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ABSTRACT Visual place recognition (VPR) is a task that aims to predict the location of an image based on
the existing images. Because image data can often be massive, extracting features efficiently is critical.
To solve the problems of model redundancy and poor time efficiency in feature extraction, this study
proposes a fast dual-feature extraction method based on a tightly coupled lightweight network. The tightly
coupled network extracts local and global features in a unified model which has a lightweight backbone.
Learned step size quantization is then performed to reduce the computational overhead in the inference
stage. Additionally, an efficient channel attention module ensures feature representation ability. Efficiency
and performance experiments on different hardware platforms showed that the proposed algorithm incurred
significant runtime savings for feature extraction, and the inference was 2.9–4.0 times faster than that in the
general model. The experimental results confirmed that the proposed method can significantly improve VPR
efficiency while ensuring accuracy.

INDEX TERMS Visual place recognition, dual-feature extraction, tightly coupled, learned step size
quantization.

I. INTRODUCTION
Visual place recognition (VPR) aims to estimate the location
of a given image based on a group of existing images, and
it is widely used in robotics, social media, and computer
vision [1]. Central to this problem is the representations
used to describe images. There are two types of image rep-
resentations: global and local features. Global features are
better at recall, whereas local features are used for precision
processing [2]. Owing to the complementarity of the two fea-
ture types, the dual-feature combination method has become
a mainstream method in VPR [3], [4], [5]. For example,
in coarse localization, global features are first used for recall,
after which local features are used for geometric verifica-
tion [6]. Similarly, in fine localization, global features are
required for fast retrieval, after which local features are used
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for precise 6-degree-of-freedom (6-DOF) localization [7].
Because the image data are often massive, the efficiency of
feature extraction is critical along with limited computational
resources. In this work, we aim to seek a fast dual-feature
extraction technique that is also robust for VPR tasks.

In the last decade, researchers have attempted to apply
several dual-feature combination methods for VPR [8], [9],
[10]. However, most require the extraction of local and
global features separately with different models. This is
undesirable as both require similar feature extraction com-
putations, resulting in redundant processing and unnecessary
complexity, thereby increasing memory usage and latency.
Recently, researchers attempted to extract global and local
features jointly in a unifiedmodel. However, the focus was on
improving accuracy, while execution efficiency was ignored.
In practical applications, the terminals for visual localization
may be devices with low computational performance, such as
mobile phones and robots. It is difficult to apply these feature
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extraction methods to low-performance devices. Therefore,
improving the efficiency of feature extraction while ensuring
accuracy is important.

This study proposes a fast extraction method based on a
tightly coupled lightweight model to solve the problem of
poor time efficiency in dual-feature extraction. First, a tightly
coupled network is designed to extract local and global
features in a unified model to reduce redundancy, and the
ordinary convolution operation is replaced by a lightweight
backbone to improve the network efficiency. We leverage the
learned step size quantization (LSQ) aware training method,
which reduces the computational overhead in the inference
stage, to further enhance the efficiency of this approach.
In addition, an efficient channel attention (ECA) module
ensures feature representation ability. The main contributions
of this study are as follows:

1) A tightly coupled dual-feature extraction lightweight
network model is proposed. Local and global features
share model parameters that can reduce redundancy in
feature extraction. A lightweight backbone network is
developed, and the ECA module is added to improve
the network performance. Furthermore, the LSQ aware
training method is adopted to decrease the computa-
tional time. The experiment proves that the proposed
method can significantly improves the efficiency while
ensuring accuracy for VPR.

2) The proposed method shows excellent performance in
VPR-related tasks. In terms of feature extraction, our
method is 2.9–4.0 times faster than traditional methods.
The method improves execution efficiency and exhibits
good performance in multiple tasks. Compared to tra-
ditional methods, the mean average precision (mAP)
and matching score decreased by only 0.2% and 0.4%
in image retrieval and local feature point matching,
respectively.

We organize the rest of this paper as follows. In Section II,
we introduce related works on dual-feature extraction.
Section III introduces the proposed framework in detail. The
details and results of the extensive experiments are provided
in Section IV. Finally, the limitations and conclusions are
presented in Section V.

II. RELATED WORK
VPR refers to the process of identifying and obtaining
the geographic location of a given query image in a
pre-constructed image database. The core of the VPR task
lies in the manner to effectively describe the images with
global and local features. Taken into account practicality, the
resource consumption of features generation efficiency is also
an important indicator.

In earlier VPR systems, hand-crafted techniques such as
SIFT [11] were used to extract local features, followed
by methods such as VLAD [12], [13], FV [14] to encode
local features and obtain the global feature vector image
representation. Recently, owing to the advantages of deep
learning techniques, deep learning-based feature extraction

methods [15], [16] have shown superior performance in VPR.
The dual-feature extraction methods can be classified into
tightly coupled and loosely coupled, depending on the cou-
pling degree of dual features. Loose coupling refers to using
independent models or methods to extract local and global
features. Fang et al. [17] used NetVLAD [18] global features
to search for images at the map level and Geodesc [8] local
features to match the images with the retrieved 3D points
for visual localization. The loosely coupled method uses
mutually independent feature extraction modules, inevitably
increasing the complexity of training and execution. Our
work leverages a tightly coupled feature extraction method
that generates global and local features from the same model
to reduce feature redundancy.

Existing dual-feature extraction methods use complex
models to improve accuracy, but the execution efficiency
remains poor. Yang et al. [19] and Noh et al. [20] used a com-
plex ResNet [21] network to perform dual-feature extraction
and achieved good performance in large-scale image retrieval
and VPR tasks. While these methods achieve better perfor-
mance, they rely on a large backbone, and they are difficult to
apply to low-performance devices. In practical applications,
the end terminals for visual localization may be devices with
low computing performance, such as mobile phones and
robots. Therefore, it is crucial to improve the efficiency of
feature extraction. In recent years, many deep neural network
architectures have been designed for an optimal trade-off
between accuracy and efficiency [22], [23], [24], [25], [26].
Some works apply lightweight network to VPR systems [27],
[28], [29], [30], [31]. LSDNet [27] utilizes a dual-distillation
method to efficiently generate global feature for describing
images. Zaffar et al. [28] proposed a local features extraction
method based on oriented gradient histograms and achieved
a balance between memory usage and execution efficiency.
However, these methods generate either global or local fea-
tures. In dual-feature applications, an additional module is
required. Sarlin et al. [29] designed the HF-NET for dual-
feature extraction based on a lightweight network which
supervised by the VGG16 network. However, it did not
adequately learn the intrinsic patterns of the teacher model,
which resulted in a decrease in accuracy, and the extraction
efficiency also requires further improvement. Therefore, the
proposed method uses ECA module to improve performance
and uses the quantization method to considerably improve
the efficiency of network models. Quantization methods such
as DFQ [32], LSQ [33], and LSQ+ [34] not only reduce
the memory size but also accelerate the inference speed of
the model, and hence, have been applied in other fields
[35]. To date, little literature has explored VPR from this
perspective.

III. PROPOSED METHOD
Our goal is to improve the efficiency of feature extraction
and reduce time consumption while maintaining good fea-
ture representation. To achieve this, we first design a tightly
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FIGURE 1. Algorithm flow of the proposed method. A combination of datasets and Teacher–Student training is used to train the lightweight network.
We implement effective lightweight operations in both the training and inference stages.

coupled network to extract the dual feature comprising global
and local features of the input image. These two features will
be used together in the subsequent visual localization process.
Then, the LSQ method performs quantization-aware training
on the network in the inference stage. A combination of
datasets and Teacher–Student training was used for network
training. Our VPR system is loosely based on the hierarchical
localization framework. Fig. 1 shows the algorithm flow of
the tightly coupled feature extraction method.

A. TIGHTLY COUPLED LIGHTWEIGHT BACKBONE
To improve the efficiency of feature extraction, we designed
a lightweight backbone network. Among existing lightweight
backbone networks, MobileNets [25] proposed a simple
model structure that showed good performance in target
detection and image classification tasks. Inverted residu-
als and linear bottlenecks are the main methods used by
MobileNetV2 to achieve lightweight models. MobileNetV3
optimizes the activation function and adds the channel
attention model, which improves the feature extraction
performance and convolutional operational efficiency. The
lightweight design is mainly referred to MobileNetV3.
To achieve lightweight local and global feature extraction,
we replaced ordinary convolutions with bottleneck convo-
lutions to reduce the amount of computation and model
parameters. A 5-stage backbone network was set up, where
the first layer used an ordinary convolution, while the remain-
ing layers used the bottleneck convolution. We used the
h-swish activation function in the first convolution layer by

TABLE 1. Backbone architecture.

referring to MobileNetV3. We applied the channel attention
mechanism to global feature extraction and used a lighter
ECA module. Table 1 shows the specific structure of the
backbone.

The lightweight backbone ultimately produces a middle-
level image representation. To generate the dual features,
we design a feature extraction architecture composed of three
prediction heads: i) key points, ii) local feature descriptors,
and iii) a global image-wide descriptor. The global descriptor
is computed from aggregating local feature maps, which
might be useful for predicting local features. Fig. 2 shows the
proposed dual feature extraction architecture.

B. LEARNED STEP SIZE QUANTIZATION
Based on a lightweight backbone, the LSQ method is fur-
ther used to improve the inference speed of the network.
Quantization is one of the most impactful ways to decrease

VOLUME 11, 2023 127857



X. Hu et al.: Fast Dual-Feature Extraction Based on Tightly Coupled Lightweight Network for VPR

FIGURE 2. Tightly coupled local–global features extraction network. The
global descriptor, key points, and local descriptors share the same
encoder, which can effectively reduce model redundancy.

the computational time and energy consumption of neural
networks [36]. The key to quantization is to close the gap
to full-precision accuracy since low bit-width quantization
introduces noise to the network, which can lead to an accu-
racy drop. The LSQ algorithm, a quantization-aware training
method, learns the step size parameters through backprop-
agation and obtains the scaling factors for the weight and
activation for each layer through training, which further
improves the efficiency while reducing the quantization loss.
In particular, we first convert the float values to integers with
low bit width, in which case quantization can be expressed as

x̂ = q (x; s, z, n, p) = s×

(
clamp

([x
s

]
+ z; n, p

)
− z

)
(1)

where x̂ is the output after the quantization operation, q (·) is
the quantization operation, x is the input floating data, s is the
quantization scale factor, z is the zero point, and (n, p) is the
range of quantization truncation.

In general, assuming b to be the quantization bit width
for signed quantization, the value range of (n, p) is(
−2b−1, 2b−1

− 1
)
, where [·] is the round-to-nearest operator

and clamping is defined as

clamp (x; n, p) =


x, n ≤ x ≤ p
n, x < n
p, x > p

(2)

where s and z, known as quantization parameters, are the
key to quantization, considering that the noise impacts the
quantization result. Pseudo-quantization operations, where
the quantized weight and activation are used in forward
propagation whereas gradients update floating-point weights
during backpropagation, should be used during the training
process. The key to pseudo-quantization is computing the
pseudo-gradients. Backward propagation in neural networks
is based on the chain rule for derivatives. However, the quan-
tization operation is a step function whose derivative does not

exist. Therefore, training the quantization parameters can be
challenging. We leverage the STE method [37] to calculate
the pseudo-gradients. The quantization parameters gradient
is given as follows

∂ x̂ i
∂s

=
∂

∂s

(
s× clamp

([xi
s

]
; n, p

))

=


−xi
s

+ [
xi
s
], Qmin ≤ xi ≤ Qmax

n, xi < Qmin

p, xi > Qmax

(3)

∂ x̂ i
∂z

=

{
0, Qmin ≤ x ≤ Qmax

−s, otherwise
(4)

where (Qmin,Qmax) represents the dequantization value
range obtained from the current quantization parameters.

C. FEATURES GENERATION WITH ECA ATTENTION
Relevant work has proved that attention can enhance per-
formance; hence, we used ECA [38], a lightweight channel
attention module based on SE-NET, to ensure performance
while reducing the feature extraction time. Avoiding dimen-
sionality reduction and cross-channel interaction is the key
to improving the performance of channel attention. ECA
proposes a local cross-channel interaction strategy without
dimensionality reduction, which can be efficiently imple-
mented via one-dimensional (1D) convolution, and adap-
tively selects the kernel size of convolution to increase the
interaction ability of local cross-channels. Compared to the
fully connected network module, 1D convolution maintains
attention performance and reduces the complexity of the
model.

The input feature map χ∈RW×H×C , where {W ,H ,C}

represents the dimensions of the feature map, first undergoes
a global average pooling operation according to the chan-
nel dimension. Then, it integrates the spatial information to
obtain a feature representation. Furthermore, adaptive k-core
1D convolution is performed on this representation tensor. k
is calculated as

k = ψ(C) =

∣∣∣∣ log2(c)γ
+
b
γ

∣∣∣∣
odd

(5)

where |·|odd represents the nearest odd number and γ = 2, b
= 1 are the hyperparameters. Additionally, the method adapts
convolution kernel size for different channel dimensions.

Normalized attention weights are obtained using the acti-
vation function. The original feature map is then multiplied
by the weight vector to enhance attention. This module is
inserted into the descriptor extraction process to obtain more
representative global features. The performance is guaranteed
considering there is no dimensionality reduction and corre-
lation between channels. Additionally, 1D convolution with
fewer parameters guarantees efficiency.

For local features, two decoders are used for feature point
detection and descriptor generation. The feature point detec-
tion decoder uses convolution operations to generate a feature
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map. The Softmax function was used to normalize the fea-
ture map to compute the distribution probability. Because
the feature map size was 1/8 of the original, it was neces-
sary to up-sample the feature map to the full image size.
We leveraged sub-pixel convolution to efficiently reconstruct
the feature map from low- to high-resolution images. The
output heatmap had a size of {W ,H , 1}. Finally, the fast
non-maximum suppression (NMS) operation was performed
on the feature map to predict feature points.

The feature description decoder are used to generate the
descriptors. In particular, the feature map undergoes convolu-
tion to obtain a semi-dense description map with dimensions
{Wc,Hc, 256}. Depending on the coordinates of the feature
points, the bicubic interpolation sampling method was used
to obtain a 256-dimensional representation for each feature
point.

D. LOSS FUNCTION
The loss function consists of two parts: local feature loss (L1)
and global feature loss (L2). The specific local feature loss
function is given as follows:

L1 = Lp + Lp′ + λLd (6)

where P,P′ are the inputs of the loss function calculation,
which is an image pair generated using the random homogra-
phy transformation. Lp,Lp′ are the feature point losses of the
images P,P′, and Ld is the description loss between the pair
of images.

To calculate Ld , we used the sparse loss of feature descrip-
tors in the training process to improve the training efficiency.
Unlike dense loss, sparse loss selects M matching and N
incorrect matching point pairs in an image pair as positive
and negative samples, respectively. The computation of the
loss function decreased from (Hc×W c)

2 to M × N , which
in turn improved the training speed. Hinge loss was used to
calculate the error between feature descriptors as

Ld = λ1
1
M

∑M

i=1
max(0,mp − dTi d

′
i )

+
1
MN

∑MN

j=1
max(0, dTj d j

′
− mn) (7)

where M and N are the numbers of positive and correspond-
ing negative samples selected, respectively. mp,mn are the
boundary parameters of Hinge loss, d i, d i′ and d j, d j ′ are
the positive and negative samples selected from the feature
descriptor of the image pair, respectively.

Assuming xi,xi′ are the feature point coordinate vec-
tors corresponding to d i, d i′ and τ is the threshold of the
coordinate difference between two points after homography
transformation, the method to determine whether the two
descriptors are positive samples will be

G
(
H , xi,xi′

)
=

{
True,

∥∥Hxi − xi′
∥∥2 < τ

False, otherwise
(8)

The feature point loss, Lp or Lp′ , can be calculated using
the binary cross-entropy loss as follows:

Lp =
1

WcHc
bce_loss(soft_max(χ s),χ t) (9)

where χ s is the feature map generated by the feature point
detection decoder and χ t is the corresponding real label.
This study adopted the Teacher–Student knowledge distil-

lation method to obtain global feature representations. It is a
method that transfers the learned feature knowledge from the
teacher to the student with a simpler model. DELG [19] trains
the complex ResNet network on a large-scale data set and
obtains a high-performance global feature extraction model,
thereby demonstrating stable performance in many fields,
such as image retrieval and location recognition. Therefore,
this study adopted the DELG as a teacher model to train
global features. Additionally, the loss function of the global
feature is represented using cosine distance as follow:

L2 = 1 − cos(Dg,D′
g) = 1 −

DT
gD

′
g∥∥Dg

∥∥ ∥∥∥D′
g

∥∥∥ (10)

where Dg is the image global feature descriptor generated by
our method and D′

g is the global feature descriptor generated
by the teacher model.

IV. EXPERIMENT AND ANALYSIS
The following experiments were designed to verify that the
proposed method can significantly improve the efficiency
of feature extraction while maintaining good feature perfor-
mance for VPR.

A. IMPLEMENTATION
We trained the network before conducting the experiments.
The training process was divided into three steps: local fea-
ture module training, global feature module training, and
quantization training. First, training was conducted on the
local feature module to generate the simulated data and
initialize the feature point detector. The random homogra-
phy transformation matrix was calculated to transform the
original data, and the corresponding point coordinates were
recorded as labels. The Adam loss optimization method was
used during training, and the learning step size was set to
0.0001. Then, we trained the model on the COCO dataset
with 170 K iterations. The DELG method was used to gen-
erate the global feature descriptors for each image for use
as supervised data for the global feature module training.
During training, the weight parameters of the backbone were
frozen, and the training iterations were 50 K. Finally, the
quantization-aware training was performed with 400 itera-
tions. The hyperparameters used were τ = 4, mp = 1.0,
mn = 0.5, λ = 1.2, and λ1 = 200. We implemented the net-
work in Python/Pytorch framework and the experiment was
performed in the following hardware specifications: Win-
dows 10 64-bit with Intel(R) Core (TM) i9 -9880H 2.30 GHz,
32 GB memory, and a 3090Ti GPU.
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B. VISUAL PLACE RECOGNITION
6-DOF VPR: To validate the practicability of the proposed
method, we designed a 6-DOF visual localization experiment
on Aachen dataset [39]. The global feature was used for
image retrieval, and we extracted the TOP-20 images as a
candidate set. The candidate set was then matched using
local features, and the results were analyzed using multi-view
clustering. Finally, the EPnP method was used to achieve
precise 6-DoF localization.

Multiple sets of experiments were conducted to prove the
image place recognition accuracy of the proposed method.
Among them, NV+SP adopted a combination of NetVLAD
and SuperPoint to extract the global and local point image fea-
tures, respectively. NV+SIFT adopted the SIFT local point
features extraction method. HF-Net is a feature extractor
using a lightweight network combined with NetVLAD, and
CSL is another commonly used 2D–3D image-based place
recognition method.

TABLE 2. Experimental results of 6-DOF VPR performance.

TABLE 3. Experimental results of visual location recognition time
efficiency (ms).

Table 2 shows the accuracy of the experimental results for
the different place recognition methods. The accuracy was
divided into three levels depending on the position and ori-
entation: L2+0.25,L5+0.5, and L10+5, which indicate position
errors of less than 0.25, 0.5, and 5 m and orientation errors
of less than 2◦, 5◦, and 10◦, respectively. The performance of
the proposed method is superior to the HF-NET lightweight
feature extraction method. The best performance is achieved
by using complex network models, and our method differs
from the optimal results by 5.5%, 3.0%, and 2.6% in the
three positioning levels; however, the difference was not

numerically significant. Take into account the time consump-
tion shown in Table 3, it can be said that our proposed method
has the comprehensive advantages.

To compare the execution efficiency of different methods,
Table 3 summarizes the specific times for global feature
extraction, local feature extraction, global feature retrieval,
local feature matching, and positioning. Compared with
the NV+SIFT and NV+SP methods, the proposed method
exhibits 3.6× and 3.2× faster execution, respectively. Com-
pared to the HF-NET method, the proposed method reduces
the time consumption by 155 ms. The previous experiments
prove that the designed unified network can significantly
reduce the feature extraction time, and the proposed method
can significantly improve the efficiency of visual localization
while ensuring accuracy.
IR-VPR: We further evaluated the performance and effi-

ciency of our method in Image Retrieval VPR (IR-VRR),
the global descriptor of query images used to retrieve similar
images from the database. Two benchmark datasets, Pitts30k
and Pitts250k [18], were employed for the experiment. Fol-
lowing the standard evaluation protocol for the employed
datasets, model performance is evaluated by Recall@N.
Table 4 and Fig. 3 present the performance and efficiency
of different methods, respectively. The results show that our
method performs similarly to LSDNet in performance and
is significantly better than other methods. While the latency
time of our method outperforms all other methods, includ-
ing LSDNet. In terms of the competitiveness, our method
has achieved a satisfying balance between performance and
efficiency.

TABLE 4. Experimental results of IR-VPR performance.

C. MORE RESULTS AND DISCUSSION
1) EFFICIENCY OF FEATURE EXTRACTION
Comparative analyses were performed on various platforms
to verify the efficiency of the proposed method. The exper-
imental equipment comprised a personal computer, Huawei
MetaPad Pro tablet, and Nvidia AGX AXIVAR embedded
development kit.

Table 5 summarizes the experimental results of feature
extraction time efficiency acquired on a personal computer.
Feature extraction operations were performed on images with
different sizes, and the execution time, which included the
encoder and total extraction times, was recorded. A random
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FIGURE 3. Latency times (ms) of different methods. Combined with
Table 4, the figure reveals clearly advantages of our method.

TABLE 5. Experimental results of feature extraction time (personal
computer).

group of 20 images was selected for this experiment, and
no more than 1,000 feature points were extracted from each
image. The M-Q model refers to the model processed using
the method proposed in this study, and the VGG-F model is
the commonly used VGG16 model. VGG-Q is the quantized
model of VGG-F, whereas M-F is the full-precision model
of M-Q. The time performance was affected by the hardware
environment. Considering the quantizationmodel is generally
applied in a low-performance environment, this experiment
was performed in a CPU environment.

The following experimental results were obtained: i) The
time efficiency of feature extraction in the M-Q model was
significantly higher. Compared to the VGG-F model, the pro-
posed method exhibited 7.3× faster encoding and 3.9× faster
overall processing. The average encoding time on images
of different sizes was only 14.5% of VGG-F. Owing to the
smaller number of parameters and the faster fixed-point oper-
ation speed of the M-Q model, the encoding speed improved
significantly compared to that of the general VGG model. ii)
The larger the image size, the better was the time optimization
effect. When the image size was 240 × 320, the speedup
ratio of encoding was 3.0×, and when the image size was
increased to 1920 × 2560, the encoding speedup ratio was
9.8×, considering the size of the model is not linearly related

TABLE 6. Experimental results of feature extraction time (AGX AXIVAR).

to the time consumed by the computer. As the amount of data
increased, the computer required more overhead to perform
calculations, thereby demonstrating the actual performance
of the proposed algorithm in a practical environment.

Furthermore, the feature extraction time efficiency experi-
ment was carried out on the embedded development terminal
AGX AXIVAR device. Table 6 summarizes the experimental
results. M-Q was run separately in the CPU and GPU envi-
ronments, and the execution times on images of different sizes
were recorded. The results showed that the proposed method
completed the feature extraction efficiently. Compared to
the VGG-F method, the speedup ratio of the M-Q method
reached 3.3×, 3.9×, 4.7× on the CPU platform and 1.6×,
2.5×, 2.9× on the GPU platform under the three different
image sizes. Additionally, the quantization results showed
that quantization significantly improved the efficiency of
feature extraction. Compared to that of the float models,
the encoding speed of the quantization models on the CPU
platform was 1.8× and 2.3× higher. Compared to that on
CPU platforms, the performance of quantization on GPU
platforms was slightly poor. Analysis of the causes of the phe-
nomenon, although quantization decreased the storage space,
it was affected by the hardware computing unit. Additionally,
it increased the complexity of the calculation process and gen-
erated additional CPU and GPU communication overheads.
Therefore, the optimization effect on the inference speed was
relatively poor.

Table 7 shows the time efficiency of feature extraction
on the MetaPad Pro tablet. The encoding time performance
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TABLE 7. Experimental results of feature extraction time (MetaPad Pro).

of the M-Q and VGG-F models was analyzed under differ-
ent image sizes. The proposed method improved the feature
extraction time by 2.6×, 2.9×, and 3.3× for the 480 × 640,
960 × 1280, and 1920 × 2560 image sizes, respectively.

2) IMPACT OF LSQ
To demonstrate the effectiveness of LSQ, we used the
signal-to-quantization noise ratio (SQNR), which reflects the
relationship between the signal strength and quantization
error. The higher the SQNR, the smaller the quantization
error.

Assuming x is the original signal and x̂ is the quantized
signal, the specific calculation formula for LSQNR is given as

LSQNR = 20log10
∥x∥∥∥x− x̂

∥∥ (11)

Fig. 4 shows the quantization error of the feature points,
feature descriptors, and global descriptor extracted by the
quantization model with different iterations. The perfor-
mance of direct post-training quantization (PTQ) was poor,
and the SQNR values of the three features were less than 0.
As the training iterations increased, the SQNR of the signal
gradually increased, which indicates that the quantization
features could better retain the original feature information,
thereby ensuring their application effect.

3) PERFORMANCE OF GLOBAL FEATURE WITH ECA
ATTENTION
Instance retrieval was used to evaluate the image representa-
tion performance of the global feature, and the experimental
results are summarized in Table 8. The experiment was based
on two public datasets: Oxford 5K [40], which contained
5,063 images of 11 different buildings in Oxford, and Paris
6K [41], which contained 6,412 images of 11 landmark build-
ings in Paris. Mean average precision (mAP), which is the
average of retrieval average precision (AP) of all N query
images, was used as the evaluation index.

mAP =
1
N

∑N

k=1
AP(k) (12)

The comparison methods included NetVLAD, M-F, M-Q,
and M-Q-E. M-Q-E is the M-Q method without the ECA
module, and NetVLAD is a mainstream method in image
retrieval and visual localization. Compared to NetVLAD and
M-F, the proposed method showed a slightly lower mAP

FIGURE 4. Experimental results of the feature extraction quantization
error. The SQNR gradually increased, indicating that the quantized vectors
could better retain the information of the original vectors.

FIGURE 5. Examples of partial search results. The first column is the
query images.

TABLE 8. Experimental results of global feature retrieval.

value on the two datasets. However, the difference was not
numerically significant. Additionally, the mAP values of the
M-Q-E method decreased by 0.072 and 0.056 compared to
those of M-Q, which indicates that the representation ability
of global features was enhanced after using the ECAmethod.
Fig. 5 shows some image retrieval results.
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FIGURE 6. Comparison of local feature matching results. The matching results were not significantly different compared to those
of VGG-F.

4) PERFORMANCE OF LOCAL FEATURES
We designed a local feature matching experiment to ana-
lyze the performance of local features. The experimental
results are shown in Table 9. The compared methods included
VGG-F, M-PTQ, SIFT, and M-Q. M-PTQ was PTQ static
quantification for the network. Four experimental indica-
tors were used: repetition rate (Rep), localization error (Le),
matching score (Ms), and mAP. Rep measures the probability
that a point is detected in the second image.

Rep =
1

N1 + N2
(
∑

i
fcr(xi) +

∑
j
fcr(xj)) (13)

where N1(N2) is the points count in the first (second) image,
fcr(x) represents point x is detected in the other image.

Le is used to describe the error between the feature point
coordinates and the true value. It is expressed as

Le =
1
N

∑N

i=1

∥∥xi − x̌i
∥∥ < ε (14)

Ms is the ratio of the number of matched points after
cross-validation (Ninliers) to the total number of feature points
(N1 + N2). The larger the value, the better the matching
performance.

Ms =
Ninliers×2
N1 + N2

(15)

mAP counts thematching recall rate under different thresh-
olds, which range between 0 and 1. The larger the value, the
better the matching performance.

The experiments showed that there was no significant drop
in the matching performance of the M-Q algorithm. Com-
pared to the original and M-Q models, the M-PTQ algorithm
showed significantly poor matching performance, with a
matching score of only 0.039. While there was no significant
difference between theM-Q algorithm and the original model

TABLE 9. Experimental results of local feature matching.

for all indicators, except for a difference of 0.04 in the match-
ing score. Therefore, the experimental results confirmed that
the M-Q quantization algorithm could effectively reduce the
quantization errors and maintain the feature extraction ability
of the original model. The local features obtained met the
requirements of the local feature matching task.

Fig. 6 shows the matching results after feature extraction
by different models (columns 1, 2, and 3, represent the
matching results of the VGG-F, M-Q, and M-PTQ methods,
respectively). The feature points extracted by the M-PTQ
algorithm were unevenly distributed, with a poor match-
ing effect; hence, none of the three images were correctly
matched. In contrast, the feature points extracted by the M-Q
method were not significantly different with VGG-F, and the
overall matching effect was better than that of M-PTQ.

V. CONCLUSION
This study proposed a fast dual-feature extraction method
for visual place recognition to address the issue of feature
extraction efficiency. We designed a tightly coupled feature
extraction network that extracts local and global features in
a unified model based on a lightweight backbone. The LSQ
method was used in the inference stage to further optimize the
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efficiency. The experimental results showed that the proposed
method significantly improved the efficiency while ensur-
ing accuracy for VPR. Additionally, the proposed method
was able to achieve comparable performance to the optimal
method at a significantly lower cost, and it was 2.9× to
4.0× faster than the mainstream feature extraction model.
This shows our method can significantly improve feature
extraction efficiency while maintaining good representation
performance.

This study has some limitations, and the proposed method
can be further improved. Firstly, in the training stage, we only
considered optimization for the encoder, and improving the
post-processing efficiency requires in-depth research. Then,
the quantization effect varies across different hardware plat-
forms, designing more suitable quantization methods for
different platforms requires extensive experiments and anal-
ysis. These issues will be addressed in the future.
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