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ABSTRACT The widespread availability of internet access and handheld devices confers to social media a
power similar to the one newspapers used to have. People seek affordable information on social media and
can reach it within seconds. Yet this convenience comes with dangers; any user may freely post whatever
they please and the content can stay online for a long period, regardless of its truthfulness. A need arises to
detect untruthful information, also known as fake news. In this paper, we present an end-to-end solution that
accurately detects fake news and immunizes network nodes that spread them in real-time. To detect fake news,
we propose two new stack deep learning architectures that utilize convolutional and bidirectional LSTM
layers. To mitigate the spread of fake news, we propose a real-time network-aware strategy that (1) constructs
a minimum-cost weighted directed spanning tree for a detected node, and (2) immunizes nodes in that tree
by scoring their harmfulness using a novel ranking function. We demonstrate the effectiveness of our solution
on five real-world datasets.

INDEX TERMS Fake news detection, fake news propagation, network-aware fake news mitigation, real-time
network immunization.

I. INTRODUCTION
With the accelerated technology adoption by a growing
number of users, social media have become the main medium
for the dissemination of information on current news and
events [1]. While these new media bring several benefits
(e.g., a large number of consumers reached, instant and
continuous updates on one’s topics of interest), they also
enable the spread of harmful information in the form of
fake news, and may thus polarize public discourse regarding
critical topics (e.g., elections [2], vaccination [3], health
hazards [4]) and threaten democratic values [5]. Because of
its detrimental effects on society at large [6], [7], [8], the
fake news phenomenon has been studied by scientists and
practitioners alike; fake news is defined as news articles that
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intentionally contain verifiably false misleading information
inconsistent with factual reality [9], [10], [11], [12], [13], [14],
[15]. To mitigate the threat of fake news, journalists have
started to manually classify news and offer websites with
fact-checking mechanisms that provide a verdict regarding
its veracity, such as PolitiFact and Snopes. However, such
solutions may fail in high-velocity information spreading
social media, as news appears and spreads much faster than
any manual verification; by the time it is checked, the news
may have been already shared with many sources and its
negative effect may have taken hold. In this paper, we propose
new models and strategies for misinformation detection and
mitigation to address the current real-world challenges posed
by fake news.

In particular, we aim to:
(O1) Propose new deep learning architectures to accurately

detect fake news in social media; and
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(O2) Propose new real-time strategies to mitigate the spread
of detected fake news in a social network.

To reach these objectives, we answer the following
questions:
(Q1) Can we improve the accuracy of fake news detection

using new deep learning architectures?
(Q2) Can we immunize nodes that spread harmful content

using network information in real-time?

To answer (Q1) and achieve objective (O1), we propose
two novel stack deep learning architectures that utilize
convolutional and bidirectional LSTM layers. We show the
effectiveness of these architectures with ample benchmarking
on four real-world datasets. To answer (Q2) and reach
objective (O2), we propose a real-time algorithm for network
immunization, which builds a minimum-cost weighted
directed spanning tree for a detected source node r and chooses
nodes in that tree to immunize by scoring their potential
harmfulness using a ranking function. The proposed ranking
functions consider the following network information for each
node:
(1) How long a chain of followers is (i.e., the length of the

diffusion path),
(2) How many nodes it reaches (i.e., the spread of

information), and
(3) How fast it spreads information (i.e., the information

diffusion speed).

To show the effectiveness of network immunization,
we evaluate our method on one real-world Twitter dataset.
In summary, the main contributions of this paper are:
(1) New deep learning architectures for fake news detection;
(2) New real-time fake news mitigation strategy consist-

ing of an algorithm for building the minimum-cost
weighted directed spanning tree for a given node and
a network-aware node harmfulness ranking function;

(3) Benchmarking on multiple real-world datasets to evalu-
ate the efficiency of our deep learning architectures for
fake news detection;

(4) Evaluation of our real-time mitigation algorithm on a
real-world Twitter dataset.

The rest of this paper is structured as follows: In Section II,
we present the state of the art. In Section III, we present the
proposed architecture, deep learning models for fake news
detection, minimum-cost weighted directed spanning tree
algorithm for a given source node and harmful node ranking
function. In Section IV, we detail the implementation of our
architecture. In SectionV, we describe the datasets and analyze
in detail the experimental validation of our solution. Section VI
provides an in-depth discussion of results, and Section VII
concludes the paper and hints at future research.

II. RELATED WORK
In this section, we present the approaches of previous research
on the two tasks of interest to our work: detecting fake news
and mitigating its spread.

A. FAKE NEWS DETECTION
Nakamura et al. [16] introduced a dataset comprising
Reddit posts along with an architecture designed to identify
posts that contain fake pieces of information using image
data, title data, or both combined. The advantages of
working with such a dataset are its diversity, large size, and
multidimensionality, which allows researchers to treat fake
news detection as a 2-way, 3-way, or 6-way classification
problem. Further, the authors combine text and image
features to classify whether a post spreads fake pieces of
information or not. Text is embedded using the BERT [17]
and InferSent [18] models, while image data is extracted
using the VGG16 [19], ResNet50 [20], and EfficientNet [21]
models.

Kumar et al. [22] tackle the fake news detection challenge
via sentiment analysis, implementing seven deep learning
architectures, such as long short-term memory (LSTM),
bidirectional LSTM, convolutional neural networks (CNN),
and ensemble models that combine the aforementioned. After
performing fake news classification using these models, the
authors evaluate the models’ performance against classic
machine learning algorithms, such as logistic regression and
support vector machines.
Khan et al. [23] address the fake news detection task via

classical machine learning algorithms and more advanced
deep-learning and neural network models, and compare their
performance on two well-known datasets: Liar and Fake
or Real News, along with a self-built dataset, which the
authors claim to be more variate and denser than the other
two.
Granik and Mesyura [24] tackle the fake news detection

problem by using the Naive Bayes classification algorithm,
which, despite its simplicity, yields good results on the task.
Moreover, the authors suggest further adjustments that can be
made to improve the results of the aforementioned method.
Pérez-Rosas et al. [25] collect two original fake news

detection datasets and use a linear kernel SVM algorithm to
perform classification. The first dataset is built by collecting
real news from reliable US news websites and adding pieces
of fake information to them to turn them into fake news.
For the second dataset, the authors target celebrity news and
search the web for pairs of fake and real articles regarding
celebrity gossip. The classification model takes as input a
set of predefined linguistic features or a mix of them, such
as unigrams or bigrams, punctuation marks, psycholinguistic
features, readability, and syntax. The authors evaluate the
model’s performances using these features on the two created
datasets.
Nguyen et al. [26] suggest that implicit correspondences

between articles can help improve the performance of a fake
news detection algorithm. The authors convert the task of
detecting whether an article contains untruthful pieces of
information into an inference problem in a Markov random
field and transform the algorithm that solves this kind of
problem into a deep neural network.
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Truică et al. [27] propose the use of transformer-based
sentence embeddings and transfer learning for fake news
detection for news articles in both English and German.
In their study, Truică and Apostol [28] show empirically

that the embedding used for encoding the data is one of the key
factors in accurately determining the veracity of news articles.
Mayank et al. [29] propose DEAP-FAKED, a new model

that uses Natural Language Processing techniques, Graph
Neural Networks, and Knowledge graphs to identify Fake
News. The experimental results on the Kaggle dataset show
this approach improves the performance of misinformation
detection. We use the DEAP-FAKED model in our compari-
son.
Truică and Apostol [15] designed MisRoBÆRTa,

a transformed-based ensemble model used for multi-class
fake news detection. The ensemble uses RoBERTa [30] and
BART [31] to encode the textual content of the news. The
experimental results on the Kaggle and The Fake News Corpus
(FNC) datasets show how this approach improves the overall
performance on the task of misinformation detection. We use
MisRoBÆRTa to compare the results obtained by our proposed
models on Kaggles.
Raza and Ding [32] propose FND-NS, a framework that

learns useful representations for predicting fake news. FND-
NS uses both the textual content and the social context to
determine the veracity of news articles and social media posts.
For the Fakeedit corpus, we compare the results of our models
with the ones obtained by FND-NS.

B. FAKE NEWS MITIGATION
Sharma et al. [33] start out with graphs constructed from two
Twitter datasets and design two independent diffusion paths
for real and fake posts, each with a separate set of learned
parameters. Using these paths and the obtained parameters,
they determine the user characteristics that matter most in
news spread and propose two methods to mitigate the spread
of fake news: blocking a node (i.e., the user sending the news)
or blocking the edge (i.e., the news transmission path). Their
experiments indicate that an account that spreads fake news
has a low follower count and no account description available,
while an account that posts real news has a large number of
followers, and is associated with well-known sources.
Saxena et al. [34] consider a social network as a graph

in which there are three types of users: positive — which
spread true news, negative — which spread false news, and
neutral — which are influenced by the other two types. The
authors model these influences probabilistically, where neutral
nodes influenced by one of the two types of news are less
likely to change stance, the longer the diffusion process lasts.
To mitigate false information circulating through the graph,
the authors design an algorithm that assigns each true news
broadcaster a metric called ‘‘truth score’’, and selects the top-k
sources with the best scores.

Shu et al. [35] contribute to the field of false news detection
and mitigation by building a comprehensive dataset. They

collect news from PolitiFact, GossipCop, and E! Online. The
first two are platforms where the level of truth of news is
labeled following a fact-checking process, while the latter
is considered a credible news source. The dataset includes
user features, i.e., number of followers, number of followees,
user location (if mentioned in the profile description), user
comments or retweets, as well as post features, i.e., post
content (written or visual). These features are obtained by
searching the news collected from the 3 sources using the
Twitter search tool. By virtue of its diverse features, the dataset
can be used in both fake news detection and mitigation tasks.
Their best-performing model on this dataset is CNN [35],
which we will also use in our comparison.

Sayyadiharikandeh et al. [36] address the problem of
fake news mitigation assuming that non-human entities in
social networks are set up to spread false information in an
automated way. The authors implement a mechanism to detect
such entities, which they call Botometer. They build several
models to detect people and different types of bots in a social
network. The models are aggregated into an ensemble learning
algorithm, which produces the final classification results.
Nevertheless, none of the above approaches assembles

a combined fake news detection and mitigation pipeline,
as we do, further discussed in the following section. Firstly,
we identify the harmful nodes that spread fake news in the
network using a novel deep learning architecture. Secondly,
we detect and rank harmful nodes using a novel algorithm that
uses the direct weighted graph structure. Lastly, we immunize
the network using a blocking strategy based on the ranked list
of harmful nodes.

III. METHODOLOGY
Figure 1 presents our pipeline for fake news detection and
mitigation. We mine a Social Media platform in real-time
to detect nodes that spread harmful content; for each such
node, we immunize the network with a real-time mitigation
strategy. To be labeled as true or fake, a post passes through a
preprocessing stage, where its content is edited and converted
to a real-number matrix, which is passed to the detection
stage. The detection stage is represented by one of our two
proposed architectures, which outputs a post label. In case
the post is false, we start the mitigation process; we construct
a propagation path, i.e., a minimum-cost weighted directed
spanning tree starting from each node that spreads fake news,
compute a score for and rank the harmfulness of each node,
and eventually extract the top-k most harmful nodes.

A. PREPROCESSING
The preprocessing module cleans the text and minimizes
the vocabulary while preserving meaning; it comprises
three steps: (1) punctuation marks and stop words removal,
(2) lemmatization, and (3) word encoding using word
embeddings.
Due to their high frequency of occurrence and specificity,

stop words and symbols do not add relevant information when
fed into the detection model. Thus, theymay better be removed
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FIGURE 1. Detection and mitigation pipeline.

from posts. In the first stage of preprocessing, we remove these
two types of elements. In the second stage, lemmatization,
we transform words with similar forms into one unique form
to homogenize the content of the posts. For the posts to be
included in our proposed models, each word is transformed
into a numerical representation using a word embedding vector.
We use two pre-trained word embedding models and a model
we trained on the chosen datasets.

B. FAKE NEWS DETECTION
The purpose of classification is to predict previously unseen
items based on inferences derived by training on a set
comprising news articles/posts and their labels. We first
describe the basic elements of the two proposed architectures
and motivate why we chose them.
We use an Embedding layer at the start of our models to

store word embeddings that we obtain through the continuous
bag-of-words model or pre-trained models. Thereby, our
architectures have access to a word embedding dictionary.
In general, an embedding layer would either generate
embeddings or map every word of a post to a real-number
vector representation; since we generate word embeddings in
the preprocessing stage, we use the embedding layer with the
latter function.
We employ a Bidirectional Long Short-Term Memory

(BiLSTM) layer because the news we predict represents word
sequences, and this type of layer is specialized in learning
long-term dependencies in text. A further reason to employ
such a layer is that it uses two simple LSTM architectures that
look both forward and backward in the sequence, such that
given a sequence element, both previous and future elements
are available to the network.
We use a Convolutional layer with N filters and kernel

size k to extract patterns from a k-size window in the data
passed to the network, creating N features by means of a
convolution operation between the text window and every
distinct filter, and adding a bias term. Every filter has an
associated channel where it stores features. The final result of
the Convolutional layer with N filters and size k applied on a
post of length L consists of N channels of length L − k + 1,
each containing the new features obtained by its corresponding
filter. We equalize post lengths in the preprocessing stage

by zero-padding or truncation, such that the post length
is constant, leading to constant channel size for all posts.
Following the Convolutional layer, we use amax-pooling layer
with pooling size p to decrease the size of the feature channels
by grouping elements into groups of length p and choosing
only the feature with the maximum value. We use dropout
layers to deactivate a percentage of the outputs coming from
the previous layer; thus, we reduce overfitting by creating
artificial noise and improve the generalization capacity of the
network when new, unknown data is fed for prediction. We use
dense layers with linear activation as a connection between
the network layers, and a final dense layer with a softmax
activation function to produce the classification result, i.e., the
probability of the post to be true.

Concretely, we propose two deep learning models, namely
CNN-3BiLSTM and 3BiLSTM. The main difference between
them is that CNN-3BiLSTM creates new features through a
convolutional layer, from which it extracts the best-generated
features using a max-pooling layer, while 3BiLSTM feeds the
initial features directly to the BiLSTM and dropout sequences.
In the stacked CNN-3BiLSTM architecture (Figure 2),

we use an embedding layer where we pass word embeddings as
weight parameters, followed by a convolutional layer with one
group of 128 filters and kernel size 3 with ReLU as activation
function and a max-pooling layer with pool size 2 and the
number of strides set to 2. We add a dense layer with 256 units,
followed by three BiLSTM layers having dropout layers in-
between. We set the number of units for the BiLSTM layers
to 64 and the dropout rate to 0.2. The architecture ends with
two dense layers: one with 128 linear activation units and one
with 1 sigmoid activation unit.

FIGURE 2. Stacked CNN-3BiLSTM architecture.

In the stacked 3BiLSTM architecture (Figure 3), we use an
embedding layer with weights set as the word embeddings,
then stack three 128 units BiLSTM layers with dropout layers
in-between, with a dropout rate of 0.2. As in the previous
model, the architecture ends with two Dense layers.

C. FAKE NEWS MITIGATION
Having detected a source of fake news, we mitigate its spread
by rating each user with a network-aware ranking score that
represents how influential that user is. This ranking score
weighs in the following network-based goals: firstly, we aim
to immunize nodes that are followed extensively, by followers
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FIGURE 3. Stacked 3BiLSTM architecture.

themselves having many followers; thus, we take into account
the height of the subtree spanning out from them, i.e., the
length of diffusion paths. Secondly, we wish to immunize
nodes that spread information to multiple nodes; therefore,
we take into account the size of the spanning subtree, i.e.,
the number of nodes. Lastly, we intend to immunize nodes
that spread information faster than others; ergo, we immunize
nodes having high information diffusion speed. A high ranking
score by these criteria implies that a user has a high impact
on news spread. After calculating this score for each user,
we select the top-k most harmful users to be proposed for
removal or added to a blacklist.

Figure 4 presents an example that evaluates every node that
may spread a harmful article for a given source node. Firstly,
given a weighed directed graph G = (V ,E) with positive
costs tu,v ∈ τ , where τ = {tu,v|(u, v, tu,v) ∈ E}, with each tu,v
measuring the time required to propagate the harmful content
from u to v, we build a minimum-cost weighted directed
spanning tree (MCWDST) T rooted at the detected source
node r , using Algorithm 1.
Algorithm 1 works as follows. We initialize (1) the tree’s

set of vertices Vt to {r} and Et to the empty set, and (2) the
sets of untested vertices Vc to {r} and the set of untested edges
Ec to all edges except the ones that point to r (Lines 1-4).
While there are still untested vertices (Line 5), we initialize,
in each iteration, a set for vertices Vn and one for edges En
(Lines 6-7) which are needed to update Vc and Ec at the end
of the iteration (Lines 20-21). We pass over all vertices n ∈ Vc
and find the edges in Ec where n is the parent of v (Lines 8-9).
If the node v is not present in Vt then we add v to Vt and Vn and
the edge (n, v) to Et and En (Lines 10-14), otherwise, it means
that there is an edge pointing to v in Et (Lines 15-17). In this
case, we verify if it is cheaper to pass through this edge than to
use the existing one (Line 16). If it is cheaper, we update Et by
removing the existing edge (Line 17) and adding the new edge
to En (Line 18). We update Vc with the newly added nodes
inVn, andEc by removing the nodes inEn (Lines 20-21).When
the algorithm exits the while block, it returns the propagation
tree T . The complexity is O(|V ||E|). Having obtained this
tree, we evaluate the potential harmfulness of each node using
a ranking function and sort the nodes in descending order of
their scores to obtain a leaderboard of the most harmful nodes.

FIGURE 4. From graph to the harmful nodes ranking.

Algorithm 1MCWDST for Starting Node r
Input : the weighted directed graph G = (V ,E) the

starting node r
Output : the MCWDST T = (Vt ,Et )

1 Vt ← {r}
2 Et ← ∅
3 Vc← {r}
4 Ec← E \ {(u, r, tu,r )|(u, r, tu,r ) ∈ E}
5 while Vc ̸= ∅ do
6 Vn← ∅
7 En← ∅
8 foreach n ∈ Vc do
9 foreach (u, v, tu,v) ∈ Ec do
10 if n = u ∧ v /∈ Vt then
11 Vt ← Vt ∪ {v}
12 Et ← Et ∪ {(n, v, tn,v)}
13 Vn← Vn ∪ {v}
14 En← En ∪ {(n, v, tn,v)}
15 if n = u ∧ v ∈ Vt then
16 if tr,v > tr,n + tn,v then
17 Et ←

Et \ {(u′, v, t ′u′,v)|(u
′, v, t ′u′,v) ∈ Et }

18 Et ← Et ∪ {(u, v, tu,v)}
19 En← En ∪ {(u, v, tu,v)}
20 Vc← Vn
21 Ec← Ec \ En
22 return T = {Vt ,Et }

Our ranking function assesses each node n (Equation (1)) in
real-time in terms of three components that meet the criteria
enumerated previously:
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(1) H (n): the normalized height of the subtree of n to promote
nodes that have a long chain of perpetuating followers,

(2) A(n): the normalized size of the subtree of n to promote
nodes that reach many other nodes, and

(3) ft (n): a function applied to the timestamps of the
descendants of n to promote nodes of high information
diffusion speed.

rank(n) = H (n)+ A(n)+ (1− ft (n)) (1)

The normalized weight H (n) = hmax_n
hmax_R

, where hmax_n is the
maximum height of the subtree of n and hmax_R the maximum
height of the whole tree, takes into account the depth of the
propagation path of harmful content, i.e., how many levels
in the graph can be affected by harmful content spread by
node n. This factor is in range [0, 1] as 0 ≤ hmax_n ≤ hmax_R.
Note, for leaf nodes, H (n) is always 0 as a leaf does not have
a subtree.
The normalized area A(n) = An

AR
, where An is the area of

the subtree of n and AR is the area of the whole tree, encodes
into the ranking function the hole propagation paths, i.e., how
many nodes are affected by node n. This factor is in range
(0, 1] as 0 < An ≤ AR. Note, for leaf nodes, A(n) is always
0 as a leaf does not have a subtree.
We include ft (n) to weigh the normalized timestamp of

spreading fake news (the cost of each edge). For a node
n with k edges and a sorted set of timestamps (costs of
edges) τn = {ti|ti = tn,v ∧ (n, v, tn,v) ∈ E ∧ i = 1, k},
we normalize the value of a timestamp ti in [0, 1] using
Equation (2). Note: this function is applied only to nodes
that have descendants in the tree. For leaf nodes, we do not
apply the function as they have no descendants. Thus, in the
ranking function rank(n), the value of ft (n) for leaf nodes is
always 0.

t ′i =


t −mintj∈τn (tj)

maxtj∈τn (tj)−mintj∈τn (tj)
mintj∈τn (tj)̸=maxtj∈τn (tj)

0.5 mintj∈τn (tj)=maxtj∈τn (tj)

(2)

We consider three ways of computing ft (n):
(1) average timestamp value, average(tn) = 1

k

∑k
i=0 ti,

which weighs in the average propagation time;
(2) median timestamp (Equation (3) using the sorted order),

which may be more descriptive than the average when
there are outliers in the sequence that might skew the
average value; and

(3) the ratio of minimum to maximum timestamp value,
ratio(tn) =

minti∈τn (ti)
maxti∈τn (ti)

, which emphasizes extremes.

If a node has no descendants, the value of the function ft (n)
is 0. Regardless of the computational approach for ft (n), the
function is in the range [0, 1].

median(tn) =


t k
2

if k is even
t k−1

2
+ t k+1

2

2
if k is odd

(3)

In effect, ft (n) measures the latency by which a node n can
disseminate fake news to its descendants if such exists; for a
harmful node, this value is close to 0. To express speed, we use
1− ft (n) in the ranking function. Given that rank(n) ∈ (1, 3],
a harmful node will have a value that is close to 3. After
scoring all nodes, we sort them in descending order of their
scores and choose the top-k nodes, which consequently have
a high potential to infect the network with fake news. Note,
rank(n) = 1 for a leaf node as A(n) = 0, H (n) = 0, and
1− ft (n) = 1

Returning to Figure 4, node A is marked by the detection
module as a source node that spreads fake news. We build a
propagation tree for A using Algorithm 1, score each node
in that tree using the ranking function, and create a list of
potentially harmful nodes. In effect, we find E , which may
spread content from A to its followers, to be the second most
harmful node after A.
After extracting node ranks, we start immunizing the

network from the root node to the leaves. To do so, we suggest
a minimally interventionist approach of lowering the rank
of a harmful post to the end of its followers’ feed. Thus,
the harmful content will require more time to reach other
users and followers if they are not expressly looking for it
by browsing the feed. To mitigate the behavior where users
search for content, we can monitor the next ranked nodes to
stop the network infection and apply the same strategy as
for the root. Such immunization is real-time, allowing for
continuous monitoring nodes that may reshare the harmful
content.

IV. IMPLEMENTATION
In this section, we present the details of our implementation
in Python 3. The code is publicly available on GitHub at
https://github.com/DS4AI-UPB/MCWDST.

A. PREPROCESSING
We load the data using pandas [37]. For processing, we use:
(1) SciKit-Learn [38] LabelEncoder to transform labels from
categorical to numerical, (2) regular expressions to clean the
text, (3)NLTK [39]WordNetLemmatizer to extract the lemmas,
and (4) Keras [40] Tokenizer to vectorize the clean text corpus.
To obtain word embeddings, we consider two approaches:

(1) training a Word2vec CBOW model on each dataset using
Gensim [41], and (2) using the pre-trained models GloVe pre-
trained and Word2Vec pre-trained.
We train 100-dimensional Word2Vec CBOW [42] embed-

dings using a learning rate of 0.025 and a word window size
of 5 for 5 epochs. We chose CBOW over Skip-Gram because
it is faster to train and it uses distributed representations
of context to predict words instead of using a distributed
representation of the words to predict the context. For the
pre-trained embeddings we chose: (1) GloVe pre-trained: a
100-dimensional GloVe [43] embedding trained on Wikipedia
2014 and Gigaword 5, and (2) Word2Vec pre-trained:
300-dimension Word2Vec embeddings trained on Wikipedia
data.
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B. FAKE NEWS DETECTION
In the Detection module, we use the Keras interface of the
TensorFlow [44] library to build our networks; we compile the
model using the Adam optimizer with binary cross-entropy
as the loss function, train the models for 200 epochs using
a validation split of 0.2 and a batch size of 128, and
add an early-stopping callback that monitors the validation
loss.

C. FAKE NEWS MITIGATION
We construct propagation trees by reading the graph’s
adjacency matrix, along with the timestamps associated
with each node. The propagation tree is the minimum-cost
weighted directed spanning tree starting from a source node
that spreads fake news. We iterate through all nodes in the tree
and assign a ranking score to each. To calculate the function
of descendant timestamps, we use the built-in Python library
statistics. We sort the scores dictionary by descending values
and take the first k nodes as the most harmful. We visualize
the tree by Graphviz [45].

D. GRAPHICAL USER INTERFACE
We build a user-friendly graphical user interface consisting of
three pages: a landing page, a fake news classification page,
and a fake news mitigation page. For detection (Figure 5),
the user inputs the content of the article or post in a text
box, clicks the ‘‘Predict’’ button, and gets the classification
result as a verdict; the results of preprocessing are thereby
applied to the text, with stop words and punctuation removed,
and lemmatization of the remaining words. Figure 6 presents
the fake news mitigation page. The user can opt to visualize
a node’s minimum-cost weighted directed spanning tree in
two formats: human-friendly format as source — (destination,
timestamp), or Twitter15 [46] format. The format is toggled
by a check box. Upon pressing ‘‘Submit’’, the tree image is
shown along with a ranking of the most harmful nodes therein
according to our evaluation metric.

FIGURE 5. Fake news detection page.

V. EXPERIMENTAL RESULTS
In this section, we present the datasets we use for evaluation,
compare the performance of the two proposed architectures,

FIGURE 6. Fake news mitigation page.

and analyze how each metric in our ranking function performs,
individually and collectively, in mitigating harmful content
propagation.

A. DATASETS AND PREPROCESSING ANALYSIS
We use four datasets to evaluate the detection models and
one dataset to evaluate the mitigation metrics. We split each
dataset for classification in training and testing sets using an
80%-20% ratio. From the training set, we extract 20% for
validation.

The Fake News Corpus (FNC) dataset contains over 9,4
million articles labeled using 11 predefined labels. We chose a
balanced subset of 20 000 articles tagged as either reliable
or fake. As the original dataset is automatically filtered,
we manually verified each article’s content to ensure it is
correctly labeled.
The Kaggle dataset, downloaded from the Kaggle Fake

NewsDetection challenge, consists of 20 800 articles tagged as
reliable or unreliable. After eliminating null rows, the resulting
dataset consists of 10 387 reliable and 10 374 unreliable tagged
news.

The GossipCop [35] dataset consists of 22 155 news titles,
article’ URLs, tweet IDs of users that retweeted the article,
and tags that label articles as true or fake. As the dataset is
initially imbalanced, we select 5 323 articles representing both
tags.
The Fakeddit [16] is a multimodal dataset that allows

2-way, 3-way, or 6-way classification using images, text,
or both. We use the title of the post and the 2-way label to
perform our task. We edit the dataset to exclude entries that
contain images and select 107 742 posts with a 1:1 true-to-fake
ratio.
The Twitter15 [46] contains news articles and their labels,

along with information on the directed network structure
among users, followers, and followees. We use this dataset to
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analyze the performances of our mitigation module. It consists
of 1 490 news articles labeled as true, unverified, non-
rumor, or false. We select 361 articles identified as false,
construct their propagation traces, and compute scores for the
nodes.
Table 1 presents the features of the datasets with

cleaned content, where every article contains words that
are lemmatized. In terms of average and maximum text
length, we can group the datasets into two categories: large
ones (i.e., FNC, Kaggle) and small ones (i.e., Fakeddit,
GossipCop). The articles in FNC and Kaggle consist of
sequences of sentences or phrases, while the posts in Fakeddit
and GossipCop consist of a summary sentence. In terms
of size, the largest dataset is Fakeddit and the smallest is
GossipCop.

TABLE 1. Post-processing stage datasets details.

B. FAKE NEWS DETECTION RESULTS
Table 2 provides the classification results of the proposed
architectures using the 3 embedding methods, i.e., Word2Vec
trained, GloVe pre-trained, and Word2Vec pre-trained. The
results are the average for each score after 10 distinct
executions using random seeding. We use a default padding
size of 10 for small-length data (Fakeddit and GossipCop)
and 1 000 for large-length (i.e., Kaggle and FNC) data.
CNN-3BiLSTM obtains the overall best results on Fakeddit,
Kaggle, and FNC, although the difference between CNN-
3BiLSTM and 3BiLSTM is relatively small. On FNC,
the best accuracy is obtained when using CNN-3BiLSTM
with GloVe pre-trained, i.e., 98.37. The difference between
CNN-3BiLSTM and BiLSTM with the same embedding
is insignificant, i.e., 0.22. CNN-3BiLSTM with Word2Vec
trained registers an accuracy of 96.38 on Kaggle, with
only a small increase of 0.74 over BiLSTM with the same
embedding. On GossipCop, CNN-3BiLSTM with Word2Vec
pre-trained obtains the best accuracy, i.e., 74.97. On Fakeddit,
3BiLSTMwith Word2Vec pre-trained embeddings obtains the
best accuracy. We emphasize that, in fake news detection,
recall is an important metric as it tells how many fake
articles are correctly classified. On datasets having a large
average text length (i.e., FNC and Kaggle), recall scores are
between 90 and 100. On small-length data, recall is lower
than 77.
Table 3 presents a comparison between the results

obtained by our models and the current state-of-the-art
models. We can observe that the proposed architecture
outperforms or obtains similar results as the current models.
MisRoBÆRTa [15] and the proposed CNN-3BiLSTM with

FIGURE 7. The influence of padding on the f1-scores by architecture.

Word2Vec-trained embeddings obtain very similar results.
The small difference between the models is a direct
result of the embedding: MisRoBÆRTa uses two context-
aware stat-of-the-art transformers, i.e., BART [31] and
RoBERTa [30], as embeddings, while we use a static
embedding.
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TABLE 2. Classification results (Notes: 1. results are the average of 10 runs and 2. bold marks the overall best result).

We also study the impact of padding size on performance
with large data, i.e., Kaggle and FNC. We do not include
small-length data in our analysis, since their average text
length is 6-8 and their content consists of one sentence;
thus, their padding size range is small. We evaluate the two
datasets in terms of f1-score for 4 padding sizes, namely
250, 500, 750, and 1 000. Figure 7 shows the f1-scores we
obtain after 10 distinct executions using random seeding.
On FNC with 3BiLSTM, the best-performing embedding
strategy is Word2Vec pre-trained with a padding size of 750.
OnKaggle with 3BiLSTM, theWord2Vec-trained embeddings
obtain the best results when the padding size is 500. On FNC
with CNN-3BiLSTM, GloVe pre-trained with a padding size
of 750 achieves the best f1-score. The Word2Vec-trained
embeddings with a 1 000 padding size have the best score
on Kaggle with CNN-3BiLSTM. We note that a larger
text size does not necessarily translate into better results.
We conclude that the padding size has a small impact on model
performance.

C. FAKE NEWS MITIGATION RESULTS
To analyze the performance of our proposed algorithm in
identifying harmful nodes by measuring the distribution
of news by users, we use 361 trees with an average of
335 nodes per tree, a minimum number of nodes of 97,
a maximum number of nodes of 2 971, an average tree
height of 4, a minimum height of 2, and a maximum height
of 10.
We first analyze the importance of ft (n) in ranking nodes.

We divide the interval (1, 3] into two intervals and study the
influence of the function ft (n) on the obtained subintervals.
Table 4 shows the percentages of the scores obtained for

TABLE 3. Comparison with state-of-the-art models (Note: bold text marks
the overall best result).

the evaluation metric in each range, for the three strategies
applied in the ft (n) function, when collecting the top-k most
harmful nodes with k ∈ {1 000, 2 000, 3 000}. A higher score
represents a greater capability to spread untruthful information
faster. Thus, a score in (2, 3] indicates a very harmful node to
be immunized first, a score in [1, 2] indicates a mildly harmful
node to be immunized in second priority, where nodes with a
score close to 1 suggest that a node is weakly to not harmful
and should be immunized in last priority. A node with a score
of 1 is a lead node.We observe that when usingmedian(tn), our
ranking function scores with higher valuesmore harmful nodes
(i.e., nodes ∈ (2, 3]) than when using average(tn) or ratio(tn)
(i.e., harmful nodes are ranked in ∈ (1, 2]). Furthermore, as we
know which nodes are harmful and which are not, rank(n)
identifies correctly all the harmful nodes regardless of the
method used to compute ft (n).
Figure 8 plots the contribution that each component of

the proposed ranking function has in a node’s final score.
We analyze the top-k most harmful nodes, where k =
{5, 10, 15, 20}. The ft (n) function influences the score the
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TABLE 4. The distribution of the top-k nodes.

most, followed by the H (n) and A(n) functions. Notably, the
weight of ft (n) is more than 50% in all evaluation situations.
In all three subgraphs, as we increase k , the contribution of
H (n) is transferred to A(n). With k = 20, A(n) surpasses H (n)
(Figure 8(b) and 8(c)). In conclusion, the information diffusion
speed has the most contribution to our ranking function. That
is a reasonable design, as, for a small k , nodes that have
long chains of followers (i.e., a longer maximum diffusion
path) play a more important role than the nodes that can
reach many nodes. As k increases, the impact of the nodes
with many followers decreases, and the impact of nodes that
reach many nodes increases.

FIGURE 8. The influences of the 3 components of the metric in evaluating
the top-k most harmful nodes.

D. MITIGATION SCALABILITY RESULTS
We want to test the scalability of our solution and determine
the mitigation strategy performance in a real-world setting.
We collect from Twitter a graph structure containing over
10 000 nodes and 89 000 edges and split it into 3 subgraphs
for scalability testing. Table 5 presents the MCWDST
construction and ranking list creation time in seconds for
these subgraphs. We can observe that for a small graph,
the mitigation is done almost instantly. This is useful when
we detect and target the harmful content spreaders within
a disinformation network. For a larger network, the entire
process is done in near real-time, as it takes less than 5 minutes.
Thus, the best strategy is to immunize the network by targeting
the topmost harmful nodes. Finally, we compare our method
with two preventive network immunization strategies, i.e.,
NetShield [47] and SparseShield [48] an improved version of
NetShield, and one counteractive network immunization in
large networks, i.e, DAVA [49].

Although both preventive network immunization algorithms
are faster, the main problems with NetShield and SparseShield
that we solved with MCWDST are: (1) nodes are blocked
in no particular order if they converge, (2) nodes are not
ranked, (3) the edge weights are not used in the immunization
process, (4) the directed graph structure is not considered,
and (5) the number of immunized nodes is dependent on the
budget.
Whereas our proposed solution gives an immunization

strategy for a weighted directed graph by returning a blocking
order by ranking the harmfulness of nodes.

When comparing MCWDST with DAVA, another counter-
active network immunization algorithm, we observe that:
(1) DAVA blocks all the nodes in no particular order while

our MCWDSTmanages to block nodes in the order given
by the information diffusion paths,

(2) DAVA does not rank nodes, while MCWDST ranks them
from most to least harmful,

(3) DAVA is dependent on the budget and immunizes a given
number of nodes, while MCWDST immunizes the entire
network, and

(4) DAVA does not consider the directed graph structure,
while MCWDST takes this graph property into account.

VI. DISCUSSION
This section highlights the results and lessons learned from
the implementation and presents an in-depth analysis of the
two modules.

A. FAKE NEWS DETECTION
We observe that the pre-trained models (i.e., Word2Vec
pre-trained and GloVe pre-trained) achieve better results
on smaller datasets, i.e., GossipCop and Fakeddit, while
Word2Vec trained and GloVe pre-trained obtain better results
on larger datasets, i.e., FNC and Kaggle. These results
of the classification models directly reflect the typical
text length in each dataset. For small-length texts, it is
better to use pre-trained embeddings as they better encode
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TABLE 5. Mitigation scalability tests.

semantic, syntactic, and contextual information that cannot
be found in short statements. This is mitigated in large
datasets by the texts’ length, which offers sufficient semantic,
syntactic, and contextual information to train accurate and
data-specific word embeddings. The proposed novel deep
learning architectures offer state-of-the-art results on all
tested datasets, i.e., an accuracy of 88.66 on Kaggle [29],
74.80 on Fakeddit [32], and 72.30 on GossipCop [35]. We note
that the longer texts enable the bidirectional LSTM layers
with and without a CNN layer on top to detect meaningful
patterns for fake news detection. Even though the experimental
results show that 3BiLSTM architecture obtains good results,
the CNN-3BiLSTM architecture achieves the best scores
on FNC, Kaggle, and GossipCop. This result arises from
the combination of a CNN layer with a MaxPooling layer,
which generates new features and selects the best features
among those generated. Moreover, on the Kaggle data,
CNN-3BiLSTM outperforms 3BiLSTM with all embedding
strategies we use. Furthermore, we observe that, on large
datasets, a large-size padding strategy does not necessarily
improve performance. It follows that an ample analysis w.r.t.
size and word embedding should be performed on each dataset
to determine the best padding approach.

B. FAKE NEWS MITIGATION
The proposed ranking function takes into account 3 network-
specific components for mitigating harmful nodes: (1) H (n),
the length of the diffusion path, (2) A(n), the spread of
information, and (3) ft (n), the speed of information diffusion.

In our experiments on a real-world dataset, we observe that:
(1) regardless of graph size, ft (n) has the largest contribution
in the function, (2) for a small number of nodes to mitigate,
the length of the diffusion path H (n) adds more weight to
the ranking function than the number of nodes that can be
infected directly A(n), and (3) for a large number of nodes
to mitigate, both H (n) and A(n) have a similar impact on the
ranking.

As ft (n) has the largest contribution of the three components
to the score value of a node, it is, in effect, the most important
factor in mitigating fake news in a network, according to our
empirical findings. The comparison of different calculation
strategies of ft (n) indicates the impact of the potential to spread
fake news quickly, while the individual evaluation of the three
components of the ranking function indicates that network
structure is also important for the immunization task.

VII. CONCLUSION
In this paper, we proposed (1) two novel deep learning
architectures for fake news detection, (2) a real-time algorithm

for building the minimum-cost weighted directed spanning
tree (i.e., MCWDST), and (3) a function that ranks harmful
nodes in real-time, to combat the spread of fake news on social
media.

The proposed deep learning architectures use convolutional
and bidirectional LSTM layers that capture semantic, syntactic,
and context information. These models offer state-of-the-
art performance on the tested datasets. Our mitigation
algorithm greedily constructs a minimum-cost weighted
directed spanning tree for a given source node. The novel
raking function takes into account network information (i.e.,
the length of the diffusion path, the spread of information,
and the speed of information diffusion) as well as its harmful
content to mitigate the spread of fake news in a network-aware,
real-time manner. Ample benchmarking on five real-world
datasets shows that the proposed models for fake news
detection and the mitigation strategy are effective in stopping
the spread of harmful content online.
For future research directions, we will consider using: (1)

transformers as a way of generating word embeddings, and
(2) graph embedding techniques to develop a more complex
network-aware model that identifies harmful sources in
real-time.
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[1] C. Truicǎ, E. S. Apostol, T. Stefu, and P. Karras, ‘‘A deep learning

architecture for audience interest prediction of news topic on social
media,’’ in Proc. Int. Conf. Extending Database Technol., 2021,
pp. 588–599.

[2] N. Pyrhönen and G. Bauvois, ‘‘Conspiracies beyond fake news.
Produsing reinformation on presidential elections in the transnational
hybrid media system,’’ Sociol. Inquiry, vol. 90, no. 4, pp. 705–731,
Nov. 2020.

[3] J. Petit, C. Li, B. Millet, K. Ali, and R. Sun, ‘‘Can we stop the spread of
false information on vaccination? How online comments on vaccination
news affect readers’ credibility assessments and sharing behaviors,’’ Sci.
Commun., vol. 43, no. 4, pp. 407–434, Aug. 2021.

[4] S. B. Naeem, R. Bhatti, and A. Khan, ‘‘An exploration of how fake news
is taking over social media and putting public health at risk,’’ Health Inf.
Libraries J., vol. 38, no. 2, pp. 143–149, Jun. 2021.

[5] J. Rose, ‘‘To believe or not to believe: An epistemic exploration of fake
news, truth, and the limits of knowing,’’ Postdigital Sci. Educ., vol. 2, no. 1,
pp. 202–216, Jan. 2020.
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