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ABSTRACT In this article, we have developed a high-accuracy and low-cost smart epidural needle system.
It is based on force puncture sensing and guidance mechanism that enhances success rate and reduces the
risks of accidental punctures. The design incorporates a subminiature load cell embedded in the spinal needle
which measures the force exerted by each tissue layer on the needle tip. By identifying the force range for
each layer, the needle can be safely inserted and accurately reach the targeted area. Accordingly, a classifier
model for this identification process was developed and tested. More than a hundred experimental readings
were collected and used for training the developed classifier model of the system. Furthermore, a phantom
with six spinal cord layers, that mimics the properties of different spinal tissue layers, was built and utilized
for testing purposes. The experimental results of the developed smart spinal epidural needle system highlight
the ability of the system to identify the needle location with an accuracy of about 86.7%. Hence, it provides
promising outcomes and a feasible solution for the future development of spinal epidural needle systems.

INDEX TERMS Epidural space, spinal needle, load sensor, epidural anesthesia, force measurements.

I. INTRODUCTION
Spinal epidural needles are commonly used to provide pain
relief for labor and certain surgeries. For this purpose, they
are injected into the epidural space (ES). Given the delicate
nature of the spinal cord, the identification of the ES is
required to ensure patient safety. This procedure is depen-
dent on the skills of the physicians to detect changes in the
force exerted on the needle as they push it through different
layers of tissues. Hence, there is a good chance for mis-
takes that could cause lumbar trauma [1], [2]. Therefore,
various technologies utilizing highly sensitive electrical and
optical components to detect the targeted spinal layer have
been developed. Force-detection technique was introduced
by Dogliotti [3] in 1933, which is known as the Loss of
Resistance (LOR) technique. This technique uses a bevel-tip
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needle that is connected to a syringe filled with physiological
solution inserted with constant pressure on the piston as it
penetrates the ligamentumflavum (LF). As soon as the needle
passes the subcutaneous tissue, it encounters resistance in
the supraspinous ligaments due to the density of this area
and the needle’s bevel tip. Then, the needle is advanced
through the LF, where a strong resistance to the injected
needle occurs. However, the resistance is diminished as the
needle arrives at the ES. The reason behind this rapid decrease
in resistance is due to the abundance of loose adipose con-
nective tissue that is filled with blood vessels [3]. Another
idea was proposed using the Fiber Bragg Grating Force
Device (FBGFD) to monitor the exerted force by the spinal
needle during Lumbar Puncture (LP) [4]. In general, FBG
sensors are widely used in biomedical applications since they
are small in size, inert, provide high sensitivity, insensitive
to radio frequency, and have immunity to electromagnetic
interference [5]. FBG sensor is deployed along the length
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of an optical fiber and fabricated by inscribing a periodic
refractive index change in the core of the optical fiber. The
FBG is affected if an axial strain is induced, which causes a
proportional shift in the Bragg wavelength. The strain values
can be easily obtained by calibrating the instrument. Fur-
thermore, certain imaging techniques were proposed such as
optical coherence tomography, ultrasound, and fluoroscopy
[6], [7], [8], [9]. Nevertheless, various techniques suffer
from different limitations. For instance, in the fluoroscopy
technique, the differentiation of soft tissues such as blood
vessels and nerves was not applicable which decreased the
effectiveness of the results. More recently, convolutional neu-
ral networks (CNN) were used as a classification tool to
improve tissue recognition and enhance the differentiation of
different layers [5]. The thickness of the soft tissues affects
the viscoelastic measures of the soft tissues over the bones,
as has been demonstrated [10]. This requires delivering a
mechanical stimulation to the tissue in question and exam-
ining the ensuing force and motion responses, which vary
greatly between diverse biological materials. Simpson et al.
[11] described a method for anticipating an impending bone
hit as an implementation of this concept. By assessing the
mechanical characteristics of the tissue before inserting the
epidural needle, this technique enables the needle to be antic-
ipatorily guided and the strike to be avoided.

Using ultrasound imaging of anatomical markers, the pro-
cess may be guided in real time. Ultrasound can be used to
measure the depth of the ES and the angle at which the needle
is inserted [12], [13]. In contrast to preprocedural scanning,
real-time ultrasonography may be more precise since it is
not affected by changes in the patient’s posture [1]. Only
at a distance of around 2 mm may fiber optic methods be
employed, which is too near for them to be useful in avoiding
bone hits [14], [15]. In recent years, the use of haptic devices
in medical simulations has increased, offering an accurate
means of simulating the sensation of operation [16], [17].
Simple epidural simulators have evolved and improved since
their original publication in 1980. Mediseus [18] presents
a computer-based simulator, which connects to comput-
ers with visual screens and uses haptic feedback devices
housed in portable enclosures. Mediseus and other devices
have been criticized for lacking measurable data for force
feedback [19].
In this paper, a new spinal needle that utilizes different tis-

sue forces to guide the physician during needle insertion has
been designed. It employs a very compact load cell embedded
in the spinal needle to measure the force of each layer based
on the change of the strain gauge. The range of the force for
each layer helps the spinal needle insertion into ES. A spinal
phantom was prepared to test the force caused by each layer.
Moreover, the variation of the force value was studied, where
it was found that the force of the LF, interspinous ligament
(IL), muscle, fat, skin, and ES from high to low, respectively.
This design showed a high accuracy in identifying different
layers.

II. DESIGN AND METHODOLOGY
A. CONCEPTUAL DESIGN OF THE NEEDLE
The basic conceptual design of the needle is illustrated in
Fig. 1(a), where the 3D views of the proposed design are
shown. The presented novel design utilizes outer and inner
needles, a spring that is placed between the two needles, and
a force-measuring sensor.

The assembled and exploded views of the epidural needle
design are demonstrated in Fig. 1(b). The designed epidural
needle functions as a spring-pushed-based device, where the
spring is in between the outer needle and the inner needle.
The casing in which the outer needle is placed is attached
to a force-measuring sensor from the rare end. The outer
needle, when inserted into the membrane surrounding the
cerebral spinal fluid (CSF), will be pushed back due to the
resistance it encounters from the different tissues before it
reaches the CSF. This pressure experienced by the needle will
be transmitted to the force-measuring sensor via the spring
and the inner needle attachment. Once the outer needle enters
the CSF, the force sensor will feature a significant pressure
drop. This pressure drop will be used as an indication that
the needle has reached the ES. At this point, the inner needle
along with its attachment will be removed, and the sample
will be collected accordingly.

B. LOAD CELL SELECTION
The proposed needle is built based on force detection of
different tissue resistances on the spinal needle. The selected
load cell was a subminiature button load cell, manufactured
by ATO [20]. This load cell is distinguished by its compact
size and low price. The subminiature load cell displays a
high sensitivity, and smaller size, at a lower price. In terms
of the operating temperature, the button load cell does in
fact operate in a smaller range. However, the environment in
which the device is meant to be used (hospitals) is generally
temperature controlled. Therefore, the temperature advantage
of the other high precision load cells (such as MDB-5 Ultra
Precision, manufactured by Transducer Techniques) is not
of great significance. Since the main goal is to design an
efficient force-identification spinal needle that is efficiently
designed, light weight, and low cost, the button load cell
was selected. Although the MDB-5 has better features than
the subminiature load cell, the latter displays satisfactory
characteristics for our given application and was selected
due to its advantage of being smaller in size and lighter
in weight than the former, allowing the device to be more
ergonomic [21].

C. PHANTOM DESIGN
To test and train the classification system, a phantomwas cre-
ated. The phantom was made up of six layers: skin, muscle,
subcutaneous fat, IL, LF, and ES, each of which has distinct
properties. Based on the idea in [22], the layers were created
using various meat cuts and gelatin, with the powder-to-water
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FIGURE 1. (a) 3D-views of the proposed design, (b) detailed 2-D drawing of the spinal epidural needle.

FIGURE 2. (a) Proposed phantom design, (b) Complete designed phantom and (c) Individual Phantom Layers: (1) Skin,
(2) Fat, (3) Muscle, (4) IL, (5) LF and (6) ES.

ratio changing for each layer in order to alter the gelatin
layers’ consistencies. The tissues were further colored to
reflect a hue resembling that of genuine tissues. The ES had

the most water since it had the least resistance of the six
layers, whereas the skin layer had the highest gelatin-to-water
ratio to mimic the flexibility of real skin. Regarding the IL,
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TABLE 1. Calibration results of the load cell.

FIGURE 3. Calibration curve of the load cell.

the skin and ES were separated by the same amount of gelatin
in water. The muscle was modeled using beef steak, while
the LF was modeled using beef striploin, which is harder and
has higher resistance. Fig. 2(a) depicts the intended phantom
design, while Fig. 2(b) depicts the implemented phantom.
Experimentation and data gathering were carried out on each
layer individually, as shown in Fig. 2(c) below.

D. CALIBRATION OF THE LOAD CELL
Before collecting data from the load cell, it should be cali-
brated. The calibration equation was derived by relating the
weight in grams, that was mounted up the load cell, to the
output voltage, as seen in Table 1. The calibration was carried
out in LabVIEW,where the output voltage was collected from
the analog pin of the Arduino, which was used to monitor the
output voltage when the weight was changed. The following
calibration equation was obtained from the linear calibration
curve in Fig. 3:

Weight (Newton) = Weight (Gram) ×9.81×10−3

=

(
Voltage − 0.436

0.0007

)
× 9.81 × 10−3

FIGURE 4. Data collection circuit.

The full method, however, was completed in MATLAB for
additional processing.

E. DETAILED DESCRIPTION OF THE FINAL DESIGN
The proposed prototype is made up of three primary con-
trolling hardware components. The data collection circuit,
shown in Fig. 4, is built using an instrumentation amplifier
(INA125P), a resistor (6.8 �), and an Arduino Uno board,
which is utilized to gather input and power the other compo-
nents as shown in Fig. 5. The instrumentation amplifier is also
linked to the load cell, which is located inside the needle hous-
ing. The system software is the second component, whichwas
created with MATLAB and the Arduino IDE. To compile and
upload the code needed to acquire data, program the LCD
display, and program the push buttons used to turn on and
off the screen, the Arduino IDE was utilized. MATLAB was
used in the meantime to gather data, filter readings, extract
features, train classifiers, display graphs, and classify fresh
signals into one of six spinal layers. The detailed code for the
data acquisition, module training, and software classification
can be found in appendices A, B, & C; respectively.

The final component required to build the system is the
display and pushbutton circuit. Fig. 6 depicts this circuit,
that is built using an Arduino Due board, two pushbuttons,
an ILI9488 TFT display, and some resistors. The Arduino
features an ILI9488 TFT display, its board is connected to the
ILI9488 TFT display, and the pushbuttons are hooked to the
digital inputs. The first push-button turns on/off the screen,
while the second starts and stops the MATLAB system.

F. CHARACTERIZATION OF DIFFERENT FEATURES OF
SPINAL LAYERS
The experimental setup used to acquire readings and test the
classification is viewed in Fig. 7. The setup included the
components mentioned in Section II-D. The data acquisition
board was connected to the computer in order to interface the
software and the hardware in order to classify the readings.
Initially, during experimentation, the results were displayed
on the computer screen for ease of access. However, in the
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FIGURE 5. Block diagram for data acquisition system.

FIGURE 6. Display circuit.

final prototype, the results are displayed on a separate, stan-
dalone display screen. To begin with, the calibration equation
obtained from the initial testing was written in MATLAB
so that each reading is automatically converted to Newtons
to evaluate it. Then, as seen in Fig. 7, the needle with
the force cell was inserted into the designed phantom to
acquire the force reading. The readings acquired by the load
cell go through the instrumentation amplifier to amplify the
small readings. The amplification is helpful during feature
extraction in MATLAB as the waveform characteristics of
the lower-force layers are more prominent. The amplified
signal is then sent to MATLAB for signal processing and
classification using the Classification Learner app that is built
in MATLAB. As for the display screen, it is used to display
the classifier results when testing the phantom.

III. RESULTS AND DISCUSSION
First, the calibration curve was plotted in Excel to observe the
linearity of the system as shown in Fig. 3. This calibration
was used to examine the pressure values of different layers
on the needle tip. Hence, the average pressure value obtained
from each layer is plotted in Fig. 8, where the best trendline
was obtained with Polynomial option with an order of 5. The
error bar of each layer force is illustrated as well, where the
variation of the readings is examined.

The load cell calibration was done to ensure accurate
results. Fortunately, the calibration curve showed a linear
relationship between the applied force and the output voltage.

FIGURE 7. Experimental setup.

Hence, the linearity of a sensor helps minimize the uncer-
tainty of its output scale, which was guaranteed in this
procedure. After that, the average results of forces that were
taken from each layer were recorded using load cell and
MATLAB software. The outcome of the study in [25] was
used to analyze the obtained results.

From Fig. 8, it was proven that the LF phantomwas always
exerting the highest force on the needle tip, whereas the ES
is the lowest. It is important to note that the researchers in [3]
and [26] observed that the exerted force drops as the needle is
being inserted to the ES layer. ES ismainly composed of loose
adipose connective tissue that is filled with blood vessels;
hence, this type of tissue does not resist the injection of fluid.

The pressure of spinal cord layers was estimated in
MATLABfirst over 20 trials of each layer. Then, the results of
these trials were grouped based on their features to plot the
forces of each layer and its amplitudes respectively. Hence,
these features were varied according to the recorded layer.
For instance, the pressure of the skin layer on the needle tip
was recorded 20 times and then the result’s features were
extracted. Similarly, this procedure was done to the remaining
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FIGURE 8. Average pressure value obtained from each layer.

layers. Then, a table of features was created to start the
classification based on it, as shown in Table 2. Knowing that
new columns representing the class number were added next
to each layer feature.

SPSS Statistics Software was used to test the accuracy of
the classification. SPSS software is produced by IBM® that
offers a comprehensive range of features, including advanced
statistical analysis, a diverse collection of machine learn-
ing algorithms, text analysis, open-source tools, integration
with big data systems, and effortless deployment into var-
ious applications. Therefore, the accuracy of the features
using Linear Distribution Classifier was observed and stud-
ied accordingly. Multiple classification trials were done to
improve accuracy. One way to improve accuracy is by
increasing the number of trials so that the classifier can
understand the behavior of the readings and determine their
distribution. Another way is by increasing the number of
features, as more features will give the classifier more data
to read and examine. As a result, 50 trials were taken, and
20 features were extracted. The overall accuracy validation
increased to 77.1%. Knowing that 88% of skin readings are
classified as skin, and 95.9% of ES readings are classified
correctly. Although other layers are still not high enough
compared to the accurate classification, they are still clas-
sified correctly when the materials are tested in the lab.
Nevertheless, other classification applications were used to
improve the overall accuracy such as the Bilayered Neural
Network in MATLAB. Thus, the Bilayered Neural Network
classifier was used in MATLAB using Classification Learner
where the accuracy testing result was 86.7%, as shown in
Fig. 9.

To ensure that the obtained accuracy test percentage is
almost repeatable, the feature table was inputted to the Clas-
sification Learner many times where the percentage of the
Bilayered Neural Network classifier remained fixed. Other
classifiers were considered as well, as seen in Table 3. It is
clear that the percentage of accuracy was above 80% in all
trials with different classifiers.

TABLE 2. Table of classification features.

TABLE 3. Classification results of different classifiers.

After that, the Bilayered Neural Network classifier output
was exported to MATLAB workspace to start testing the
layers as explained in the previous section. To ensure that
our results are satisfied, and the classification of each layer
was done correctly, a data comparison was done. As stated in
section 3.2, previous research outcomes were compared and
analyzed thoroughly. The relation of forces of the spinal cord
were observed and taken into consideration when validating
the results. Where it was guaranteed that the obtained results
were within the expected range since it satisfied the force-
layer relation. Knowing that the phantom was designed based
on the general characteristics of each layer, the exerted force
on the needle tip was expected to be at its lowest value
when testing the ES phantom, given the previously explained
reasons. Fortunately, this is what was obtained from multiple
trials of the designed classification system. Hence, the design
system can successfully evaluate the force of puncture and
can easily detect the drop-in forces to state the ES layer.
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FIGURE 9. Classification learner output comparing classification accuracy of different classifiers.

IV. CONCLUSION

In conclusion, this paper aimed to design a high-accuracy,
relatively low-cost epidural needle with force puncture guid-
ance. The goal was to improve the success rate of LPs at the
first try. Thus, reducing the risks and side effects of repeating
the procedure, as well as decreasing the procedure’s failure
rate. The identification system was built using a button load
cell that was mounted above the spinal needle and secured
using a needle casing. Due to the limitations, the tests were
carried out on a phantom that mimics the force properties of
the different spinal tissue layers. The phantom was used to
collect a database of a couple of hundred readings that were
used to build the classifier after the sought-after features were
extracted. The classifier was built using the recorded database
and provided our system with 86.7% accuracy. The accuracy
is acceptable given that it is above 80% and that can be further
improved by taking more readings for the database. After the
classifier was built and exported, new readings were taken
and classified into one of the six spinal layers. Although the
design was successful at performing its required objectives,
there is still plenty of room for improvement. First, the clas-
sification accuracy can be enhanced further by taking more
readings to build the database. Amore accurate phantommay
also be tested to provide more repeatable readings with less
variability, as the phantoms used in this devices testing may
have had slight differences, especially in the meat layers,
as a new phantom was needed to be made every week. The
device’s accuracy may also be improved by selecting a more
sensitive, and possibly more expensive load cell.

APPENDIX A
DATA ACQUISITION CODE
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APPENDIX B
MODULE TRAINING CODE

APPENDIX C
SOFTWARE CLASSIFICATION CODE
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