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ABSTRACT This research introduces a novel approach to optimizing control policies for waste cranes
operating at waste-to-energy plants. Although previous methods forced people to define evaluation functions
for automation, such design works in actual environments can often be challenging due to limited sensors and
design difficulties. This paper aims to establish a methodology that achieves automation by having people
respond to interactive pairwise comparison queries, which is relatively simple compared to design work.
On the other hand, considering such automation, it becomes imperative to address the increased sample cost
associated with slow crane operation and the complexities of decision-making due to waste inhomogeneity.
Our proposed Preferential Bayesian Policy Optimization (PBPO) optimizes control policies with a small
number of queries using Preference-based Bayesian optimization (PbBO) and mitigates the difficulty of
decision-making by providing human evaluators who have an option to skip queries. We also incorporate a
query synthesis mechanism to enhance query efficiency that generates a new preference relation from the
skipped queries. PBPO’s effectiveness was validated with a scattering task employed in previous studies.
Experimental results with simulated evaluators show the effectiveness of the PBPO and query synthesis.
Furthermore, results with actual human evaluators indicate that our proposed method performs as well as
the Bayesian optimization (BO) method, which requires an evaluation function.

INDEX TERMS Automation, Bayesian methods, cranes, humans in the loop, interactive systems,
optimization methods, waste handling.

I. INTRODUCTION
Waste-to-energy plants typically have pits that temporarily
store incoming waste, and large cranes maneuver and agitate
it to facilitate stable combustion. Even though a portion of
such crane operations is automated, adjusting and fine-tuning
the controllers by crane operators are often essential. Such
adjustments are caused by the diversity of the incoming
waste: its shape, size, weight, hardness, and flammability.
Therefore, the operators, who are familiar with the behavior
of the cranes and the plant conditions, design and adjust
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their controllers based on their experience to ensure optimal
performance. However, designing and adjusting controllers
by operators is problematic because their training is costly
and time-consuming.

A promising approach to reduce reliance on operators is a
trial-and-error method of adjusting the controller to minimize
a predefined evaluation function. Mackin et al. defined such a
function based on the number of agitations and proposed a
method to optimize the crane operation schedule, defined
by a sequential list of commands, using a genetic algorithm
[1]. Although they trained their scheduler on a simulator,
conducting trial-and-error in a real environment is essential
to account for waste diversities. Sasaki et al. proposed an
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automation method based on Bayesian optimization [2] and
policy optimization [3] to consider the high data collection
costs due to a crane’s slow motion. They also defined an
evaluation function for the weight of the waste grasped by
the crane.

Although previous studies have achieved some success,
preparing evaluation functions can be difficult for several
reasons. First, manually designing them in the real world
is exhausting due to such issues as negative side effects
and hacking [4], [5]. Although step-by-step modification
of an evaluation function may solve these problems, this
is a heavily operator-dependent process. Second, as a
unique challenge in waste crane automation, limited sensors
complicate designing an evaluation function due to waste’s
diversity. In typical waste-to-energy plants, we can only
access limited sensor information: the values of load cells
installed on the cranes, the pseudo-heights, and the number
of agitations in a delimited area in the pit. Indeed, the
evaluation functions in previous studies [1], [2], [3] are
well-designed, leaving the more complex tasks that consider
waste’s diversity as a challenge.

Our idea for eliminating the need to design an evaluation
function requires humans to choose between the desirability
of two different crane behaviors. We optimize the control
policy by interactively presenting the behavior generated
by two different policies to a human evaluator and ask her
to choose the option that better achieves the present task
objective. Since it is easier to judge whether a task is good
or bad based on shared criteria and objectives than to design
and adjust control policies and evaluation functions, we argue
that this query-based approach relaxes the requirement that
evaluators possess operational skills and domain knowledge.
As a result, this approach allows people without such skills
or knowledge to become evaluators. However, in adopting
this approach, we must address the following technical
difficulties: 1) how to learn with fewer queries to reduce
the high trial-and-error cost of actual heavy machinery and
2) how to deal with situations where making clear decisions
is complicated due to the characteristics of waste.

In this paper, we propose Preferential Bayesian Policy
Optimization (PBPO) as a solution to the problems men-
tioned earlier. As illustrated in Fig. 1, PBPO repeatedly
presents two crane operations to human evaluators who select
the one that better matches the task purpose, thus obtaining
an optimal control policy. To address problems 1) and 2),
PBPO uses Preference-based Bayesian optimization (PbBO)
[6], [7] for the query selection and provides a skip option
to the evaluators for difficult-to-judge queries. Furthermore,
to reduce the number of necessary queries, PBPO introduces
a query synthesis mechanism that generates new preference
relations from queries skipped by evaluators and their past
choices.

The following are the key contributions of this paper:
1) To eliminate the challenging work of designing eval-

uation functions for automating heavy machinery,
we proposed amethod that optimizes the control policies

FIGURE 1. Applying proposed Preferential Bayesian Policy Optimization
(PBPO) to a waste crane operation: PBPO optimizes control policy by
repeatedly asking human evaluators which of two videos with different
control strategies is working better.

through interactive pairwise comparison queries to
human evaluators.

2) We validated its effectiveness using several imple-
mented simulated evaluators with varying response
uncertainties.

3) With the help of human evaluators, we validated our
query synthesis mechanism and compared its acquisi-
tion performance with previous methods that explicitly
require an evaluation function.

The remainder of this paper is organized as follows.
Section II summarizes related studies. Section III provides the
PbBO details used in the proposed method, and. Section IV
outlines our proposed method, PBPO. Then we describe the
tasks used in the experiments in Section V. Sections VI
and VII present the experiments with simulated evaluators
and actual human evaluators. Sections VIII and IX present
the discussion and conclusion.

II. RELATED WORK
A. HEAVY MACHINERY AUTOMATION BY DATA-DRIVEN
APPROACH
The automation of construction equipment, especially exca-
vators, is an area of intense research [8], [9], [10], [11], [12].
As a data-driven automation approach, Egli et al. proposed a
method for automating the arm of a hydraulic excavator using
a data-driven actuator model and a control policy trained
by reinforcement learning on a simulator and tested it on
a grading task with actual equipment [13]. Tahara et al.
focused on the variations in the quality of demonstrations
and the lack of diversity, both of which are problems
in automating excavation through imitation learning, and
proposed an efficient learningmethod that explicitly uses task
accomplishment [14].
There has also been extensive research on automation for

various types of cranes [15], including tower [16], gantry
[17], [18], and overhead cranes [19]. Chun et al. introduced
a method that integrates deep reinforcement learning with
an algorithm for identifying static initial equilibrium states
to automate the lifting of large blocks by cranes, a typical
operator-dependent task [20]. Cho et al. described their
strategy for automating tower-crane-lifting operations and
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estimating the lifting times at construction sites. They utilized
agents trained by reinforcement learning on a dynamic
simulator [21].

Only a few studies, however, have focused on the
automation of cranes used in waste-to-energy plants. These
studies aim to effectively manage the waste in pits to ensure
stable combustion. Mackin et al. utilized genetic algorithms
(GAs) and tackled the challenge of automating the scheduling
of action sequences, such as where in the pit to collect
the waste and where to transport it [1]. GA’s fitness was
defined in terms of the degree of trash agitation and the
flatness of the pit planes. Concentrating on the task of
scattering the collected waste to agitate it, Sasaki et al.
proposed a Bayesian optimization (BO)-based method [2]
that accounts for robustness to waste inhomogeneity and
query efficiency and a self-triggered policy search method
[3], where predefined control strategies and their durations
were employed as control policies. Both studies assessed the
policy performance using aweight-based evaluation function.

Our proposed method diverges from prior work by
optimizing the control policies from human preferences
without predefined evaluation functions.

B. PREFERENCE-BASED POLICY OPTIMIZATION
Much research has been devoted to preference-based deep
reinforcement learning in recent years. Christiano et al.
proposed a deep reinforcement learning framework that
learns a reward function from human responses to pairwise
comparison queries [22]. Since their framework requires
hundreds to thousands of human feedback, subsequent
studies [23], [24], [25], [26] have addressed improving
feedback efficiency, which is essential for learning reward
functions from human preferences. On the other hand, those
studies are based on model-free reinforcement learning,
which is unsuitable for automating targets that require a lot
of trial-and-error time, such as heavy equipment.

Several studies have attempted to optimize policies from
dozens of queries based on approaches that do not rely on
deep learning. Sadigh et al. proposed a method for learning
the weights of a reward function expressed as a weighted
sum of predefined features in an active learning framework
[27]. Biyik et al. proposed a learning method that captures
nontrivial nonlinearities in reward functions by modeling
them as a Gaussian process [28]. Basu et al. developed a
model that captures human reward dynamics as they change
in response to environmental interactions and proposed a
learning method using hierarchical queries [29].
Compared to policy optimization based on learned reward

functions, a framework that directly optimizes policies has
the potential to reduce the number of queries. Tucker et al.
proposed a Bayesian dueling bandit approach to optimize
the gait parameters of the lower body exoskeleton, which
incorporates cooperative feedback to allow the selection
of a preferred action between two presented alternatives
[30]. Tucker et al. also extended their algorithm to capture
preferences on higher dimensional parameter spaces by

iteratively exploring random one-dimensional subspaces
[31]. Additionally, some studies used GLISp [32], a pairwise
preference-based optimization algorithm, to tune the parame-
ters of model predictive control [33] or a path-based velocity
planner with fuzzy logic [34].

Our research is unique because it proposes policy
optimization using preference-based Bayesian optimization
to improve the query efficiency for automating heavy
machinery.

III. PRELIMINARIES
A. BAYESIAN OPTIMIZATION
We consider a situation where we aim to find optimal
parameter w∗ = argmax

w
f (w) for objective function f (w)

of parameter w ∈ W , even though its optimization is
analytically difficult. Bayesian optimization (BO) [35] is a
sequential design strategy for such optimization.

First, BO approximates the objective function with a
surrogate model that is relatively easy to evaluate. We use a
Gaussian process (GP) [36] as a surrogate model and regress
the relationship between parameter wn and corresponding
objective function value en:

en = fn + εn, (1)

where εn ∼ N (0, β) is the Gaussian noise and fn = f (wn)
with simplified notation. Let W := [w1, · · · ,wN ]⊺ be the
parameters already evaluated by the objective function, and
let E := [e1, · · · , eN ]⊺ be the corresponding evaluation
values. GP regresses the objective function on the predictive
distribution as follows:

p(f (w) | w,E,W)

= N (f (w) | µ(w), σ 2(w)), (2)

µ(w) = k⊺
W,∗

(KW + βI)−1E, (3)

σ 2(w) = k(w,w)− k⊺
W,∗

(KW + βI)−1kW,∗, (4)

where KW is a gram matrix with [KW]ij = k(wi,wj), k(·, ·)
is a kernel function with kernel parameter θk , kW,∗ is a
kernel vector with [kW,∗]i = k(wi,w), and I is a unit matrix.
Moreover, mean function µ(w) and variance function σ 2(w)
represent the mean and variance of the predictive distribution,
and the value of σ 2(w) tends to increase in regions with
insufficient data.
Then BO generates queries w′ using predictive dis-

tribution. We introduce an acquisition function α(·) that
considers the trade-off between exploration and exploitation
and generates a query:

w′← argmax
w

α(w). (5)

This query w′ is then evaluated by the objective function,
and BO updates the surrogate model using w′ and evaluation
value f (w′). These steps are repeated until the query
parameter converges to w∗.
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FIGURE 2. Overview of parameter optimization of a waste crane controller by proposed Preferential Bayesian
Policy Optimization (PBPO).

B. PREFERENCE-BASED BAYESIAN OPTIMIZATION
Unlike BO, we now consider a case where no evaluation
value e is given directly, but instead a preference relation
is given for a query that bundles two parameters (w0,w1).
In this paper, we refer to BO for such problem settings
as a Preference-based BO (PbBO) [6], [7]. Assume that
the response to query y is given as y = 0 when w0 is
preferred over w1, and y = 1 when w1 is preferred over w0.
We now consider that y is given based on latent evaluation
function f (·):

y =

{
0, if f (w0) ≥ f (w1)
1, if f (w0) < f (w1)

(6)

To simplify the notation, f (w0) and f (w1) are referred to as
f 0 and f 1.
PbBO treats the preference relation as a probability

distribution, and the distribution of the latent evaluation
function is approximated by variational inference using the
responses to the queries. First, let θk ∈ 2 be a kernel
parameter, and let W := {w0

i ,w
1
i }
N
i=1 be previous queries;

we denote prior distribution p(f|θk ) by GP with mean 0 and
covariancematrixK, where f is a simplified notation of f (W).
Furthermore, assuming that the preference relation is polluted
by Gaussian noise, we define the likelihood of the preference
relation [37]:

p(y|f 0, f 1) =
∫ f 1−f 0

√
2ϵ

−∞

N (γ |0, 1)dγ, (7)

where ϵ is a hyperparameter. The distribution of answers
Y := {yi}Ni=1 to previous queriesW is described:

p(Y|f) =
N∏
i=1

p(yi|f 0i , f 1i ). (8)

Therefore, from Bayes’ theorem, the posterior distribution is
described:

p(f|Y, θk ) =
p(Y|f)p(f|θk )∫
p(Y|f)p(f|θk )df

. (9)

Now, since the likelihood given by (7) is only obtained
numerically, we cannot analytically obtain the posterior
distribution. Therefore, we approximate p(f|Y, θk ) by the
Variational Bayesian method [38]. Let q(f) be the variational
distribution, and we approximate p(f|Y, θk ) by maximizing
log marginal likelihood log p(Y|θk ). Using Jensen’s inequal-
ity, maximizing the log marginal likelihood is replaced by
maximizing the Evidence Lower Bound (ELBO):

log p(Y|θk )

= log
∫

q(f)p(Y|f)p(f|θk )
q(f)

df

≥

∫
q(f) log p(Y|f)df−

∫
q(f) log

q(f)
p(f|θk )

df

= Eq(f)
[
log p(Y|f)

]
− KL(q(f)||p(f|θk ))︸ ︷︷ ︸

ELBO

. (10)

We maximize ELBO instead of the log marginal likelihood.
Let N (µ, 6) be a multivariate Gaussian distribution where
q(f) = N (µ, 6), and then ELBO is rearranged:

ELBO =
N∑
i=1

Eq(f)

[
log p(yi|f 0i , f 1i )

]
−

1
2
tr{K−16}

−
1
2
µ⊺K−1µ+

1
2
log |6| +

1
2
log |K| +

N
2

. (11)

We alternately optimize variational parameters µ and 6 and
kernel parameter θk using automatic differentiation.

Finally, we generate a new two-choice query (w′0,w
′

1).
Now, the inference of f ′ for parameter candidate w′ for the
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FIGURE 3. Overview of query synthesis: When evaluator skips answering a query, PBPO synthesizes new queries
using parameters previously selected by evaluator and parameters that comprise skipped query.

new query is given:

p(f ′|Y,w′) =
∫
p(f ′|Y, f,w′)q(f)df. (12)

From (12) and the acquisition function, we can select
parameter candidates w′0,w

′

1 for the new query. This study
uses Thompson Sampling (TS) as its acquisition function.
TS samples functions over W and selects the largest w′ in
the sampled functions as a candidate, and w′0,w

′

1 is acquired
by repeating this operation twice.

IV. PREFERENTIAL BAYESIAN POLICY OPTIMIZATION
A. POLICY EVALUATION SYSTEM
We consider a controller with parameter w ∈W as a control
policy for the waste cranes and optimize their operation by
optimizing w. Our proposed Preferential Bayesian Policy
Optimization (PBPO) estimates latent evaluation function
f (·) and obtains optimal parameter w∗ by repeating a
procedure that presents two crane behaviors to an evaluator
and asks her to select the operation that better meets the
objective. For example, let τ ′ be the crane operation by
controller π (·) with w′. We estimate f (·) from the answers
to the two-choice query of τ , assuming that the preference
relation between τ and w coincides. We record the operation
as a video and present it to evaluators so that the two
operations in the query can be compared simultaneously.
Therefore, we consider τ to be a video.

Fig. 2 shows the PBPO’s process flow for optimizing the
controller of the waste cranes:
1) Generate a new two-choice query (w0,w1) with PbBO.
2) Set each parameter w that comprises the query to

controller π(·).
3) Execute the task with the waste crane controlled by

π (w). The operation is recorded by a camera as a pair
of videos (τ 0, τ 1).

4) Present (τ 0, τ 1) corresponding to (w0,w1) to the
evaluator.

5) If the evaluator skips an answer, perform query synthesis
(Section IV-B).

6) Add a query and answer pair to the dataset.

FIGURE 4. PBPO flowchart.

7) Update PbBO parameters with the dataset.
Here PBPO estimates f (·) and obtains w∗ by repeating
steps 1) through 7) several times. Note that 2) and 3) are
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FIGURE 5. Illustration of waste-scattering task by a waste crane, where
blue arrows indicate task flow: Yellow crane first grabs the waste in pit
and opens and closes its claws to scatter it in small quantities while
moving.

FIGURE 6. Overview of evaluation function for scattering task: We define
green-shaded region between ideal grasp weight transition (dashed blue
line) and actual grasp weight transition (solid orange line) as loss.

executed twice in each loop. In addition, we assume that
an RGB camera that records τ is installed in appropriate
locations to monitor the work. Indeed, our targeted plant,
tested in a previous work [2], installed a camera in its control
room overlooking the pit.

B. QUERY SKIPPING AND QUERY SYNTHESIS
Query synthesis is a method of improving query efficiency
while reducing the burden on evaluators by allowing them
to skip answering a difficult-to-judge query only if ‘‘both
alternatives in a query are undesirable.’’ Avoiding the direct
use of potentially erroneous feedback in estimations can
contribute to maintaining the algorithm’s reliability. Fig. 3
shows an overview of query synthesis. Assume a situation
where PBPO presents crane operations corresponding to
wA and wB; however, an evaluator judges that neither is
desirable and skips answering. When an answer is skipped,
PBPO randomly extracts parameters corresponding to the
operation that the evaluator answered as desirable from
the past two-choice queries in the dataset. Let wC be a
randomly extracted parameter; query synthesis generates
pairs (wC ,wA) and (wC ,wB), both of which are labeled with
y = 0, and adds them to the dataset. If the selected parameter
does not yet exist, queries are accumulated until the evaluator
chooses between two options.

FIGURE 7. Constructed robotic waste crane system and pseudo waste.

Finally, we show a PBPO flowchart, including query
synthesis, in Fig. 4.

V. WASTE-SCATTERING TASK
We conducted validation experiments on a scattering task
for which an evaluation function was previously defined [2].
As shown in Fig. 5, the scattering task homogenizes the waste
in a pit by first grasping a sufficient amount with the crane’s
bucket and dropping it at a certain rate. Note that our PBPO
does not require a predefined evaluation function; we have
chosen tasks for which we can define an evaluation function
to quantitatively evaluate the performance. The following
subsection describes the predefined evaluation function, the
controller used in the task, the constructed experimental
environment, and the task settings.

A. PREDEFINED EVALUATION FUNCTION
We define the ideal control policy for waste-scattering tasks
as continually dropping a precise amount of waste while
moving, such that all the grasped waste is completely gone
by the end of the movement. As in a previous study [2], the
task’s achievement is evaluated from the time series of the
crane’s grasped waste weight. Fig. 6 shows the normalized
grasp weight transition corresponding to the crane’s moving
time. We define ideal weight transition mI that results from
the ideal policy as one that decreases at a constant pace over
time T , plotted by the blue dashed line in Fig. 6. Additionally,
we plotted actual weight transition m(w) when the task is
performed under π (w) as a solid orange line and define the
task loss as the green-shaded region. Therefore, we define the
evaluation function for a given weight value series m(w) as
follows:

g(m(w)) = −RMS(m(w)−mI), (13)

where RMS is the root mean square.
Although (13) provides the evaluation value of the weight

transitions, the waste inhomogeneity complicates directly
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evaluating parameters w using (13). Consequently, different
weight transitions can result from inhomogeneity, even
when tasks are performed by the controller with identical
parameters. Hence, we evaluate the parameters by the mean
of the evaluation values obtained from multiple runs of
the task. Specifically, consider a situation where π (w)
executes a task K times, and let m(k)(w) denote the weight
value series obtained for the kth time. Using the task
evaluation function (13), we define the evaluation function for
parameter w:

f (w) =
1
K

K∑
k=1

g
(
m(k)(w)

)
. (14)

Note that (14) is used only when evaluating the parameters
obtained by each estimation method. In the estimation phase,
each method aims to obtain optimal parameter w∗ from the
evaluation values obtained by (13).

B. CRANE CONTROLLER
We consider controller π (·) for a scattering task with
parameter w = [w0,w1]. Parameters w0 and w1 correspond
to the opening and closing times of the bucket’s claws. Here
the waste crane moves at a constant speed from a predefined
starting point to an ending point while scattering the waste by
repeatedly opening and closing its bucket’s claws. Since the
ideal movement in the scattering task is to continuously drop
waste, we need to minimize the time the claws stop during
the opening and closing actions. Hence, we restrict the space
of the parameters we address to region w0 < w1 where the
claws’ opening time exceeds the closing time.

C. EXPERIMENT ENVIRONMENT
1) ROBOTIC WASTE CRANE SYSTEM
We developed a robotic waste crane system based on a
previous study [2], as shown in Fig. 7. Our system uses a
robot manipulator (Universal Robots UR5) for the crane and
a force sensor (Robotiq FT 300) for the weight measurement.
The bucket’s four claws are each driven by a servo motor.
A video camera (Microsoft Kinect v2) was also positioned in
full view of the crane and the pseudo waste to record video
for two-choice queries.

2) PSEUDO WASTE ENVIRONMENT
To validate the effectiveness of the proposed method in
various environments, we prepared two environments with
different characteristics (Fig. 8). The pseudo waste in
Environment 1 (Env1) consists of amixture of shredded paper
and chopped packing material, characterized by its tendency
to fall in clumps due to entanglement. Therefore, the bucket in
Env1 has a claw shape suitable for grasping such waste. The
pseudo waste in Environment 2 (Env2) consists of chopped
straw, which resembles grains of sand that do not get tangled
together. Hence, the bucket in Env2 is shaped to prevent the
waste from spilling between the claws.

FIGURE 8. Two pseudo waste environments.

FIGURE 9. Comparison of evaluation function values g(m(w)) in each
pseudo waste environment: Mean and Standard Deviation are mean and
standard deviation of five trials. We treat each Mean as evaluation
function f (w) value for each environment.

D. TASK SETTINGS
In the following experiments with both simulated evaluators
and actual human evaluators, we limited the opening and
closing times of the crane’s claws as follows: 0 s ≤ w0,w1 ≤

1 s. The crane moves from the starting point to the ending
point in 10 s, repeatedly opening and closing its claws.
Moreover, we discretized w0 and w1 with 21 points each and
restricted the parameter space (as noted in Section V-B), and
so the number of combinations to explore is 231.
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FIGURE 10. Transition of evaluation function f (w) values of parameters acquired by PBPO and comparison methods from responses
of simulated evaluators that return accurate answers: Horizontal axis represents number of two-choice queries, and vertical axis
represents f (w) value. w acquired by PBPO and PBPO w/o skip correspond to point of maximum posterior mean, and w acquired
by Baseline corresponds to w0. Each solid line is drawn from average of 50 trials.

FIGURE 11. Violin plot of evaluation function f (w) values according to parameters acquired at 40, 60, and 80 two-choice queries to
simulated evaluator that returns accurate answers: Number of trials for each is 50. White dots indicate median, and asterisks indicate
statistically significant differences (∗: p < .05, ∗∗: p < .01).

To minimize the time required for the human evaluators
to participate in the experiment, we pre-collected the crane
motions to be presented to them. Before the experiment,
the crane was operated five times in each environment for
each parameter to collect weight series and video clips. Then
in the experiment, one of the five candidate motions, all
corresponding to the same parameter, was randomly selected
and presented to them. In all the experiments described in
this paper, the cranemotion corresponding to a parameter was
randomly extracted from these collected sequences. We also
obtained evaluation function f (w) value from these collected
series, assuming K = 5. In Fig. 9, the Mean and Standard
Deviation represent the mean and standard deviation of
g(m(w)) for five trials, and the color of the heatmap changes
from blue to red as the values increase. HereMean represents
f (w). Furthermore, (0.95, 0.6) and (0.1, 0.1), indicated by
the black arrows in Mean, represent optimal parameter w∗

for Env1 and Env2, and the respective optimal evaluation
function values f (w∗) are −33.7 and −46.2.

Comparing the Means for each environment, we found
that Env1 has high values over a wide area, and Env2 has such
values only near w∗. Comparing the Standard Deviations
shows that Env1 tends to have higher values than Env2. PBPO
seems to struggle more to acquire optimal parameters for
Env2 than Env1 because it is more likely to encounter queries
with choices that have both low evaluation values in Env2.
Finally, the mean and standard deviations of g(m(w)) across
W for each environment were −69.7 and 23.4 for Env1 and
−125.7 and 20.0 for Env2.

VI. EXPERIMENTS WITH SIMULATED EVALUATORS
A. SETTINGS
Prior to experiments with actual human evaluators, we ver-
ified the effectiveness of our proposed method using a
program called simulated evaluators, which returns a pref-
erence decision for a two-choice query. In this experiment,
we did 1) a performance validation of the control parameters
acquired by PBPO from simulated evaluator responses and
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FIGURE 12. Transition of evaluation function f (w) values of parameters acquired by PBPO and comparison methods from responses
of simulated evaluators that probabilistically return an inaccurate answer: Horizontal axis represents number of two-choice queries,
and vertical axis represents f (w) value. w acquired by PBPO and PBPO w/o skip correspond to point of maximum posterior mean,
and w acquired by Baseline corresponds to w0. Each solid line is drawn from average of 50 trials.

FIGURE 13. Violin plot of evaluation function f (w) values based on parameters acquired at 40, 60, and 80 two-choice queries to simulated
evaluators that probabilistically return inaccurate answers: Number of trials for each is 50. White dots indicate median, and asterisks
indicate statistically significant differences (∗: p < .05, ∗∗: p < .01).

2) an ablation study to verify the query synthesis’s effective-
ness when the simulated evaluators return uncertain answers.
In the following, we describe the details of the simulated
evaluators and the comparison methods.

1) SIMULATED EVALUATORS
We implemented simulated evaluators (introduced as a
simulated user in Kwon et al. [39]) that answer preferences
for two-choice queries not from videos but directly from
evaluation values g(m(w)). We investigated the effect of
uncertainty in human responses [40] on acquisition perfor-
mance by preparing the following two simulated evaluators:
• Certain: evaluators that return the following accurate
answers to a two-choice query (w0,w1):

y =
{
0, if g(m(w0)) ≥ g(m(w1))
1, if g(m(w0)) < g(m(w1))

, (15)

• Uncertain: evaluators that often return inaccurate
answers based on the Bradley-Terry model [41]. The

probability of responding with y = 0 to (w0,w1) is
defined as follows:

p(y = 0) =
exp

(
ηg(m(w0))

)
exp

(
ηg(m(w0))

)
+ exp

(
ηg(m(w1))

) ,

(16)

where η is a positive constant that adjusts the uncertainty
of the responses, and we set η to 0.08.

2) COMPARISON METHODS
We validated PBPO’s effectiveness and the query synthesis
itself by comparing its acquisition performance to the
following two methods:
• Baseline: A query generation method based on a
knockout algorithm (Appendix A) and

• PBPO w/o skip: a PBPO that does not give the
evaluators the option to skip answers.

For consistency of notation, we also refer to PBPO using
the query synthesis as PBPO within the experimental section.
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FIGURE 14. User interface for experiments with human evaluators: They compared two videos and then pressed blue
button below the video they thought accomplished the task better. If they are allowed to skip an answer, they can also skip
a query by pressing red button.

Here for bothPBPO w/o skip andPBPO, we used an RBF
kernel with length scale l of 0.01 as the GP kernel and set the
ϵ of the likelihood (7) to 0.01 for Env1 and 0.0001 for Env2,
respectively. In addition, until five unskipped responses have
been accumulated, eachmethod generates a two-choice query
that compares randomly selected parameters.

Finally, we denote the parameter that was acquired by each
method as wacq in every step of the experiment. We define
wacq for PBPO w/o skip and PBPO as the parameter that
maximizes the mean of the posterior (9) at each step. Also
we define wacq for the Baseline as the parameter selected
by the evaluator in the previous query. Note that sinceW is
discretized in this experiment, wacq is one of the discretized
candidate points.

B. RESULTS
1) RESULTS WITH CERTAIN

We review the results when Certain is used as the
simulated evaluator whose response contains no uncertainty.
We collected data for 50 trials for each PBPO, PBPO w/o
skip, and Baseline.

a: TRANSITION OF EVALUATION VALUES
Fig. 10 shows the transition of evaluation function f (w)
values of the parameters acquired by each method based on
the number of queries, and each solid line represents the
mean of 50 trials. According to Fig. 10, ttPBPO obtained
parameters with higher evaluated values than Baseline
after the 30th query in both environments. On the other
hand, we found no difference between PBPO and PBPO w/o
skip.

b: COMPARISON OF VIOLIN PLOTS
Fig. 11 shows a violin plot representing f (w) values of
the parameters acquired by each method at the 40th, 60th,
and 80th queries. Since the interquartile range (IQR) of the

Baseline is wider than the others in Fig. 11 (a), ttBaseline
acquired a relatively large number of parameters with low
evaluation values in Env1. Furthermore, Fig. 11 (b), which is
the result of Env2, shows that the median of PBPO and PBPO
w/o skip reached optimal evaluation function value f (w∗)
at the 60th and 80th times; the median of Baseline is
relatively low, and the IQR is wider. Here the t-test results
show significant differences between PBPO and Baseline
at the 60th (p = 0.0029 < 0.01) and 80th (p = 0.0023 <

0.01) times for Env1 and at the 40th (p = 0.043 < 0.05),
60th (p = 0.00027 < 0.01), and 80th (p = 0.00018 < 0.01)
times for Env2.

These results indicate that PBPO has the potential to
acquire parameters with high evaluation values from accurate
responses.

2) RESULTS WITH UNCERTAIN

We review the results when Uncertain is used as the
simulated evaluators whose responses contain probabilistic
inaccuracies. We collected data for 50 trials for each method,
as in Section VI-B1.

a: TRANSITION OF EVALUATION VALUES
Fig. 12 shows the f (w) values of the acquired parameters
against the number of queries. According to Fig. 12,
there is a difference in the evaluation values between
PBPO and PBPO w/o skip in both environments when
the simulated evaluators probabilistically return inaccurate
answers, differing from the case when the response is certain.

b: COMPARISON OF VIOLIN PLOTS
Fig. 13 compares the f (w) values of the parameters acquired
by eachmethod at the 40th, 60th, and 80th queries. According
to Fig. 13, ttPBPO has a narrower IQR than PBPO w/o
skip at the 60th and 80th queries in both environments.
Also, Fig. 13(a) shows a difference in the median value
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FIGURE 15. Comparison of scattering behavior based on a parameter acquired by PBPO (upper) and an initial parameter (lower) in Env1: Each behavior is
represented by series of five photos equally spaced in time. To display weight transition of grasped waste, normalized weight is shown to right of each
image. Green bar corresponds to grasped weight at each time point.

FIGURE 16. Comparison of scattering behavior based on a parameter acquired by PBPO (upper) and an initial parameter (lower) in Env2: Each behavior is
represented by series of five photos equally spaced in time. To display weight transition of grasped waste, normalized weight is shown to right of each
image. Green bar corresponds to grasped weight at each time point.

between PBPO and PBPO w/o skip in Env1. The t-test
results show significant differences between PBPO and PBPO
w/o skip at the 40th (p = 0.0011 < 0.01), 60th (p =
0.0061 < 0.01), and 80th (p = 0.0073 < 0.01) times
for Env1 and at the 60th (p = 0.029 < 0.05) and 80th
(p = 0.019 < 0.05) times for Env2.

These results indicate that the proposed method executes
stable estimates even in situations where the evaluators
frequently provide contradictory answers by mitigating the
impact of these through query skipping and synthesis.

VII. EXPERIMENTS WITH HUMAN EVALUATORS
A. SETTINGS
We verified the effectiveness of our proposed method with
actual human evaluators. All the experiments were conducted
under the approval of the Ethics Committee of Nara Institute
of Science and Technology. In this experiment, we conducted
the following two validations: 1) an ablation study to verify
the effectiveness of the query synthesis on actual human
evaluators and 2) a comparison of acquisition performance
between PBPO and methods that explicitly use evaluation
functions [2]. The following sections describe the flow of the
experiment and the details of each validation.

1) EXPERIMENTAL PROCEDURE
This experiment consists of the following two steps:

1) Instructions to human evaluators: We instructed the
human evaluators about the scattering task, its purpose,

and the characteristics of the waste. The text we
distributed to them is found in Appendix B. In addition,
we randomly selected 100 videos for each environment
from those collected in Section V-C and requested that
the evaluators watch them to gain a better understanding
of the simulated environment and the task.We especially
asked them to focus on the characteristics of waste in
each environment and the type of crane movement that
causes it to fall.

2) Interactive two-choice query:We instructed the human
evaluators to answer two-choice queries in the user
interface (UI) shown in Fig. 14. They reviewed the two
videos presented and answered a two-choice query by
pressing the blue button below the video where they
relatively accomplished the task. The red button between
the blue buttons allows the evaluators to skip answering
a query. We set the number of two-choice queries per
trial to 30 and included a two-minute break after each
trial.

2) ABLATION STUDIES
We conducted an ablation study to inspect the effectiveness
of the answer skipping and query synthesis mechanisms.
It compared the following three methods:
• PBPO: Proposed method: We instructed the actual
human evaluators to use the skip button only if both the
task achievements of the two videos were undesirable.
We also changed the button’s label on the UI to ‘‘I don’t
like either.’’
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FIGURE 17. Violin plots illustrating evaluation function f (w) values corresponding to parameters acquired by PBPO, PBPO w/o synth,
and PBPO w/o skip using up to 10th, 20th, and 30th answers to two-choice queries: Each violin plot is drawn from results of
15 trials, where black dashed line represents evaluation function value with optimal parameter f (w∗). Asterisks indicate statistically
significant differences (∗: p < .05, ∗∗: p < .01).

• PBPO w/o synth: A PBPO that removes the query
synthesis mechanism: Although the evaluators can
skip queries, the skipped queries are not synthesized.
We instructed the evaluators to use the skip button only
if the task achievements of the two videos were equal.
We also changed the button’s label on the UI to ‘‘It’s
hard to choose.’’

• PBPO w/o skip: A PBPO that gives the evaluators
no option to skip answers: We also removed the red skip
button from the UI.

We performed a three-trial experiment for each method on
five evaluators (ages: 22–29), and so the total number of trials
for each method is 15. The hyperparameters for each method
were set as in Section VI-A.

3) COMPARISON WITH BOS THAT RELY ON EVALUATION
FUNCTIONS
We compared our PBPO to previous methods that required
a predefined evaluation function as a performance baseline.
We again note that our PBPO method achieves automation
without such a predefined evaluation function. We prepared
a robust BO (RBO [2]) and a BO as our comparison methods.
Concerning the details of the comparison method, we chose
Upper Confidence Bound (UCB) [42] as an acquisition
function and a GP with a RBF kernel as the surrogate model.
We set hyperparameters κ of UCB and length scale l of the
GP as follows: κ = 2.0, l = 0.1 for BO in Env1, κ =

0.1, l = 0.01 for RBO in Env1, κ = 4.0, l = 0.0001 for BO
in Env2, and κ = 4.0, l = 0.001 for RBO in Env2. We also
randomly selected the first five queries of the trials and set
the number of trials of both methods in each environment
to 30.

B. RESULTS
1) ABLATION STUDIES
a: CRANE BEHAVIOR WITH AN ACQUIRED PARAMETER
We first compared the scattering behavior with parameters
acquired by PBPO and the behavior with the unoptimized
initial parameters (i.e., random parameters). Figs. 15 and 16

compare the behavior in Env1 and Env2. To clearly express
the change in waste weight, we show the current grasped
weight as a green bar graph on the right side of each image.
These bars are normalized by the weight of the initial grasp.
Comparing the scattering behavior, the parameters acquired
by the PBPO produce a desirable scattering behavior that
causes the waste to drop gradually. In contrast, the initial
parameters produce an undesirable behavior that causes most
waste to drop in the early stages of the behavior. The parame-
ters acquired in Env1 and Env2 with the highest evaluation
function f (w) values were (0.9, 0.25) and (0.1, 0.1), with
corresponding f (w) values of −35.5 and −46.2. Similarly,
the acquired parameters with the lowest f (w) values were
(1.0, 0.5) and (0.25, 0.25), and the corresponding f (w) values
were −77.3 and −112.0. For reference, optimal parameters
w∗ for Env1 and Env2 were (0.95, 0.6) and (0.1, 0.1) and
f (w∗) were −33.7 and −46.2.

b: PERFORMANCE COMPARISON OF FINALLY ACQUIRED
PARAMETERS
We compared the f (w) values that correspond to the
parameters acquired by PBPO, PBPO w/o synth, and
PBPO w/o skip to validate the effectiveness of the query
synthesis. Fig. 17 shows the violin plots of f (w) values
corresponding to the parameters acquired from using the
answers up to the 10th, 20th, and 30th queries in each
environment. Each violin plot is drawn from the results of
15 trials. First, we confirmed the results of the parameters
acquired using up to the 30th answers. Fig. 17 (a) shows
no significant difference between the methods in Env1,
although Fig. 17 (b) shows a difference between PBPO and
the other two methods in Env2. The t-test results in Env2
show significant differences between PBPO and PBPO w/o
synth (p = 0.047 < 0.05) and between PBPO and PBPO
w/o skip (p = 0.004 < 0.01). These results indicate
that PBPO can acquire parameters with high evaluation
values through query synthesis even when obtaining optimal
parameters is difficult due to the low evaluation values inmost
parameter spaces.
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FIGURE 18. Box-and-whisker diagram showing evaluation function f (w)
values of parameters acquired by PBPO, RBO, and BO: Number of trials for
PBPO is 15, and number of trials for RBO and BO is 30. PBPO results are
based on parameters acquired at 60 crane operations (30 queries), and
RBO and BO results are based on parameters after convergence. Green
triangles represent mean values, solid orange lines represent median
values, and black dashed lines represent f (w∗).

c: PERFORMANCE COMPARISON OF PARAMETERS
ACQUIRED BY FEWER QUERIES
Finally, we compare the f (w) values of the parameters
acquired from the answers up to the 10th with those obtained
from answers up to the 20th time. The shape of the violin
plot in Fig. 17 (a) (the Env1 results) indicates that PBPO
acquires more parameters with higher evaluation values than
the other twomethods. Subsequently, according to Fig. 17 (b)
(the Env2 results), the parameters acquired by the PBPO are
more widely distributed than the parameters by the other
two methods, and the difference is more pronounced when
compared to PBPO w/o synth. The t-test results in Env2
also indicate significant differences betweenPBPO andPBPO
w/o synth (p = 0.008 < 0.01) and between PBPO and
PBPO w/o skip (p = 0.019 < 0.05) when using up to
the 20th response. These results indicate that using query
synthesis allows for acquiring highly evaluated parameters
with fewer queries than in the absence of query synthesis and
skips.

All the results on the validation of query synthesis
show that query synthesis works effectively and provides
stable estimation, even when optimizing from actual human
responses, which are often inconsistent.

2) COMPARISON WITH BOS THAT RELY ON EVALUATION
FUNCTIONS
We compared evaluation function f (w) values of the param-
eters acquired by PBPO, which optimizes the policy from

FIGURE 19. Scatter plots of parameters acquired by PBPO, RBO, and BO in
each environment: Heatmap represents evaluation function f (w) value,
and white dots represent acquired parameter pairs. Number of trials for
PBPO is 15, and number of trials for RBO and BO is 30.

the human evaluator’s response, with RBO and BO, which
explicitly require an evaluation function (13). We compared
the three methods by the number of crane operations rather
than the number of queries because the RBO and BO
queries are composed of a single crane movement, while the
two-choice query used for PBPO is composed of two of them.

a: PERFORMANCE COMPARISON OF FINALLY ACQUIRED
PARAMETERS
Fig. 18 shows a box-and-whisker diagram of the f (w) values
corresponding to the parameters acquired by each method.
According to Fig. 18 (a) (the Env1 results), the mean (green
triangles) and median (solid orange lines) of the f (w) values
of RBO are slightly higher than those of PBPO and BO.
In contrast, the maximum does not differ significantly among
the methods. The mean values for PBPO, RBO, and BO in
Env1 are respectively −45.8, −41.6, and −47.8.

Next Fig. 18 (b), which represents the results of Env2,
a more challenging environment for PBPO, shows that
although there is a significant difference between PBPO and
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FIGURE 20. Comparison of posterior distribution of GPs used in surrogate models for PBPO, RBO, and BO
with Ground truth f (w): Upper (Best) and lower (Worst) figures on right-hand side of each figure show
highest and lowest f (w) values among parameters acquired by each method. White dots indicate query
points in each trial.

RBO, whose mean and median are located on the black
dashed line representing optimal evaluation value f (w∗), the
average is equivalent to BO. The fact that the maximum of
PBPO reaches f (w∗) indicates that there were trials in which
the optimal parameters were acquired. The means of PBPO,
RBO, and BO in Env2 are respectively −81.6, −46.7, and
−79.8.

b: COMPARISON OF ACQUIRED PARAMETER
DISTRIBUTIONS
Fig. 19 shows the parameters acquired by each method on
parameter space W . The heatmaps in Figs. Fig. 19 (a) and
Fig. 19 (b) correspond to evaluation function f (w) values in
Env1 and Env2, and the ‘‘Optimal pair’’ in the figures point
to optimal parameter w∗. Since we discretizedW to generate
candidates, as described in Section V-C, some of the white
dots in each figure representing the acquired parameters are
shown as overlapping dots. However, 15 dots were originally
plotted for PBPO and 30 dots for the other two methods.

Fig. 19 (a) shows that all the methods failed to acquire w∗

in Env1, and the parameters acquired by PBPO and RBO
are concentrated in the region of higher evaluation values
compared to those acquired by BO. Furthermore, Fig. 19 (b)
(the Env2 results) indicates that the parameters acquired by
RBO are concentrated in the region of high evaluation values.
In fact, RBO acquired optimal parameterw∗ in 29 of 30 trials.
A comparison of the parameters acquired with PBPO and
BO shows that some were acquired where BO converged
on the candidate points with low evaluation values, such as
(w0,w1) = (1.0, 0.0). The parameters acquired with PBPO
are concentrated in regions with relatively high evaluation
values around w∗.

c: COMPARISON OF POSTERIORS
At the end of the results of experiments with actual human
evaluators, we compared the posterior distribution of the GP
used in the surrogate models of the three BO methods with
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evaluation function Ground truth (GT) f (w). Fig. 20 shows
the GT and the posterior mean for each method at 60 crane
operations; the color of the heatmap changes from blue to
red as the mean value increases. The ‘‘Best’’ in the figure
represents the posterior distribution in which the parameter
was acquired with the highest evaluation value. Similarly,
the ‘‘Worst’’ represents the posterior distribution in which
the parameter was acquired with the lowest evaluation value.
As shown in Fig. 20 (a), in Env1, both the ‘‘Best’’ and
‘‘Worst’’ of BO differ significantly fromGT, and the ‘‘Worst’’
of RBO does not correctly represent the lower right region,
which has high GT values. On the other hand, both PBPO’s
‘‘Best’’ and ‘‘Worst’’ generally well represent regions with
high evaluation values on GT. According to Fig. 20 (b) (the
Env2 results), all the posterior distributions for PBPO and
RBO have higher means only around the optimal parameter,
although the ‘‘Worst’’ for BO has higher values over a wider
region.

These results indicate thatPBPO’s acquisition performance
is comparable to methods that explicitly require a predefined
evaluation function.

VIII. DISCUSSION
We attempted to solve the following problems to achieve
preference-based waste crane automation: 1) how to acquire
an optimal control policy with a small number of queries and
2) how to deal with cases where making a clear decision is
difficult due to the characteristics of the waste.

We solved 1) by optimizing the controller parameters using
a GP-based PbBO. Experimental results show that our PBPO
can acquire parameters with high evaluation values from just
a few dozen two-choice queries. Since similar deep learning-
based approaches [22], [23] require hundreds to thousands of
queries, our proposed method is relatively query efficient.

In addition, we used query skipping and synthesis mech-
anisms to solve 2). Experimental results with simulated
evaluators and human evaluators demonstrate the effec-
tiveness of query synthesis under the realistic assumption
that responses contain uncertainty. On the other hand,
depending on the task settings, the possibility that a human
evaluator will skip answering all the queries increases.
Generating early queries considering state entropy [23] rather
than randomly generating them may alleviate this problem.
Another approach to 2) is to present carefully selected queries
to the evaluators, a direction discussed by several studies [43],
[44]. An approach that integrates the responses of multiple
evaluators [45], [46] may also be effective for this problem.
We also discuss the performance differences in Env2 pre-

sented in VII-B2. In Env2, PBPO and BO show significantly
lower acquisition performance than RBO, results that suggest
that considering the robustness in Env2 is effective. Fig. 9
shows that only a narrower region has higher values in Env2
compared to Env1. Therefore, the performance degradation
is more severe in Env2 when the parameters near the optimal
ones are incorrectly acquired due to the variance of the
evaluation values caused by the waste diversity. Since RBO is

less sensitive to variations in the evaluation values, we assume
that optimal parameters can be acquired. Part of our future
work will add robustness against outliers to our proposed
method.

IX. CONCLUSION
We proposed Preferential Bayesian Policy Optimization
(PBPO) as a novel heavy equipment automation method
without an evaluation function design. PBPO obtains optimal
control policies from an evaluator’s responses to interactive
two-choice queries. The proposed method generates queries
by a sample-efficient Preference-based Bayesian optimiza-
tion (PbBO) to cope with the high trial-and-error cost of
heavy equipment. Furthermore, to deal with difficult-to-
judge queries for evaluators, PBPO provides the option of
skipping answers and employs a query synthesis mechanism
that synthesizes new preference relations using the skipped
queries.

We also conducted experiments with simulated evaluators
and actual human evaluators in a scattering task where
the evaluation function is explicitly defined to verify the
proposed method’s effectiveness. Experimental results with
simulated evaluators indicate that the query synthesis mech-
anism is effective when their answers contain probabilistic
mistakes. The results with actual human evaluators show that
the control performance of the parameters acquired by PBPO
is comparable to RBO and BO in the first environment and
comparable to BO in the second environment, which is more
difficult for PBPO.

APPENDIX A
BASELINE METHOD: KNOCKOUT PAIRWISE
COMPARISON
The comparison method used in the experiments with
simulated evaluators in Section VI follows Algorithm 1. For
each two-choice query except the first one, the parameter
selected by the evaluator in the previous query was compared
with a randomly selected parameter. For the first two-choice
query, two randomly selected parameters were compared.

APPENDIX B
INSTRUCTIONS PROVIDED TO ACTUAL HUMAN
EVALUATORS
Background:
• Waste-to-energy plants are expected to burn waste at
a constant temperature, although the diversity of the
transported waste complicates that goal.

• To address this problem, the plant uses cranes equipped
with buckets to agitate the waste in a pit where it is
temporarily accumulated.

• Waste is mixed by opening and closing the crane’s claws
as it moves to scatter the grabbed waste. Optimal claw
action allows waste to fall steadily during the crane’s
movement.

• Note that due to waste uncertainty (i.e., waste diversity),
an identical claw action may not cause identical scatter.
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Algorithm 1 Knockout Pairwise Comparison
input: Parameter spaceW , controller π (·), query Q
output: Acquired parameter wacq
1: for each iteration do
2: if iteration == 0 then
3: Sample w0 fromW uniformly
4: else
5: w0

← wacq
6: end if
7: Sample w1 fromW uniformly
8: Q← φ

9: for i = 0 to 2 do
10: Set wi for π (·)
11: Perform task with π (wi) to generate τ i

12: Q← Q ∩ τ i

13: end for
14: Present Q to evaluator
15: Get answer y from evaluator
16: if y == 0 then
17: wacq← w0

18: else
19: wacq← w1

20: end if
21: end for

This experiment asks you to do two tasks:
1) Watch videos of a waste crane to check the waste and

crane characteristics.
2) Answer repeatedly presented two-choice queries.

Here are some additional aspects to bear in mind when
answering the queries:
• All of the grabbed waste should drop when the crane
finishes moving.

• Avoid situations where the waste falls together at the
beginning or end of scattering.

• Pay attention not only to the falling waste but also to the
claw movements. Note which claw movement is more
likely to cause the waste to drop.

• The amount of waste initially grabbed by the crane or
the surface geometry of the waste in the pit should not
affect your evaluation.

In some experiments, a button appears that allows you to skip
answers. The two types of skip buttons have different usage
conditions:
• ‘‘I don’t like either.’’: when both behaviors in a query are
undesirable.

• ‘‘It’s hard to choose.’’: when prioritizing behaviors in a
query is complicated.

APPENDIX C
COMPARISON OF NUMBER OF SKIPS
Fig. 21 shows the number of skipped answers per human
evaluator in the experiment using PBPO. The results show
that the number of query skips by some evaluators is not

FIGURE 21. Comparison of number of skipped answers per actual human
evaluators in each environment: Number of two-choice queries in each
trial is 30, and black dots represent number of skips in each trial.

limited to a few but reaches dozens. The results identify
individual differences in the criteria for query skipping. For
example, Evaluator 5 often skips; Evaluator 1 is reluctant.
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