resulting shape was adjusted as RC×H×W . Finally,
the result was multiplied by a scale parameter α and then
subjected to element addition with the feature A to obtain
the final output feature map O ∈ RC×H×W , as seen in
Formula (2).

Ov = α

N∑
u=1

(βuvMu) + Av, (2)

where α is initialized 0 and gradually acquires a higher
weight. The equation allows the inference that the feature
map at each location is the weighted sum of all locations
and the original feature. The finally generated features had
global context information, and the context information
was selectively aggregated according to SA. The SA
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mechanism module endowed the representation of features
with reciprocity through the information adjustment of
channel dimensions, thus effectively establishing the global
dependence between features.

FIGURE 5. Self-attention mechanism.

D. DISCRIMINATOR NETWORK
To enhance the feature discrimination ability of the discrimi-
nator, the SA mechanism module was also integrated into the
discriminator, as shown in Fig. 6. The discriminator network
structure was mainly composed of a feature extraction mod-
ule and two discrimination modules. The features extracted
from the original image through the input layer and the down-
sampling layer were sent to the SAmechanismmodule first to
adjust the information of the channel dimension. Then, such
features entered the image authenticity judgment module Dx
and the view judgment module Dy to judge the identity and
viewing angle. When the input image came from the real
sample distribution Pdata, the output of Dx was 1; otherwise,
it was 0. Dy mainly aimed to discriminate the viewing angle
information of the input image, and its output was the coding
value of the one-hot vector corresponding to its viewing angle
information.

E. LOSS
To improve the accuracy of model recognition, the network
was trained by combining the adversarial, view classification,
pixel-level, and cyclic consistency loss.

(1) As the most important loss in GAN, the adversarial loss
was used to constrain the generator and discriminator, and the
objective function is shown in Formula (3).

min
G

max
D

Ladv = Exi:Pdata[logDadv(x
t
i )]

+ Exi:Pdata,yt :Pview [log(1 − Dadv(G(xsi , y
t
j )))],

(3)

where E[] represents the expected value of the distribution
function, and the pedestrian gait images xsi and x

t
i followed

the sample distribution Pdata. The view label ytj obeyed the
view indicator distribution Pview. G(xsi , y

t
j ) is the gait image

generated after the source gait image xsi and target view
indicator ytj were connected and sent into the generatorG. The
generator G aimed to minimize the objective function, while

Dadv in the viewing angle discriminator should maximize the
objective function.

(2) The view classification loss was used to mea-
sure the proximity between the viewing angle information of
the gait image and the target view indicator. In general, the
view classification loss was constructed using a cross-entropy
function. When D was optimized, the following objective
function should be minimized as shown in Formula (4).

LDcls = Exi:Pdata[logDcls(xi)], (4)

where Dcls (xi) means that the input gait image comes from
the real sample distribution Pdata. WhenGwas optimized, the
input was the image under the target view indicator generated
by the generator. By minimizing the objective function, the
generator G was constrained to generate a gait image under
the target view indicator, with its corresponding loss function
shown in Formula (5).

LDcls = Exi:Pdata,yt :Pview[logDcls(G(x
s
i , y

t
j ))]. (5)

(3) The pixel-level loss was used to minimize the error
between the synthesized gait image xs′i and the target gait
image x ti . This enabled the generator to generate an image
similar to the silhouette of the target gait map in a very
short period, greatly shortening the ‘‘learning’’ period of
unimportant feature information, with a relatively stable
training environment. The loss is shown in Formula (6).

min
G
Lpixel = Exi:Pdata,yt :Pview[

∥∥∥G(xsi , ytj ) − x ti
∥∥∥
1
], (6)

where ∥·∥1 represents the loss of pixel level L1, and x
s
i and x

t
i

represent the source and target gait image, respectively.
(4) In this study, the generator was constrained by

comparing the similarity between the reconstructed image x s̃i
and source image xsi using the cyclic consistency loss, as seen
in Formula (7).

Lcycle = Exi:Pdata,yt :Pview

∥∥∥G(G(xsi , ytj ), ysi ) − xsi
∥∥∥
1

+

∥∥∥G(G(x tj , ysi ), ytj ) − x tj
∥∥∥
1
, (7)

where G(xsi , y
t
j ) and G(x

t
j , y

s
i ) represent the synthesized gait

images after the viewing angle is converted the first time
by the generator, i.e., xs′i and x t′j . G(G

(
xsi , y

t
j

)
, ysi ) and

G(G
(
x tj , y

s
i

)
, ytj ) stand for the reconstructed gait images after

the secondary viewing angle conversion by the generator,
namely, x s̃i and x t̃j . In this study, the quality of generated
images was improved by minimizing the loss function.

The ultimate objective function of this model is the
weighted sum of the above loss functions:

Lall = λ1Ladv + λ2Lcls + λ3Lpixel + λ4Lcycle, (8)

where λi(i = 1, 2, 3, 4) is the balance parameter between the
losses. In this experiment, these parameters were set to λ1 =

λ2 = 1, λ3 = 20, λ4 = 10 through constant adjustment,
optimization [32], [36], and visualization of training images.
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FIGURE 6. Discriminator network.

III. EXPERIMENT AND ANALYSIS
A. DATASET
In experiment was done with the proposed network model
on the two public datasets CASIA-B and OU-MVLP, and the
effectiveness of this network model was evaluated.

The CASIA-B [38] dataset is a multi-view gait recognition
database provided by the Institute of Automation, Chinese
Academy of Sciences, which has a wide range of viewing
angles and is a commonly used gait dataset. This dataset
contains the video sequences of 124 subjects under 3 walking
states (normal walking, walking with a bag, and walking
with a coat). The video sequences are gait sequences
under 11 viewing angles (0◦, 18◦, . . . , 180◦) for each
subject, and 10 gait sequences are collected under each
viewing angle, comprising 6 sequences (NM01-NM06) in
normal walking conditions, 2 sequences (BG01-BG02) while
carrying bags, and 2 sequences (CL01-CL02) while wearing
coats. Therefore, each subject has 11× (6+2+2) =110
video sequences. The CASIA-B dataset was divided by the
commonly used method [39], that is, the data of the first
62 pedestrians constituted the training dataset, and the data
of the last 62 pedestrians constituted the test dataset. The test
dataset was further divided into a gallery set and probe set
according to different walking states, and the specific division
is shown in Table 2.

TABLE 2. Experimental settings of CASIA-B.

The OU-MVLP [40] dataset is a multi-view gait recog-
nition database created by the Institute of Science and
Industry of Osaka University in Japan. The OU-MVLP
dataset contained 10,307 walking video sequences under
14 different viewing angles. Each video sequence contained
the gait sequences of subjects under 14 viewing angles (0◦,
15◦, . . . ,90◦; 180◦, 195◦, . . . , 270◦). Two gait sequences

(#00–01) were collected under each viewing angle. The
official division method [39] of the dataset was used, that is,
the multi-view gait sequences of 5153 pedestrians constituted
the training set and those of 5154 pedestrians formed the test
set. In the testing stage, the #01 gait sequence was used as
the gallery set and the #00 gait sequence as the probe set. The
specific division is shown in Table 3.

TABLE 3. Experimental settings of OU-MVLP.

B. EVALUATION INDEXES AND EXPERIMENTAL
PARAMETERS
The Rank-1 index in the cumulative matching characteristic
curve was used as the evaluation index for model recognition
accuracy. First, the gait image in the probe set was converted
to the target viewing angle corresponding to the gallery set,
and the gait image xs′i after view transformation was obtained.
Then, the Nearest Neighbor Classifier was used to calculate
the Euclidean distance between gait images in xs′i and gallery
set and then determine its identity information. Finally,
whether the two images had the same identity was judged,
and the Rank-1 recognition rate was obtained, which was
positively correlated with the model recognition accuracy.

In the experiment, the network model was built by using
the PyTorch framework and trained through an NVIDIARTX
4090 graphics card. The size of the input and output GEIs of
the network was 64 × 64 pixels. Batch_size was set to 64
[36]. The strategy of alternating iterative training [28] was
adopted. After the discriminator D was trained 10 times, the
generator G was updated once. In the process of training, the
weights of all network models were randomly initialized by
Gaussian distribution with a mean value of 0 and variance
of 0.02. Network parameters were updated using the Adam
optimizer, where β1 = 0.5 and β2 = 0.999, and the initial
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TABLE 4. Comparison between different methods in average Rank-1 recognition accuracy on the CASIA-B dataset. The highest score is marked in bold. All
The scores are described in percentage (%). The red numbers in the table indicate the sorted results of various methods.

learning rate was set to 0.0002 [24], [30], [36]. The model
was trained for 200 K iterations. The learning rate remained
unchanged in the first 100 K iterations, and the step strategy
was adopted in the remaining 100 K iterations. The learning
rate declined to 1% of the original per 1 K iterations until
reaching 0. In the process of testing, the K value of the nearest
classifier was taken as 5.

C. EXPERIMENTAL RESULTS OF CASIA-B AND OU-MVLP
DATASETS
To verify the effectiveness of the proposed network model,
it was compared with the latest methods such as Two-stream
[23], Multi-branch [30], GaitSet [39], AE [41], GaitGAN
[42], MGAN [43], MT3D [44], GaitGL [45] and MetaGait
[46] on the CASIA-B dataset. The Rank-1 recognition
accuracy of each method is listed in Table 4. The data in
Table 4 are the average values of Rank-1 recognition accuracy
under 11 viewing angles.

According to Table 4, in the process of recognizing
different walking conditions by the same method, the
recognition accuracy was the highest in the normal walking
condition and the lowest in the coat-wearing condition. This
is because the gait information of the subject is not blocked
in the normal walking condition. However, the bag-carrying
and coat-wearing conditions can block the gait information of
the subject to a certain extent, where the latter will affect the
gait information of the subject in a large range, increasing the
difficulty in gait recognition and leading to a great decrease in
the accuracy of gait recognition under the coat-wearing state.

For the accuracy recognition results of different methods
in the same walking condition in Table 4, the network
model in this research achieved good recognition accuracy
in three conditions. The recognition accuracy was 85.3%
under the condition of walking with a coat greatly affected
by block, indicating that the network structure in this
research could effectively overcome the influence of block
on the gait recognition accuracy. This method performed
better than other methods in both single-state recognition
accuracy and the average value under three conditions.
Compared with the MetaGait model, the accuracy of our
method decreased by 0.8% and 2% in normal and backpack
conditions, respectively. However, it was increased by

1.8% in the coat-wearing condition. When extracting the
global dependence of various features, the MetaGait model
not only applies the attention mechanism to the channel
dimension, but also integrates the temporal and spatial
dimensions. In addition, MetaGait model can adaptively
capture the full-scale dependence of the space, channel,
and time dimension. But our model only integrates the
attention mechanism into the channel dimension. Therefore,
compared with MetaGait model, the recognition accuracy
of our model is slightly lower in some states. Nevertheless,
the average Rank-1 recognition accuracy of our method also
reached 91.1%, which is only 0.3% lower than the MetaGait
model. This manifested as follows: by integrating the multi-
scale feature residual structure and SA mechanism into the
generator, the association between deep and shallow features
could be effectively established, and the gait images with
difficulty in identification were converted into images easy
for identification, thus substantially enhancing the robustness
and accuracy of the model.

Table 5 shows Rank-1 accuracy comparison results of
different methods under the 11 validation views (excluding
the same view) in the CASIA-B dataset. Fig. 7 shows the
gait recognition performance of the proposed network model
under three conditions. It can be seen from Table 5 and
Fig. 7 that the model exhibited high accuracy under most
viewing angles and conditions, but the Rank-1 accuracy near
the viewing angle of 90◦ and 180◦ fluctuated considerably.
This is because the gait image with a viewing angle of 90◦

is taken by the camera from the front side of the subject.
Moreover, the gait images at 0◦ and 180◦ are taken by the
camera from the front and back of the subject. Therefore, the
GEI at 90◦ contained rich information about the movement
characteristics of limbs. The GEI at 0◦ and 180◦ reflected
the body and shape characteristics of the subject more. So,
when the GEI at 90◦ was converted into the GEI at other
angles, there was a gap between the newly generated GEI
and its corresponding real image due to the lack of the body
and shape characteristic information of the subject. The GEI
at 90◦ was very similar to that at 72◦ and 108◦, so the
recognition accuracy at all angles (including 90◦) near 90◦

increased, also explaining why the recognition accuracy at
180◦ decreased.
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TABLE 5. Rank-1 accuracy (%) On CASIA-B Under 11 probe views excluding identical-view cases. The highest score is marked in bold. All the scores are
described in percentage (%).

TABLE 6. Comparison between different methods in average Rank-1 recognition accuracy on the OU-MVLP dataset at four typical viewing angles. The
highest score is marked in bold. All the scores are described in percentage (%).

To prove its good generalization ability, the performance
of the proposed network model was further evaluated on
the OU-MVLP dataset. The gait sequences at four typical
viewing angles (0◦, 30◦, 60◦, 90◦) were selected for
evaluation according to the selection strategy of viewing
angles proposed by Noriko et al. [40] in probe sets. The
network model in this research was compared with eight
methods—Multi-branch [30], TCC-GAN [32], GaitSet [39],
GaitGL [45], MetaGait [46], GEINet [47], 3in+2diff [48]
and GaitGCI [49]—and the comparison results are shown in
Table 6. The table shows that the model had high recognition
accuracy at four typical viewing angles, and the average
recognition accuracy reached 97.8%, which was much higher
than that obtained by other methods. A comparison of the
evaluation results of the proposed network model on the
CASIA-B dataset shows that the accuracy of the model was
much higher than that in the CASIA-B dataset at several
viewing angles. The possible reason is that there are more
diverse and richer observed objects in the OU-MVLP dataset,
and the model can learn more features that are convenient for
identity recognition, so the overall recognition rate has been
greatly improved.

The visualization results of this model on the CASIA-B
dataset (left) and OU-MVLP dataset (right) are shown in
Fig. 8. In the diagram, the red box (the first line) represents the
input GEI randomly extracted from the probe set, the green

box (the third line) indicates the real target GEI in the gallery
set, and the middle line stands for the GEI generated by this
model. Fig. 8 shows that the proposed model can generate a
gait image that is highly similar to that under the real target
viewing angle even in the case of a wide blocking range and
a large change in the viewing angle.

D. ABLATION EXPERIMENT OF CASIA-B DATASET
The corresponding ablation experiment was performed to
prove that the gait recognition accuracy could be improved
greatly by the multi-scale feature residual structure and SA
mechanism.

The SA mechanism can better capture the relationship
between the local features and global features of images
by adjusting the information of channel dimensions, so it
was added to different locations of the model (generator and
discriminator). In the experiment, it was first determined that
the SA mechanism harvested the best recognition accuracy
at the layer of the generator, and then it was determined that
the SA mechanism reached the best recognition accuracy at
the layer of the discriminator. Finally, the effect of the multi-
scale feature residual structure was verified on the model
added with the SA mechanism. Given that the redundancy
of comparative experiments could be better avoided by
first determining the location of the SA mechanism in
the generator and discriminator, the location of the SA
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FIGURE 7. Recognition rate of three probe sets at different viewing angles on the CASIA-B dataset.

mechanism module was determined first, followed by the
effectiveness validation of the multi-scale feature residual
module.

The influence of each module on the experimental results
was discussed on the CASIA-B dataset, and several groups
of experiments were designed for the comparative analysis.
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FIGURE 8. Visualization results under CASIA-B and Fig. 1. OU-MVLP datasets. (a) CASIA-B dataset. (b) OU-MVLP dataset.

The experimental parameters of each experiment are listed
in Table 7. The experimental settings of each module were
divided into three circumstances: (1) the influence of different
locations of the SA mechanism module in the generator
G on the experimental results (Table 8), (2) the influence
of different locations of the SA mechanism module in the
discriminator D on the experimental results (Table 9), and
(3) the influence of MFRM on the experimental results
(Table 10). Modules 1, 2, and 3 used in Table 7 are shown
in Fig. 9.

TABLE 7. Multi-group experimental parameter settings. G (No SA) means
that the generator G does not use the Sa mechanism module,
G(SA+Deconv1) means that the SA mechanism module is placed before
the deconvolution Layer 1 of the generator G, and D(Conv3+SA) means
that the sa mechanism module is placed after the convolution Layer 3 of
the discriminator D, and so on.

Table 8 shows that the recognition effect was the best when
the SA module was placed in front of the deconvolution
layer 1 in the up-sampling area of the generator G, which
was improved to some extent compared with the average
recognition accuracy without using the SA module and
placing it at other locations. Compared with Experiments
1 and 3, Experiment 2 reached the highest recognition
accuracy, reaching 73.2%, under the coat-wearing condition
(CL). This manifested in that adding an SA mechanism
module before the deconvolution layer 1 of generator G
could improve the recognition ability of the model under
blocking conditions. This is because the SAmechanism could
effectively establish the relationship between local features
and global features extracted by the residual module and
promote the generator to better generate images under the
target viewing angle.

Table 9 shows that the recognition effect was the best when
the SAmodule was placed after the convolution layer 3 of the

FIGURE 9. Comparison modules of the multi-scale feature residual
structure. (a) Module 1. (b) Module 2. (c) Module 3.

feature extraction module of the discriminator D. Compared
with other comparative experiments, the recognition accuracy
of Experiment 6 was greatly improved in the bag-carrying
condition (BG) and the coat-wearing condition (CL). The
average recognition accuracy of Experiment 6 was 3.5%
higher than that of Experiment 2.

To better prove the influence of the multi-scale feature
residual structure on the experiment, the comparative experi-
ment of the following three modules was designed, as shown
in Fig. 9. Module 1 in Fig. 9(a) represents the proposed
method, (b) Module 2 only keeps two 3 × 3 convolutions of
the main road, and (c) Module 3 retains a 3 × 3 convolution
and a 1 × 1 convolution of the branch road. The results of
recognition accuracy under different modules are shown in
Table 10.
As revealed in Table 10, the multi-scale feature residual

result was the best under Module 1. Especially under the
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TABLE 8. Influence of the location of the SA module at the generator on the recognition rate. The highest score is marked in bold. All the scores are
described in percentage (%).

TABLE 9. Influence of different locations of the SA mechanism at the discriminator on the recognition rate. The highest score is marked in bold. All the
scores are described in percentage (%).

TABLE 10. Influence of different modules in the multi-scale feature residual structure on the recognition rate. The highest score is marked in bold. All the
scores are described in percentage (%).

walking with a coat (CL), the recognition accuracy of
Experiment 6 was as high as 85.3%, which was better
than that of Experiments 7 and 8. The average recognition
accuracy of Experiment 6 was 2% higher than that of
Experiments 7 and 8, proving that the fusion of the
residual block with differently sized receptive fields could
improve the feature extraction ability of the model and
enhance the gait recognition accuracy under cross-view
circumstances.

IV. CONCLUSION
To solve the low accuracy of gait recognition under cross-
view conditions, a cross-view gait recognition networkmodel
combining the MFRM and SA mechanism was proposed.
Specifically, the multi-scale feature residual structure was
integrated into the feature extraction module of the generator
to fully extract the deep features and shallow features of
the input gait image. The SA mechanism module was
used to adjust the information of the channel dimension of
the extracted multi-scale features and establish the global
dependence between the feature information. In addition,
the generator was constrained using the training strategy
of the two-channel network so that the feature distribution
of the generated image was extremely similar to the target
image, thereby improving the quality of the generated image.
The experimental results on CASIA-B and OU-MVLP
datasets show that the proposed method is superior to the
commonly used algorithms. The ablation experiment on the
CASIA-B dataset also proves the effectiveness of the MFRM
and SA mechanism module. Given the large oscillation of

the proposed method in the CASIA-B probe set at viewing
angles of 90◦ and 180◦, the multi-view mean will be adopted.
Here, three gait images are generated simultaneously with the
target viewing angle as the mean, and the mean recognition
rate of the three images is taken as the recognition rate at the
target viewing angle, thereby enhancing the model robustness
under a single viewing angle and strengthen its generalization
ability for different datasets.
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